linux-stable/drivers/vfio/vfio_iommu_type1.c
Shameer Kolothum af029169b8 vfio/type1: Check reserved region conflict and update iova list
This retrieves the reserved regions associated with dev group and
checks for conflicts with any existing dma mappings. Also update
the iova list excluding the reserved regions.

Reserved regions with type IOMMU_RESV_DIRECT_RELAXABLE are
excluded from above checks as they are considered as directly
mapped regions which are known to be relaxable.

Signed-off-by: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2019-08-19 13:24:48 -06:00

2150 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* VFIO: IOMMU DMA mapping support for Type1 IOMMU
*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*
* We arbitrarily define a Type1 IOMMU as one matching the below code.
* It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
* VT-d, but that makes it harder to re-use as theoretically anyone
* implementing a similar IOMMU could make use of this. We expect the
* IOMMU to support the IOMMU API and have few to no restrictions around
* the IOVA range that can be mapped. The Type1 IOMMU is currently
* optimized for relatively static mappings of a userspace process with
* userpsace pages pinned into memory. We also assume devices and IOMMU
* domains are PCI based as the IOMMU API is still centered around a
* device/bus interface rather than a group interface.
*/
#include <linux/compat.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/rbtree.h>
#include <linux/sched/signal.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/workqueue.h>
#include <linux/mdev.h>
#include <linux/notifier.h>
#include <linux/dma-iommu.h>
#include <linux/irqdomain.h>
#define DRIVER_VERSION "0.2"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "Type1 IOMMU driver for VFIO"
static bool allow_unsafe_interrupts;
module_param_named(allow_unsafe_interrupts,
allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(allow_unsafe_interrupts,
"Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
static bool disable_hugepages;
module_param_named(disable_hugepages,
disable_hugepages, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(disable_hugepages,
"Disable VFIO IOMMU support for IOMMU hugepages.");
static unsigned int dma_entry_limit __read_mostly = U16_MAX;
module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
MODULE_PARM_DESC(dma_entry_limit,
"Maximum number of user DMA mappings per container (65535).");
struct vfio_iommu {
struct list_head domain_list;
struct list_head iova_list;
struct vfio_domain *external_domain; /* domain for external user */
struct mutex lock;
struct rb_root dma_list;
struct blocking_notifier_head notifier;
unsigned int dma_avail;
bool v2;
bool nesting;
};
struct vfio_domain {
struct iommu_domain *domain;
struct list_head next;
struct list_head group_list;
int prot; /* IOMMU_CACHE */
bool fgsp; /* Fine-grained super pages */
};
struct vfio_dma {
struct rb_node node;
dma_addr_t iova; /* Device address */
unsigned long vaddr; /* Process virtual addr */
size_t size; /* Map size (bytes) */
int prot; /* IOMMU_READ/WRITE */
bool iommu_mapped;
bool lock_cap; /* capable(CAP_IPC_LOCK) */
struct task_struct *task;
struct rb_root pfn_list; /* Ex-user pinned pfn list */
};
struct vfio_group {
struct iommu_group *iommu_group;
struct list_head next;
bool mdev_group; /* An mdev group */
};
struct vfio_iova {
struct list_head list;
dma_addr_t start;
dma_addr_t end;
};
/*
* Guest RAM pinning working set or DMA target
*/
struct vfio_pfn {
struct rb_node node;
dma_addr_t iova; /* Device address */
unsigned long pfn; /* Host pfn */
atomic_t ref_count;
};
struct vfio_regions {
struct list_head list;
dma_addr_t iova;
phys_addr_t phys;
size_t len;
};
#define IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu) \
(!list_empty(&iommu->domain_list))
static int put_pfn(unsigned long pfn, int prot);
/*
* This code handles mapping and unmapping of user data buffers
* into DMA'ble space using the IOMMU
*/
static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
dma_addr_t start, size_t size)
{
struct rb_node *node = iommu->dma_list.rb_node;
while (node) {
struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
if (start + size <= dma->iova)
node = node->rb_left;
else if (start >= dma->iova + dma->size)
node = node->rb_right;
else
return dma;
}
return NULL;
}
static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
{
struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
struct vfio_dma *dma;
while (*link) {
parent = *link;
dma = rb_entry(parent, struct vfio_dma, node);
if (new->iova + new->size <= dma->iova)
link = &(*link)->rb_left;
else
link = &(*link)->rb_right;
}
rb_link_node(&new->node, parent, link);
rb_insert_color(&new->node, &iommu->dma_list);
}
static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
{
rb_erase(&old->node, &iommu->dma_list);
}
/*
* Helper Functions for host iova-pfn list
*/
static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
{
struct vfio_pfn *vpfn;
struct rb_node *node = dma->pfn_list.rb_node;
while (node) {
vpfn = rb_entry(node, struct vfio_pfn, node);
if (iova < vpfn->iova)
node = node->rb_left;
else if (iova > vpfn->iova)
node = node->rb_right;
else
return vpfn;
}
return NULL;
}
static void vfio_link_pfn(struct vfio_dma *dma,
struct vfio_pfn *new)
{
struct rb_node **link, *parent = NULL;
struct vfio_pfn *vpfn;
link = &dma->pfn_list.rb_node;
while (*link) {
parent = *link;
vpfn = rb_entry(parent, struct vfio_pfn, node);
if (new->iova < vpfn->iova)
link = &(*link)->rb_left;
else
link = &(*link)->rb_right;
}
rb_link_node(&new->node, parent, link);
rb_insert_color(&new->node, &dma->pfn_list);
}
static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
{
rb_erase(&old->node, &dma->pfn_list);
}
static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
unsigned long pfn)
{
struct vfio_pfn *vpfn;
vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL);
if (!vpfn)
return -ENOMEM;
vpfn->iova = iova;
vpfn->pfn = pfn;
atomic_set(&vpfn->ref_count, 1);
vfio_link_pfn(dma, vpfn);
return 0;
}
static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
struct vfio_pfn *vpfn)
{
vfio_unlink_pfn(dma, vpfn);
kfree(vpfn);
}
static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
unsigned long iova)
{
struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
if (vpfn)
atomic_inc(&vpfn->ref_count);
return vpfn;
}
static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
{
int ret = 0;
if (atomic_dec_and_test(&vpfn->ref_count)) {
ret = put_pfn(vpfn->pfn, dma->prot);
vfio_remove_from_pfn_list(dma, vpfn);
}
return ret;
}
static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
{
struct mm_struct *mm;
int ret;
if (!npage)
return 0;
mm = async ? get_task_mm(dma->task) : dma->task->mm;
if (!mm)
return -ESRCH; /* process exited */
ret = down_write_killable(&mm->mmap_sem);
if (!ret) {
ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task,
dma->lock_cap);
up_write(&mm->mmap_sem);
}
if (async)
mmput(mm);
return ret;
}
/*
* Some mappings aren't backed by a struct page, for example an mmap'd
* MMIO range for our own or another device. These use a different
* pfn conversion and shouldn't be tracked as locked pages.
*/
static bool is_invalid_reserved_pfn(unsigned long pfn)
{
if (pfn_valid(pfn)) {
bool reserved;
struct page *tail = pfn_to_page(pfn);
struct page *head = compound_head(tail);
reserved = !!(PageReserved(head));
if (head != tail) {
/*
* "head" is not a dangling pointer
* (compound_head takes care of that)
* but the hugepage may have been split
* from under us (and we may not hold a
* reference count on the head page so it can
* be reused before we run PageReferenced), so
* we've to check PageTail before returning
* what we just read.
*/
smp_rmb();
if (PageTail(tail))
return reserved;
}
return PageReserved(tail);
}
return true;
}
static int put_pfn(unsigned long pfn, int prot)
{
if (!is_invalid_reserved_pfn(pfn)) {
struct page *page = pfn_to_page(pfn);
if (prot & IOMMU_WRITE)
SetPageDirty(page);
put_page(page);
return 1;
}
return 0;
}
static int vaddr_get_pfn(struct mm_struct *mm, unsigned long vaddr,
int prot, unsigned long *pfn)
{
struct page *page[1];
struct vm_area_struct *vma;
struct vm_area_struct *vmas[1];
unsigned int flags = 0;
int ret;
if (prot & IOMMU_WRITE)
flags |= FOLL_WRITE;
down_read(&mm->mmap_sem);
if (mm == current->mm) {
ret = get_user_pages(vaddr, 1, flags | FOLL_LONGTERM, page,
vmas);
} else {
ret = get_user_pages_remote(NULL, mm, vaddr, 1, flags, page,
vmas, NULL);
/*
* The lifetime of a vaddr_get_pfn() page pin is
* userspace-controlled. In the fs-dax case this could
* lead to indefinite stalls in filesystem operations.
* Disallow attempts to pin fs-dax pages via this
* interface.
*/
if (ret > 0 && vma_is_fsdax(vmas[0])) {
ret = -EOPNOTSUPP;
put_page(page[0]);
}
}
up_read(&mm->mmap_sem);
if (ret == 1) {
*pfn = page_to_pfn(page[0]);
return 0;
}
down_read(&mm->mmap_sem);
vma = find_vma_intersection(mm, vaddr, vaddr + 1);
if (vma && vma->vm_flags & VM_PFNMAP) {
*pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
if (is_invalid_reserved_pfn(*pfn))
ret = 0;
}
up_read(&mm->mmap_sem);
return ret;
}
/*
* Attempt to pin pages. We really don't want to track all the pfns and
* the iommu can only map chunks of consecutive pfns anyway, so get the
* first page and all consecutive pages with the same locking.
*/
static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
long npage, unsigned long *pfn_base,
unsigned long limit)
{
unsigned long pfn = 0;
long ret, pinned = 0, lock_acct = 0;
bool rsvd;
dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
/* This code path is only user initiated */
if (!current->mm)
return -ENODEV;
ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, pfn_base);
if (ret)
return ret;
pinned++;
rsvd = is_invalid_reserved_pfn(*pfn_base);
/*
* Reserved pages aren't counted against the user, externally pinned
* pages are already counted against the user.
*/
if (!rsvd && !vfio_find_vpfn(dma, iova)) {
if (!dma->lock_cap && current->mm->locked_vm + 1 > limit) {
put_pfn(*pfn_base, dma->prot);
pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__,
limit << PAGE_SHIFT);
return -ENOMEM;
}
lock_acct++;
}
if (unlikely(disable_hugepages))
goto out;
/* Lock all the consecutive pages from pfn_base */
for (vaddr += PAGE_SIZE, iova += PAGE_SIZE; pinned < npage;
pinned++, vaddr += PAGE_SIZE, iova += PAGE_SIZE) {
ret = vaddr_get_pfn(current->mm, vaddr, dma->prot, &pfn);
if (ret)
break;
if (pfn != *pfn_base + pinned ||
rsvd != is_invalid_reserved_pfn(pfn)) {
put_pfn(pfn, dma->prot);
break;
}
if (!rsvd && !vfio_find_vpfn(dma, iova)) {
if (!dma->lock_cap &&
current->mm->locked_vm + lock_acct + 1 > limit) {
put_pfn(pfn, dma->prot);
pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
__func__, limit << PAGE_SHIFT);
ret = -ENOMEM;
goto unpin_out;
}
lock_acct++;
}
}
out:
ret = vfio_lock_acct(dma, lock_acct, false);
unpin_out:
if (ret) {
if (!rsvd) {
for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
put_pfn(pfn, dma->prot);
}
return ret;
}
return pinned;
}
static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
unsigned long pfn, long npage,
bool do_accounting)
{
long unlocked = 0, locked = 0;
long i;
for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
if (put_pfn(pfn++, dma->prot)) {
unlocked++;
if (vfio_find_vpfn(dma, iova))
locked++;
}
}
if (do_accounting)
vfio_lock_acct(dma, locked - unlocked, true);
return unlocked;
}
static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
unsigned long *pfn_base, bool do_accounting)
{
struct mm_struct *mm;
int ret;
mm = get_task_mm(dma->task);
if (!mm)
return -ENODEV;
ret = vaddr_get_pfn(mm, vaddr, dma->prot, pfn_base);
if (!ret && do_accounting && !is_invalid_reserved_pfn(*pfn_base)) {
ret = vfio_lock_acct(dma, 1, true);
if (ret) {
put_pfn(*pfn_base, dma->prot);
if (ret == -ENOMEM)
pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
"(%ld) exceeded\n", __func__,
dma->task->comm, task_pid_nr(dma->task),
task_rlimit(dma->task, RLIMIT_MEMLOCK));
}
}
mmput(mm);
return ret;
}
static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
bool do_accounting)
{
int unlocked;
struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
if (!vpfn)
return 0;
unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
if (do_accounting)
vfio_lock_acct(dma, -unlocked, true);
return unlocked;
}
static int vfio_iommu_type1_pin_pages(void *iommu_data,
unsigned long *user_pfn,
int npage, int prot,
unsigned long *phys_pfn)
{
struct vfio_iommu *iommu = iommu_data;
int i, j, ret;
unsigned long remote_vaddr;
struct vfio_dma *dma;
bool do_accounting;
if (!iommu || !user_pfn || !phys_pfn)
return -EINVAL;
/* Supported for v2 version only */
if (!iommu->v2)
return -EACCES;
mutex_lock(&iommu->lock);
/* Fail if notifier list is empty */
if (!iommu->notifier.head) {
ret = -EINVAL;
goto pin_done;
}
/*
* If iommu capable domain exist in the container then all pages are
* already pinned and accounted. Accouting should be done if there is no
* iommu capable domain in the container.
*/
do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
for (i = 0; i < npage; i++) {
dma_addr_t iova;
struct vfio_pfn *vpfn;
iova = user_pfn[i] << PAGE_SHIFT;
dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
if (!dma) {
ret = -EINVAL;
goto pin_unwind;
}
if ((dma->prot & prot) != prot) {
ret = -EPERM;
goto pin_unwind;
}
vpfn = vfio_iova_get_vfio_pfn(dma, iova);
if (vpfn) {
phys_pfn[i] = vpfn->pfn;
continue;
}
remote_vaddr = dma->vaddr + iova - dma->iova;
ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn[i],
do_accounting);
if (ret)
goto pin_unwind;
ret = vfio_add_to_pfn_list(dma, iova, phys_pfn[i]);
if (ret) {
vfio_unpin_page_external(dma, iova, do_accounting);
goto pin_unwind;
}
}
ret = i;
goto pin_done;
pin_unwind:
phys_pfn[i] = 0;
for (j = 0; j < i; j++) {
dma_addr_t iova;
iova = user_pfn[j] << PAGE_SHIFT;
dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
vfio_unpin_page_external(dma, iova, do_accounting);
phys_pfn[j] = 0;
}
pin_done:
mutex_unlock(&iommu->lock);
return ret;
}
static int vfio_iommu_type1_unpin_pages(void *iommu_data,
unsigned long *user_pfn,
int npage)
{
struct vfio_iommu *iommu = iommu_data;
bool do_accounting;
int i;
if (!iommu || !user_pfn)
return -EINVAL;
/* Supported for v2 version only */
if (!iommu->v2)
return -EACCES;
mutex_lock(&iommu->lock);
do_accounting = !IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu);
for (i = 0; i < npage; i++) {
struct vfio_dma *dma;
dma_addr_t iova;
iova = user_pfn[i] << PAGE_SHIFT;
dma = vfio_find_dma(iommu, iova, PAGE_SIZE);
if (!dma)
goto unpin_exit;
vfio_unpin_page_external(dma, iova, do_accounting);
}
unpin_exit:
mutex_unlock(&iommu->lock);
return i > npage ? npage : (i > 0 ? i : -EINVAL);
}
static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
struct list_head *regions)
{
long unlocked = 0;
struct vfio_regions *entry, *next;
iommu_tlb_sync(domain->domain);
list_for_each_entry_safe(entry, next, regions, list) {
unlocked += vfio_unpin_pages_remote(dma,
entry->iova,
entry->phys >> PAGE_SHIFT,
entry->len >> PAGE_SHIFT,
false);
list_del(&entry->list);
kfree(entry);
}
cond_resched();
return unlocked;
}
/*
* Generally, VFIO needs to unpin remote pages after each IOTLB flush.
* Therefore, when using IOTLB flush sync interface, VFIO need to keep track
* of these regions (currently using a list).
*
* This value specifies maximum number of regions for each IOTLB flush sync.
*/
#define VFIO_IOMMU_TLB_SYNC_MAX 512
static size_t unmap_unpin_fast(struct vfio_domain *domain,
struct vfio_dma *dma, dma_addr_t *iova,
size_t len, phys_addr_t phys, long *unlocked,
struct list_head *unmapped_list,
int *unmapped_cnt)
{
size_t unmapped = 0;
struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (entry) {
unmapped = iommu_unmap_fast(domain->domain, *iova, len);
if (!unmapped) {
kfree(entry);
} else {
iommu_tlb_range_add(domain->domain, *iova, unmapped);
entry->iova = *iova;
entry->phys = phys;
entry->len = unmapped;
list_add_tail(&entry->list, unmapped_list);
*iova += unmapped;
(*unmapped_cnt)++;
}
}
/*
* Sync if the number of fast-unmap regions hits the limit
* or in case of errors.
*/
if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
*unlocked += vfio_sync_unpin(dma, domain,
unmapped_list);
*unmapped_cnt = 0;
}
return unmapped;
}
static size_t unmap_unpin_slow(struct vfio_domain *domain,
struct vfio_dma *dma, dma_addr_t *iova,
size_t len, phys_addr_t phys,
long *unlocked)
{
size_t unmapped = iommu_unmap(domain->domain, *iova, len);
if (unmapped) {
*unlocked += vfio_unpin_pages_remote(dma, *iova,
phys >> PAGE_SHIFT,
unmapped >> PAGE_SHIFT,
false);
*iova += unmapped;
cond_resched();
}
return unmapped;
}
static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
bool do_accounting)
{
dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
struct vfio_domain *domain, *d;
LIST_HEAD(unmapped_region_list);
int unmapped_region_cnt = 0;
long unlocked = 0;
if (!dma->size)
return 0;
if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
return 0;
/*
* We use the IOMMU to track the physical addresses, otherwise we'd
* need a much more complicated tracking system. Unfortunately that
* means we need to use one of the iommu domains to figure out the
* pfns to unpin. The rest need to be unmapped in advance so we have
* no iommu translations remaining when the pages are unpinned.
*/
domain = d = list_first_entry(&iommu->domain_list,
struct vfio_domain, next);
list_for_each_entry_continue(d, &iommu->domain_list, next) {
iommu_unmap(d->domain, dma->iova, dma->size);
cond_resched();
}
while (iova < end) {
size_t unmapped, len;
phys_addr_t phys, next;
phys = iommu_iova_to_phys(domain->domain, iova);
if (WARN_ON(!phys)) {
iova += PAGE_SIZE;
continue;
}
/*
* To optimize for fewer iommu_unmap() calls, each of which
* may require hardware cache flushing, try to find the
* largest contiguous physical memory chunk to unmap.
*/
for (len = PAGE_SIZE;
!domain->fgsp && iova + len < end; len += PAGE_SIZE) {
next = iommu_iova_to_phys(domain->domain, iova + len);
if (next != phys + len)
break;
}
/*
* First, try to use fast unmap/unpin. In case of failure,
* switch to slow unmap/unpin path.
*/
unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys,
&unlocked, &unmapped_region_list,
&unmapped_region_cnt);
if (!unmapped) {
unmapped = unmap_unpin_slow(domain, dma, &iova, len,
phys, &unlocked);
if (WARN_ON(!unmapped))
break;
}
}
dma->iommu_mapped = false;
if (unmapped_region_cnt)
unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list);
if (do_accounting) {
vfio_lock_acct(dma, -unlocked, true);
return 0;
}
return unlocked;
}
static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
{
vfio_unmap_unpin(iommu, dma, true);
vfio_unlink_dma(iommu, dma);
put_task_struct(dma->task);
kfree(dma);
iommu->dma_avail++;
}
static unsigned long vfio_pgsize_bitmap(struct vfio_iommu *iommu)
{
struct vfio_domain *domain;
unsigned long bitmap = ULONG_MAX;
mutex_lock(&iommu->lock);
list_for_each_entry(domain, &iommu->domain_list, next)
bitmap &= domain->domain->pgsize_bitmap;
mutex_unlock(&iommu->lock);
/*
* In case the IOMMU supports page sizes smaller than PAGE_SIZE
* we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
* That way the user will be able to map/unmap buffers whose size/
* start address is aligned with PAGE_SIZE. Pinning code uses that
* granularity while iommu driver can use the sub-PAGE_SIZE size
* to map the buffer.
*/
if (bitmap & ~PAGE_MASK) {
bitmap &= PAGE_MASK;
bitmap |= PAGE_SIZE;
}
return bitmap;
}
static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
struct vfio_iommu_type1_dma_unmap *unmap)
{
uint64_t mask;
struct vfio_dma *dma, *dma_last = NULL;
size_t unmapped = 0;
int ret = 0, retries = 0;
mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
if (unmap->iova & mask)
return -EINVAL;
if (!unmap->size || unmap->size & mask)
return -EINVAL;
if (unmap->iova + unmap->size - 1 < unmap->iova ||
unmap->size > SIZE_MAX)
return -EINVAL;
WARN_ON(mask & PAGE_MASK);
again:
mutex_lock(&iommu->lock);
/*
* vfio-iommu-type1 (v1) - User mappings were coalesced together to
* avoid tracking individual mappings. This means that the granularity
* of the original mapping was lost and the user was allowed to attempt
* to unmap any range. Depending on the contiguousness of physical
* memory and page sizes supported by the IOMMU, arbitrary unmaps may
* or may not have worked. We only guaranteed unmap granularity
* matching the original mapping; even though it was untracked here,
* the original mappings are reflected in IOMMU mappings. This
* resulted in a couple unusual behaviors. First, if a range is not
* able to be unmapped, ex. a set of 4k pages that was mapped as a
* 2M hugepage into the IOMMU, the unmap ioctl returns success but with
* a zero sized unmap. Also, if an unmap request overlaps the first
* address of a hugepage, the IOMMU will unmap the entire hugepage.
* This also returns success and the returned unmap size reflects the
* actual size unmapped.
*
* We attempt to maintain compatibility with this "v1" interface, but
* we take control out of the hands of the IOMMU. Therefore, an unmap
* request offset from the beginning of the original mapping will
* return success with zero sized unmap. And an unmap request covering
* the first iova of mapping will unmap the entire range.
*
* The v2 version of this interface intends to be more deterministic.
* Unmap requests must fully cover previous mappings. Multiple
* mappings may still be unmaped by specifying large ranges, but there
* must not be any previous mappings bisected by the range. An error
* will be returned if these conditions are not met. The v2 interface
* will only return success and a size of zero if there were no
* mappings within the range.
*/
if (iommu->v2) {
dma = vfio_find_dma(iommu, unmap->iova, 1);
if (dma && dma->iova != unmap->iova) {
ret = -EINVAL;
goto unlock;
}
dma = vfio_find_dma(iommu, unmap->iova + unmap->size - 1, 0);
if (dma && dma->iova + dma->size != unmap->iova + unmap->size) {
ret = -EINVAL;
goto unlock;
}
}
while ((dma = vfio_find_dma(iommu, unmap->iova, unmap->size))) {
if (!iommu->v2 && unmap->iova > dma->iova)
break;
/*
* Task with same address space who mapped this iova range is
* allowed to unmap the iova range.
*/
if (dma->task->mm != current->mm)
break;
if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
struct vfio_iommu_type1_dma_unmap nb_unmap;
if (dma_last == dma) {
BUG_ON(++retries > 10);
} else {
dma_last = dma;
retries = 0;
}
nb_unmap.iova = dma->iova;
nb_unmap.size = dma->size;
/*
* Notify anyone (mdev vendor drivers) to invalidate and
* unmap iovas within the range we're about to unmap.
* Vendor drivers MUST unpin pages in response to an
* invalidation.
*/
mutex_unlock(&iommu->lock);
blocking_notifier_call_chain(&iommu->notifier,
VFIO_IOMMU_NOTIFY_DMA_UNMAP,
&nb_unmap);
goto again;
}
unmapped += dma->size;
vfio_remove_dma(iommu, dma);
}
unlock:
mutex_unlock(&iommu->lock);
/* Report how much was unmapped */
unmap->size = unmapped;
return ret;
}
static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
unsigned long pfn, long npage, int prot)
{
struct vfio_domain *d;
int ret;
list_for_each_entry(d, &iommu->domain_list, next) {
ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT,
npage << PAGE_SHIFT, prot | d->prot);
if (ret)
goto unwind;
cond_resched();
}
return 0;
unwind:
list_for_each_entry_continue_reverse(d, &iommu->domain_list, next)
iommu_unmap(d->domain, iova, npage << PAGE_SHIFT);
return ret;
}
static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
size_t map_size)
{
dma_addr_t iova = dma->iova;
unsigned long vaddr = dma->vaddr;
size_t size = map_size;
long npage;
unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
int ret = 0;
while (size) {
/* Pin a contiguous chunk of memory */
npage = vfio_pin_pages_remote(dma, vaddr + dma->size,
size >> PAGE_SHIFT, &pfn, limit);
if (npage <= 0) {
WARN_ON(!npage);
ret = (int)npage;
break;
}
/* Map it! */
ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage,
dma->prot);
if (ret) {
vfio_unpin_pages_remote(dma, iova + dma->size, pfn,
npage, true);
break;
}
size -= npage << PAGE_SHIFT;
dma->size += npage << PAGE_SHIFT;
}
dma->iommu_mapped = true;
if (ret)
vfio_remove_dma(iommu, dma);
return ret;
}
static int vfio_dma_do_map(struct vfio_iommu *iommu,
struct vfio_iommu_type1_dma_map *map)
{
dma_addr_t iova = map->iova;
unsigned long vaddr = map->vaddr;
size_t size = map->size;
int ret = 0, prot = 0;
uint64_t mask;
struct vfio_dma *dma;
/* Verify that none of our __u64 fields overflow */
if (map->size != size || map->vaddr != vaddr || map->iova != iova)
return -EINVAL;
mask = ((uint64_t)1 << __ffs(vfio_pgsize_bitmap(iommu))) - 1;
WARN_ON(mask & PAGE_MASK);
/* READ/WRITE from device perspective */
if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
prot |= IOMMU_WRITE;
if (map->flags & VFIO_DMA_MAP_FLAG_READ)
prot |= IOMMU_READ;
if (!prot || !size || (size | iova | vaddr) & mask)
return -EINVAL;
/* Don't allow IOVA or virtual address wrap */
if (iova + size - 1 < iova || vaddr + size - 1 < vaddr)
return -EINVAL;
mutex_lock(&iommu->lock);
if (vfio_find_dma(iommu, iova, size)) {
ret = -EEXIST;
goto out_unlock;
}
if (!iommu->dma_avail) {
ret = -ENOSPC;
goto out_unlock;
}
dma = kzalloc(sizeof(*dma), GFP_KERNEL);
if (!dma) {
ret = -ENOMEM;
goto out_unlock;
}
iommu->dma_avail--;
dma->iova = iova;
dma->vaddr = vaddr;
dma->prot = prot;
/*
* We need to be able to both add to a task's locked memory and test
* against the locked memory limit and we need to be able to do both
* outside of this call path as pinning can be asynchronous via the
* external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
* task_struct and VM locked pages requires an mm_struct, however
* holding an indefinite mm reference is not recommended, therefore we
* only hold a reference to a task. We could hold a reference to
* current, however QEMU uses this call path through vCPU threads,
* which can be killed resulting in a NULL mm and failure in the unmap
* path when called via a different thread. Avoid this problem by
* using the group_leader as threads within the same group require
* both CLONE_THREAD and CLONE_VM and will therefore use the same
* mm_struct.
*
* Previously we also used the task for testing CAP_IPC_LOCK at the
* time of pinning and accounting, however has_capability() makes use
* of real_cred, a copy-on-write field, so we can't guarantee that it
* matches group_leader, or in fact that it might not change by the
* time it's evaluated. If a process were to call MAP_DMA with
* CAP_IPC_LOCK but later drop it, it doesn't make sense that they
* possibly see different results for an iommu_mapped vfio_dma vs
* externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the
* time of calling MAP_DMA.
*/
get_task_struct(current->group_leader);
dma->task = current->group_leader;
dma->lock_cap = capable(CAP_IPC_LOCK);
dma->pfn_list = RB_ROOT;
/* Insert zero-sized and grow as we map chunks of it */
vfio_link_dma(iommu, dma);
/* Don't pin and map if container doesn't contain IOMMU capable domain*/
if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
dma->size = size;
else
ret = vfio_pin_map_dma(iommu, dma, size);
out_unlock:
mutex_unlock(&iommu->lock);
return ret;
}
static int vfio_bus_type(struct device *dev, void *data)
{
struct bus_type **bus = data;
if (*bus && *bus != dev->bus)
return -EINVAL;
*bus = dev->bus;
return 0;
}
static int vfio_iommu_replay(struct vfio_iommu *iommu,
struct vfio_domain *domain)
{
struct vfio_domain *d;
struct rb_node *n;
unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
int ret;
/* Arbitrarily pick the first domain in the list for lookups */
d = list_first_entry(&iommu->domain_list, struct vfio_domain, next);
n = rb_first(&iommu->dma_list);
for (; n; n = rb_next(n)) {
struct vfio_dma *dma;
dma_addr_t iova;
dma = rb_entry(n, struct vfio_dma, node);
iova = dma->iova;
while (iova < dma->iova + dma->size) {
phys_addr_t phys;
size_t size;
if (dma->iommu_mapped) {
phys_addr_t p;
dma_addr_t i;
phys = iommu_iova_to_phys(d->domain, iova);
if (WARN_ON(!phys)) {
iova += PAGE_SIZE;
continue;
}
size = PAGE_SIZE;
p = phys + size;
i = iova + size;
while (i < dma->iova + dma->size &&
p == iommu_iova_to_phys(d->domain, i)) {
size += PAGE_SIZE;
p += PAGE_SIZE;
i += PAGE_SIZE;
}
} else {
unsigned long pfn;
unsigned long vaddr = dma->vaddr +
(iova - dma->iova);
size_t n = dma->iova + dma->size - iova;
long npage;
npage = vfio_pin_pages_remote(dma, vaddr,
n >> PAGE_SHIFT,
&pfn, limit);
if (npage <= 0) {
WARN_ON(!npage);
ret = (int)npage;
return ret;
}
phys = pfn << PAGE_SHIFT;
size = npage << PAGE_SHIFT;
}
ret = iommu_map(domain->domain, iova, phys,
size, dma->prot | domain->prot);
if (ret)
return ret;
iova += size;
}
dma->iommu_mapped = true;
}
return 0;
}
/*
* We change our unmap behavior slightly depending on whether the IOMMU
* supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
* for practically any contiguous power-of-two mapping we give it. This means
* we don't need to look for contiguous chunks ourselves to make unmapping
* more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
* with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
* significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
* hugetlbfs is in use.
*/
static void vfio_test_domain_fgsp(struct vfio_domain *domain)
{
struct page *pages;
int ret, order = get_order(PAGE_SIZE * 2);
pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
if (!pages)
return;
ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2,
IOMMU_READ | IOMMU_WRITE | domain->prot);
if (!ret) {
size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE);
if (unmapped == PAGE_SIZE)
iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE);
else
domain->fgsp = true;
}
__free_pages(pages, order);
}
static struct vfio_group *find_iommu_group(struct vfio_domain *domain,
struct iommu_group *iommu_group)
{
struct vfio_group *g;
list_for_each_entry(g, &domain->group_list, next) {
if (g->iommu_group == iommu_group)
return g;
}
return NULL;
}
static bool vfio_iommu_has_sw_msi(struct iommu_group *group, phys_addr_t *base)
{
struct list_head group_resv_regions;
struct iommu_resv_region *region, *next;
bool ret = false;
INIT_LIST_HEAD(&group_resv_regions);
iommu_get_group_resv_regions(group, &group_resv_regions);
list_for_each_entry(region, &group_resv_regions, list) {
/*
* The presence of any 'real' MSI regions should take
* precedence over the software-managed one if the
* IOMMU driver happens to advertise both types.
*/
if (region->type == IOMMU_RESV_MSI) {
ret = false;
break;
}
if (region->type == IOMMU_RESV_SW_MSI) {
*base = region->start;
ret = true;
}
}
list_for_each_entry_safe(region, next, &group_resv_regions, list)
kfree(region);
return ret;
}
static struct device *vfio_mdev_get_iommu_device(struct device *dev)
{
struct device *(*fn)(struct device *dev);
struct device *iommu_device;
fn = symbol_get(mdev_get_iommu_device);
if (fn) {
iommu_device = fn(dev);
symbol_put(mdev_get_iommu_device);
return iommu_device;
}
return NULL;
}
static int vfio_mdev_attach_domain(struct device *dev, void *data)
{
struct iommu_domain *domain = data;
struct device *iommu_device;
iommu_device = vfio_mdev_get_iommu_device(dev);
if (iommu_device) {
if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
return iommu_aux_attach_device(domain, iommu_device);
else
return iommu_attach_device(domain, iommu_device);
}
return -EINVAL;
}
static int vfio_mdev_detach_domain(struct device *dev, void *data)
{
struct iommu_domain *domain = data;
struct device *iommu_device;
iommu_device = vfio_mdev_get_iommu_device(dev);
if (iommu_device) {
if (iommu_dev_feature_enabled(iommu_device, IOMMU_DEV_FEAT_AUX))
iommu_aux_detach_device(domain, iommu_device);
else
iommu_detach_device(domain, iommu_device);
}
return 0;
}
static int vfio_iommu_attach_group(struct vfio_domain *domain,
struct vfio_group *group)
{
if (group->mdev_group)
return iommu_group_for_each_dev(group->iommu_group,
domain->domain,
vfio_mdev_attach_domain);
else
return iommu_attach_group(domain->domain, group->iommu_group);
}
static void vfio_iommu_detach_group(struct vfio_domain *domain,
struct vfio_group *group)
{
if (group->mdev_group)
iommu_group_for_each_dev(group->iommu_group, domain->domain,
vfio_mdev_detach_domain);
else
iommu_detach_group(domain->domain, group->iommu_group);
}
static bool vfio_bus_is_mdev(struct bus_type *bus)
{
struct bus_type *mdev_bus;
bool ret = false;
mdev_bus = symbol_get(mdev_bus_type);
if (mdev_bus) {
ret = (bus == mdev_bus);
symbol_put(mdev_bus_type);
}
return ret;
}
static int vfio_mdev_iommu_device(struct device *dev, void *data)
{
struct device **old = data, *new;
new = vfio_mdev_get_iommu_device(dev);
if (!new || (*old && *old != new))
return -EINVAL;
*old = new;
return 0;
}
/*
* This is a helper function to insert an address range to iova list.
* The list is initially created with a single entry corresponding to
* the IOMMU domain geometry to which the device group is attached.
* The list aperture gets modified when a new domain is added to the
* container if the new aperture doesn't conflict with the current one
* or with any existing dma mappings. The list is also modified to
* exclude any reserved regions associated with the device group.
*/
static int vfio_iommu_iova_insert(struct list_head *head,
dma_addr_t start, dma_addr_t end)
{
struct vfio_iova *region;
region = kmalloc(sizeof(*region), GFP_KERNEL);
if (!region)
return -ENOMEM;
INIT_LIST_HEAD(&region->list);
region->start = start;
region->end = end;
list_add_tail(&region->list, head);
return 0;
}
/*
* Check the new iommu aperture conflicts with existing aper or with any
* existing dma mappings.
*/
static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
dma_addr_t start, dma_addr_t end)
{
struct vfio_iova *first, *last;
struct list_head *iova = &iommu->iova_list;
if (list_empty(iova))
return false;
/* Disjoint sets, return conflict */
first = list_first_entry(iova, struct vfio_iova, list);
last = list_last_entry(iova, struct vfio_iova, list);
if (start > last->end || end < first->start)
return true;
/* Check for any existing dma mappings below the new start */
if (start > first->start) {
if (vfio_find_dma(iommu, first->start, start - first->start))
return true;
}
/* Check for any existing dma mappings beyond the new end */
if (end < last->end) {
if (vfio_find_dma(iommu, end + 1, last->end - end))
return true;
}
return false;
}
/*
* Resize iommu iova aperture window. This is called only if the new
* aperture has no conflict with existing aperture and dma mappings.
*/
static int vfio_iommu_aper_resize(struct list_head *iova,
dma_addr_t start, dma_addr_t end)
{
struct vfio_iova *node, *next;
if (list_empty(iova))
return vfio_iommu_iova_insert(iova, start, end);
/* Adjust iova list start */
list_for_each_entry_safe(node, next, iova, list) {
if (start < node->start)
break;
if (start >= node->start && start < node->end) {
node->start = start;
break;
}
/* Delete nodes before new start */
list_del(&node->list);
kfree(node);
}
/* Adjust iova list end */
list_for_each_entry_safe(node, next, iova, list) {
if (end > node->end)
continue;
if (end > node->start && end <= node->end) {
node->end = end;
continue;
}
/* Delete nodes after new end */
list_del(&node->list);
kfree(node);
}
return 0;
}
/*
* Check reserved region conflicts with existing dma mappings
*/
static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
struct list_head *resv_regions)
{
struct iommu_resv_region *region;
/* Check for conflict with existing dma mappings */
list_for_each_entry(region, resv_regions, list) {
if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
continue;
if (vfio_find_dma(iommu, region->start, region->length))
return true;
}
return false;
}
/*
* Check iova region overlap with reserved regions and
* exclude them from the iommu iova range
*/
static int vfio_iommu_resv_exclude(struct list_head *iova,
struct list_head *resv_regions)
{
struct iommu_resv_region *resv;
struct vfio_iova *n, *next;
list_for_each_entry(resv, resv_regions, list) {
phys_addr_t start, end;
if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
continue;
start = resv->start;
end = resv->start + resv->length - 1;
list_for_each_entry_safe(n, next, iova, list) {
int ret = 0;
/* No overlap */
if (start > n->end || end < n->start)
continue;
/*
* Insert a new node if current node overlaps with the
* reserve region to exlude that from valid iova range.
* Note that, new node is inserted before the current
* node and finally the current node is deleted keeping
* the list updated and sorted.
*/
if (start > n->start)
ret = vfio_iommu_iova_insert(&n->list, n->start,
start - 1);
if (!ret && end < n->end)
ret = vfio_iommu_iova_insert(&n->list, end + 1,
n->end);
if (ret)
return ret;
list_del(&n->list);
kfree(n);
}
}
if (list_empty(iova))
return -EINVAL;
return 0;
}
static void vfio_iommu_resv_free(struct list_head *resv_regions)
{
struct iommu_resv_region *n, *next;
list_for_each_entry_safe(n, next, resv_regions, list) {
list_del(&n->list);
kfree(n);
}
}
static void vfio_iommu_iova_free(struct list_head *iova)
{
struct vfio_iova *n, *next;
list_for_each_entry_safe(n, next, iova, list) {
list_del(&n->list);
kfree(n);
}
}
static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
struct list_head *iova_copy)
{
struct list_head *iova = &iommu->iova_list;
struct vfio_iova *n;
int ret;
list_for_each_entry(n, iova, list) {
ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end);
if (ret)
goto out_free;
}
return 0;
out_free:
vfio_iommu_iova_free(iova_copy);
return ret;
}
static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
struct list_head *iova_copy)
{
struct list_head *iova = &iommu->iova_list;
vfio_iommu_iova_free(iova);
list_splice_tail(iova_copy, iova);
}
static int vfio_iommu_type1_attach_group(void *iommu_data,
struct iommu_group *iommu_group)
{
struct vfio_iommu *iommu = iommu_data;
struct vfio_group *group;
struct vfio_domain *domain, *d;
struct bus_type *bus = NULL;
int ret;
bool resv_msi, msi_remap;
phys_addr_t resv_msi_base;
struct iommu_domain_geometry geo;
LIST_HEAD(iova_copy);
LIST_HEAD(group_resv_regions);
mutex_lock(&iommu->lock);
list_for_each_entry(d, &iommu->domain_list, next) {
if (find_iommu_group(d, iommu_group)) {
mutex_unlock(&iommu->lock);
return -EINVAL;
}
}
if (iommu->external_domain) {
if (find_iommu_group(iommu->external_domain, iommu_group)) {
mutex_unlock(&iommu->lock);
return -EINVAL;
}
}
group = kzalloc(sizeof(*group), GFP_KERNEL);
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!group || !domain) {
ret = -ENOMEM;
goto out_free;
}
group->iommu_group = iommu_group;
/* Determine bus_type in order to allocate a domain */
ret = iommu_group_for_each_dev(iommu_group, &bus, vfio_bus_type);
if (ret)
goto out_free;
if (vfio_bus_is_mdev(bus)) {
struct device *iommu_device = NULL;
group->mdev_group = true;
/* Determine the isolation type */
ret = iommu_group_for_each_dev(iommu_group, &iommu_device,
vfio_mdev_iommu_device);
if (ret || !iommu_device) {
if (!iommu->external_domain) {
INIT_LIST_HEAD(&domain->group_list);
iommu->external_domain = domain;
} else {
kfree(domain);
}
list_add(&group->next,
&iommu->external_domain->group_list);
mutex_unlock(&iommu->lock);
return 0;
}
bus = iommu_device->bus;
}
domain->domain = iommu_domain_alloc(bus);
if (!domain->domain) {
ret = -EIO;
goto out_free;
}
if (iommu->nesting) {
int attr = 1;
ret = iommu_domain_set_attr(domain->domain, DOMAIN_ATTR_NESTING,
&attr);
if (ret)
goto out_domain;
}
ret = vfio_iommu_attach_group(domain, group);
if (ret)
goto out_domain;
/* Get aperture info */
iommu_domain_get_attr(domain->domain, DOMAIN_ATTR_GEOMETRY, &geo);
if (vfio_iommu_aper_conflict(iommu, geo.aperture_start,
geo.aperture_end)) {
ret = -EINVAL;
goto out_detach;
}
ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions);
if (ret)
goto out_detach;
if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) {
ret = -EINVAL;
goto out_detach;
}
/*
* We don't want to work on the original iova list as the list
* gets modified and in case of failure we have to retain the
* original list. Get a copy here.
*/
ret = vfio_iommu_iova_get_copy(iommu, &iova_copy);
if (ret)
goto out_detach;
ret = vfio_iommu_aper_resize(&iova_copy, geo.aperture_start,
geo.aperture_end);
if (ret)
goto out_detach;
ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions);
if (ret)
goto out_detach;
resv_msi = vfio_iommu_has_sw_msi(iommu_group, &resv_msi_base);
INIT_LIST_HEAD(&domain->group_list);
list_add(&group->next, &domain->group_list);
msi_remap = irq_domain_check_msi_remap() ||
iommu_capable(bus, IOMMU_CAP_INTR_REMAP);
if (!allow_unsafe_interrupts && !msi_remap) {
pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
__func__);
ret = -EPERM;
goto out_detach;
}
if (iommu_capable(bus, IOMMU_CAP_CACHE_COHERENCY))
domain->prot |= IOMMU_CACHE;
/*
* Try to match an existing compatible domain. We don't want to
* preclude an IOMMU driver supporting multiple bus_types and being
* able to include different bus_types in the same IOMMU domain, so
* we test whether the domains use the same iommu_ops rather than
* testing if they're on the same bus_type.
*/
list_for_each_entry(d, &iommu->domain_list, next) {
if (d->domain->ops == domain->domain->ops &&
d->prot == domain->prot) {
vfio_iommu_detach_group(domain, group);
if (!vfio_iommu_attach_group(d, group)) {
list_add(&group->next, &d->group_list);
iommu_domain_free(domain->domain);
kfree(domain);
goto done;
}
ret = vfio_iommu_attach_group(domain, group);
if (ret)
goto out_domain;
}
}
vfio_test_domain_fgsp(domain);
/* replay mappings on new domains */
ret = vfio_iommu_replay(iommu, domain);
if (ret)
goto out_detach;
if (resv_msi) {
ret = iommu_get_msi_cookie(domain->domain, resv_msi_base);
if (ret)
goto out_detach;
}
list_add(&domain->next, &iommu->domain_list);
done:
/* Delete the old one and insert new iova list */
vfio_iommu_iova_insert_copy(iommu, &iova_copy);
mutex_unlock(&iommu->lock);
vfio_iommu_resv_free(&group_resv_regions);
return 0;
out_detach:
vfio_iommu_detach_group(domain, group);
out_domain:
iommu_domain_free(domain->domain);
vfio_iommu_iova_free(&iova_copy);
vfio_iommu_resv_free(&group_resv_regions);
out_free:
kfree(domain);
kfree(group);
mutex_unlock(&iommu->lock);
return ret;
}
static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
{
struct rb_node *node;
while ((node = rb_first(&iommu->dma_list)))
vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
}
static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
{
struct rb_node *n, *p;
n = rb_first(&iommu->dma_list);
for (; n; n = rb_next(n)) {
struct vfio_dma *dma;
long locked = 0, unlocked = 0;
dma = rb_entry(n, struct vfio_dma, node);
unlocked += vfio_unmap_unpin(iommu, dma, false);
p = rb_first(&dma->pfn_list);
for (; p; p = rb_next(p)) {
struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
node);
if (!is_invalid_reserved_pfn(vpfn->pfn))
locked++;
}
vfio_lock_acct(dma, locked - unlocked, true);
}
}
static void vfio_sanity_check_pfn_list(struct vfio_iommu *iommu)
{
struct rb_node *n;
n = rb_first(&iommu->dma_list);
for (; n; n = rb_next(n)) {
struct vfio_dma *dma;
dma = rb_entry(n, struct vfio_dma, node);
if (WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)))
break;
}
/* mdev vendor driver must unregister notifier */
WARN_ON(iommu->notifier.head);
}
static void vfio_iommu_type1_detach_group(void *iommu_data,
struct iommu_group *iommu_group)
{
struct vfio_iommu *iommu = iommu_data;
struct vfio_domain *domain;
struct vfio_group *group;
mutex_lock(&iommu->lock);
if (iommu->external_domain) {
group = find_iommu_group(iommu->external_domain, iommu_group);
if (group) {
list_del(&group->next);
kfree(group);
if (list_empty(&iommu->external_domain->group_list)) {
vfio_sanity_check_pfn_list(iommu);
if (!IS_IOMMU_CAP_DOMAIN_IN_CONTAINER(iommu))
vfio_iommu_unmap_unpin_all(iommu);
kfree(iommu->external_domain);
iommu->external_domain = NULL;
}
goto detach_group_done;
}
}
list_for_each_entry(domain, &iommu->domain_list, next) {
group = find_iommu_group(domain, iommu_group);
if (!group)
continue;
vfio_iommu_detach_group(domain, group);
list_del(&group->next);
kfree(group);
/*
* Group ownership provides privilege, if the group list is
* empty, the domain goes away. If it's the last domain with
* iommu and external domain doesn't exist, then all the
* mappings go away too. If it's the last domain with iommu and
* external domain exist, update accounting
*/
if (list_empty(&domain->group_list)) {
if (list_is_singular(&iommu->domain_list)) {
if (!iommu->external_domain)
vfio_iommu_unmap_unpin_all(iommu);
else
vfio_iommu_unmap_unpin_reaccount(iommu);
}
iommu_domain_free(domain->domain);
list_del(&domain->next);
kfree(domain);
}
break;
}
detach_group_done:
mutex_unlock(&iommu->lock);
}
static void *vfio_iommu_type1_open(unsigned long arg)
{
struct vfio_iommu *iommu;
iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
if (!iommu)
return ERR_PTR(-ENOMEM);
switch (arg) {
case VFIO_TYPE1_IOMMU:
break;
case VFIO_TYPE1_NESTING_IOMMU:
iommu->nesting = true;
/* fall through */
case VFIO_TYPE1v2_IOMMU:
iommu->v2 = true;
break;
default:
kfree(iommu);
return ERR_PTR(-EINVAL);
}
INIT_LIST_HEAD(&iommu->domain_list);
INIT_LIST_HEAD(&iommu->iova_list);
iommu->dma_list = RB_ROOT;
iommu->dma_avail = dma_entry_limit;
mutex_init(&iommu->lock);
BLOCKING_INIT_NOTIFIER_HEAD(&iommu->notifier);
return iommu;
}
static void vfio_release_domain(struct vfio_domain *domain, bool external)
{
struct vfio_group *group, *group_tmp;
list_for_each_entry_safe(group, group_tmp,
&domain->group_list, next) {
if (!external)
vfio_iommu_detach_group(domain, group);
list_del(&group->next);
kfree(group);
}
if (!external)
iommu_domain_free(domain->domain);
}
static void vfio_iommu_type1_release(void *iommu_data)
{
struct vfio_iommu *iommu = iommu_data;
struct vfio_domain *domain, *domain_tmp;
if (iommu->external_domain) {
vfio_release_domain(iommu->external_domain, true);
vfio_sanity_check_pfn_list(iommu);
kfree(iommu->external_domain);
}
vfio_iommu_unmap_unpin_all(iommu);
list_for_each_entry_safe(domain, domain_tmp,
&iommu->domain_list, next) {
vfio_release_domain(domain, false);
list_del(&domain->next);
kfree(domain);
}
vfio_iommu_iova_free(&iommu->iova_list);
kfree(iommu);
}
static int vfio_domains_have_iommu_cache(struct vfio_iommu *iommu)
{
struct vfio_domain *domain;
int ret = 1;
mutex_lock(&iommu->lock);
list_for_each_entry(domain, &iommu->domain_list, next) {
if (!(domain->prot & IOMMU_CACHE)) {
ret = 0;
break;
}
}
mutex_unlock(&iommu->lock);
return ret;
}
static long vfio_iommu_type1_ioctl(void *iommu_data,
unsigned int cmd, unsigned long arg)
{
struct vfio_iommu *iommu = iommu_data;
unsigned long minsz;
if (cmd == VFIO_CHECK_EXTENSION) {
switch (arg) {
case VFIO_TYPE1_IOMMU:
case VFIO_TYPE1v2_IOMMU:
case VFIO_TYPE1_NESTING_IOMMU:
return 1;
case VFIO_DMA_CC_IOMMU:
if (!iommu)
return 0;
return vfio_domains_have_iommu_cache(iommu);
default:
return 0;
}
} else if (cmd == VFIO_IOMMU_GET_INFO) {
struct vfio_iommu_type1_info info;
minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_IOMMU_INFO_PGSIZES;
info.iova_pgsizes = vfio_pgsize_bitmap(iommu);
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
} else if (cmd == VFIO_IOMMU_MAP_DMA) {
struct vfio_iommu_type1_dma_map map;
uint32_t mask = VFIO_DMA_MAP_FLAG_READ |
VFIO_DMA_MAP_FLAG_WRITE;
minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
if (copy_from_user(&map, (void __user *)arg, minsz))
return -EFAULT;
if (map.argsz < minsz || map.flags & ~mask)
return -EINVAL;
return vfio_dma_do_map(iommu, &map);
} else if (cmd == VFIO_IOMMU_UNMAP_DMA) {
struct vfio_iommu_type1_dma_unmap unmap;
long ret;
minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
if (copy_from_user(&unmap, (void __user *)arg, minsz))
return -EFAULT;
if (unmap.argsz < minsz || unmap.flags)
return -EINVAL;
ret = vfio_dma_do_unmap(iommu, &unmap);
if (ret)
return ret;
return copy_to_user((void __user *)arg, &unmap, minsz) ?
-EFAULT : 0;
}
return -ENOTTY;
}
static int vfio_iommu_type1_register_notifier(void *iommu_data,
unsigned long *events,
struct notifier_block *nb)
{
struct vfio_iommu *iommu = iommu_data;
/* clear known events */
*events &= ~VFIO_IOMMU_NOTIFY_DMA_UNMAP;
/* refuse to register if still events remaining */
if (*events)
return -EINVAL;
return blocking_notifier_chain_register(&iommu->notifier, nb);
}
static int vfio_iommu_type1_unregister_notifier(void *iommu_data,
struct notifier_block *nb)
{
struct vfio_iommu *iommu = iommu_data;
return blocking_notifier_chain_unregister(&iommu->notifier, nb);
}
static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
.name = "vfio-iommu-type1",
.owner = THIS_MODULE,
.open = vfio_iommu_type1_open,
.release = vfio_iommu_type1_release,
.ioctl = vfio_iommu_type1_ioctl,
.attach_group = vfio_iommu_type1_attach_group,
.detach_group = vfio_iommu_type1_detach_group,
.pin_pages = vfio_iommu_type1_pin_pages,
.unpin_pages = vfio_iommu_type1_unpin_pages,
.register_notifier = vfio_iommu_type1_register_notifier,
.unregister_notifier = vfio_iommu_type1_unregister_notifier,
};
static int __init vfio_iommu_type1_init(void)
{
return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1);
}
static void __exit vfio_iommu_type1_cleanup(void)
{
vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1);
}
module_init(vfio_iommu_type1_init);
module_exit(vfio_iommu_type1_cleanup);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);