linux-stable/include/linux/mm_types.h
Mathieu Desnoyers af7f588d8f sched: Introduce per-memory-map concurrency ID
This feature allows the scheduler to expose a per-memory map concurrency
ID to user-space. This concurrency ID is within the possible cpus range,
and is temporarily (and uniquely) assigned while threads are actively
running within a memory map. If a memory map has fewer threads than
cores, or is limited to run on few cores concurrently through sched
affinity or cgroup cpusets, the concurrency IDs will be values close
to 0, thus allowing efficient use of user-space memory for per-cpu
data structures.

This feature is meant to be exposed by a new rseq thread area field.

The primary purpose of this feature is to do the heavy-lifting needed
by memory allocators to allow them to use per-cpu data structures
efficiently in the following situations:

- Single-threaded applications,
- Multi-threaded applications on large systems (many cores) with limited
  cpu affinity mask,
- Multi-threaded applications on large systems (many cores) with
  restricted cgroup cpuset per container.

One of the key concern from scheduler maintainers is the overhead
associated with additional spin locks or atomic operations in the
scheduler fast-path. This is why the following optimization is
implemented.

On context switch between threads belonging to the same memory map,
transfer the mm_cid from prev to next without any atomic ops. This
takes care of use-cases involving frequent context switch between
threads belonging to the same memory map.

Additional optimizations can be done if the spin locks added when
context switching between threads belonging to different memory maps end
up being a performance bottleneck. Those are left out of this patch
though. A performance impact would have to be clearly demonstrated to
justify the added complexity.

The credit goes to Paul Turner (Google) for the original virtual cpu id
idea. This feature is implemented based on the discussions with Paul
Turner and Peter Oskolkov (Google), but I took the liberty to implement
scheduler fast-path optimizations and my own NUMA-awareness scheme. The
rumor has it that Google have been running a rseq vcpu_id extension
internally in production for a year. The tcmalloc source code indeed has
comments hinting at a vcpu_id prototype extension to the rseq system
call [1].

The following benchmarks do not show any significant overhead added to
the scheduler context switch by this feature:

* perf bench sched messaging (process)

Baseline:                    86.5±0.3 ms
With mm_cid:                 86.7±2.6 ms

* perf bench sched messaging (threaded)

Baseline:                    84.3±3.0 ms
With mm_cid:                 84.7±2.6 ms

* hackbench (process)

Baseline:                    82.9±2.7 ms
With mm_cid:                 82.9±2.9 ms

* hackbench (threaded)

Baseline:                    85.2±2.6 ms
With mm_cid:                 84.4±2.9 ms

[1] https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221122203932.231377-8-mathieu.desnoyers@efficios.com
2022-12-27 12:52:11 +01:00

1129 lines
35 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MM_TYPES_H
#define _LINUX_MM_TYPES_H
#include <linux/mm_types_task.h>
#include <linux/auxvec.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/rbtree.h>
#include <linux/maple_tree.h>
#include <linux/rwsem.h>
#include <linux/completion.h>
#include <linux/cpumask.h>
#include <linux/uprobes.h>
#include <linux/rcupdate.h>
#include <linux/page-flags-layout.h>
#include <linux/workqueue.h>
#include <linux/seqlock.h>
#include <linux/percpu_counter.h>
#include <asm/mmu.h>
#ifndef AT_VECTOR_SIZE_ARCH
#define AT_VECTOR_SIZE_ARCH 0
#endif
#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
#define INIT_PASID 0
struct address_space;
struct mem_cgroup;
/*
* Each physical page in the system has a struct page associated with
* it to keep track of whatever it is we are using the page for at the
* moment. Note that we have no way to track which tasks are using
* a page, though if it is a pagecache page, rmap structures can tell us
* who is mapping it.
*
* If you allocate the page using alloc_pages(), you can use some of the
* space in struct page for your own purposes. The five words in the main
* union are available, except for bit 0 of the first word which must be
* kept clear. Many users use this word to store a pointer to an object
* which is guaranteed to be aligned. If you use the same storage as
* page->mapping, you must restore it to NULL before freeing the page.
*
* If your page will not be mapped to userspace, you can also use the four
* bytes in the mapcount union, but you must call page_mapcount_reset()
* before freeing it.
*
* If you want to use the refcount field, it must be used in such a way
* that other CPUs temporarily incrementing and then decrementing the
* refcount does not cause problems. On receiving the page from
* alloc_pages(), the refcount will be positive.
*
* If you allocate pages of order > 0, you can use some of the fields
* in each subpage, but you may need to restore some of their values
* afterwards.
*
* SLUB uses cmpxchg_double() to atomically update its freelist and counters.
* That requires that freelist & counters in struct slab be adjacent and
* double-word aligned. Because struct slab currently just reinterprets the
* bits of struct page, we align all struct pages to double-word boundaries,
* and ensure that 'freelist' is aligned within struct slab.
*/
#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
#else
#define _struct_page_alignment __aligned(sizeof(unsigned long))
#endif
struct page {
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
/*
* Five words (20/40 bytes) are available in this union.
* WARNING: bit 0 of the first word is used for PageTail(). That
* means the other users of this union MUST NOT use the bit to
* avoid collision and false-positive PageTail().
*/
union {
struct { /* Page cache and anonymous pages */
/**
* @lru: Pageout list, eg. active_list protected by
* lruvec->lru_lock. Sometimes used as a generic list
* by the page owner.
*/
union {
struct list_head lru;
/* Or, for the Unevictable "LRU list" slot */
struct {
/* Always even, to negate PageTail */
void *__filler;
/* Count page's or folio's mlocks */
unsigned int mlock_count;
};
/* Or, free page */
struct list_head buddy_list;
struct list_head pcp_list;
};
/* See page-flags.h for PAGE_MAPPING_FLAGS */
struct address_space *mapping;
union {
pgoff_t index; /* Our offset within mapping. */
unsigned long share; /* share count for fsdax */
};
/**
* @private: Mapping-private opaque data.
* Usually used for buffer_heads if PagePrivate.
* Used for swp_entry_t if PageSwapCache.
* Indicates order in the buddy system if PageBuddy.
*/
unsigned long private;
};
struct { /* page_pool used by netstack */
/**
* @pp_magic: magic value to avoid recycling non
* page_pool allocated pages.
*/
unsigned long pp_magic;
struct page_pool *pp;
unsigned long _pp_mapping_pad;
unsigned long dma_addr;
union {
/**
* dma_addr_upper: might require a 64-bit
* value on 32-bit architectures.
*/
unsigned long dma_addr_upper;
/**
* For frag page support, not supported in
* 32-bit architectures with 64-bit DMA.
*/
atomic_long_t pp_frag_count;
};
};
struct { /* Tail pages of compound page */
unsigned long compound_head; /* Bit zero is set */
/* First tail page only */
unsigned char compound_dtor;
unsigned char compound_order;
atomic_t compound_mapcount;
atomic_t subpages_mapcount;
atomic_t compound_pincount;
#ifdef CONFIG_64BIT
unsigned int compound_nr; /* 1 << compound_order */
#endif
};
struct { /* Second tail page of transparent huge page */
unsigned long _compound_pad_1; /* compound_head */
unsigned long _compound_pad_2;
/* For both global and memcg */
struct list_head deferred_list;
};
struct { /* Second tail page of hugetlb page */
unsigned long _hugetlb_pad_1; /* compound_head */
void *hugetlb_subpool;
void *hugetlb_cgroup;
void *hugetlb_cgroup_rsvd;
void *hugetlb_hwpoison;
/* No more space on 32-bit: use third tail if more */
};
struct { /* Page table pages */
unsigned long _pt_pad_1; /* compound_head */
pgtable_t pmd_huge_pte; /* protected by page->ptl */
unsigned long _pt_pad_2; /* mapping */
union {
struct mm_struct *pt_mm; /* x86 pgds only */
atomic_t pt_frag_refcount; /* powerpc */
};
#if ALLOC_SPLIT_PTLOCKS
spinlock_t *ptl;
#else
spinlock_t ptl;
#endif
};
struct { /* ZONE_DEVICE pages */
/** @pgmap: Points to the hosting device page map. */
struct dev_pagemap *pgmap;
void *zone_device_data;
/*
* ZONE_DEVICE private pages are counted as being
* mapped so the next 3 words hold the mapping, index,
* and private fields from the source anonymous or
* page cache page while the page is migrated to device
* private memory.
* ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
* use the mapping, index, and private fields when
* pmem backed DAX files are mapped.
*/
};
/** @rcu_head: You can use this to free a page by RCU. */
struct rcu_head rcu_head;
};
union { /* This union is 4 bytes in size. */
/*
* If the page can be mapped to userspace, encodes the number
* of times this page is referenced by a page table.
*/
atomic_t _mapcount;
/*
* If the page is neither PageSlab nor mappable to userspace,
* the value stored here may help determine what this page
* is used for. See page-flags.h for a list of page types
* which are currently stored here.
*/
unsigned int page_type;
};
/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
atomic_t _refcount;
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
#endif
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
#ifdef CONFIG_KMSAN
/*
* KMSAN metadata for this page:
* - shadow page: every bit indicates whether the corresponding
* bit of the original page is initialized (0) or not (1);
* - origin page: every 4 bytes contain an id of the stack trace
* where the uninitialized value was created.
*/
struct page *kmsan_shadow;
struct page *kmsan_origin;
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
int _last_cpupid;
#endif
} _struct_page_alignment;
/*
* struct encoded_page - a nonexistent type marking this pointer
*
* An 'encoded_page' pointer is a pointer to a regular 'struct page', but
* with the low bits of the pointer indicating extra context-dependent
* information. Not super-common, but happens in mmu_gather and mlock
* handling, and this acts as a type system check on that use.
*
* We only really have two guaranteed bits in general, although you could
* play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
* for more.
*
* Use the supplied helper functions to endcode/decode the pointer and bits.
*/
struct encoded_page;
#define ENCODE_PAGE_BITS 3ul
static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
{
BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
return (struct encoded_page *)(flags | (unsigned long)page);
}
static inline unsigned long encoded_page_flags(struct encoded_page *page)
{
return ENCODE_PAGE_BITS & (unsigned long)page;
}
static inline struct page *encoded_page_ptr(struct encoded_page *page)
{
return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
}
/**
* struct folio - Represents a contiguous set of bytes.
* @flags: Identical to the page flags.
* @lru: Least Recently Used list; tracks how recently this folio was used.
* @mlock_count: Number of times this folio has been pinned by mlock().
* @mapping: The file this page belongs to, or refers to the anon_vma for
* anonymous memory.
* @index: Offset within the file, in units of pages. For anonymous memory,
* this is the index from the beginning of the mmap.
* @private: Filesystem per-folio data (see folio_attach_private()).
* Used for swp_entry_t if folio_test_swapcache().
* @_mapcount: Do not access this member directly. Use folio_mapcount() to
* find out how many times this folio is mapped by userspace.
* @_refcount: Do not access this member directly. Use folio_ref_count()
* to find how many references there are to this folio.
* @memcg_data: Memory Control Group data.
* @_flags_1: For large folios, additional page flags.
* @_head_1: Points to the folio. Do not use.
* @_folio_dtor: Which destructor to use for this folio.
* @_folio_order: Do not use directly, call folio_order().
* @_compound_mapcount: Do not use directly, call folio_entire_mapcount().
* @_subpages_mapcount: Do not use directly, call folio_mapcount().
* @_pincount: Do not use directly, call folio_maybe_dma_pinned().
* @_folio_nr_pages: Do not use directly, call folio_nr_pages().
* @_flags_2: For alignment. Do not use.
* @_head_2: Points to the folio. Do not use.
* @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
* @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
* @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
* @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
*
* A folio is a physically, virtually and logically contiguous set
* of bytes. It is a power-of-two in size, and it is aligned to that
* same power-of-two. It is at least as large as %PAGE_SIZE. If it is
* in the page cache, it is at a file offset which is a multiple of that
* power-of-two. It may be mapped into userspace at an address which is
* at an arbitrary page offset, but its kernel virtual address is aligned
* to its size.
*/
struct folio {
/* private: don't document the anon union */
union {
struct {
/* public: */
unsigned long flags;
union {
struct list_head lru;
/* private: avoid cluttering the output */
struct {
void *__filler;
/* public: */
unsigned int mlock_count;
/* private: */
};
/* public: */
};
struct address_space *mapping;
pgoff_t index;
void *private;
atomic_t _mapcount;
atomic_t _refcount;
#ifdef CONFIG_MEMCG
unsigned long memcg_data;
#endif
/* private: the union with struct page is transitional */
};
struct page page;
};
union {
struct {
unsigned long _flags_1;
unsigned long _head_1;
unsigned char _folio_dtor;
unsigned char _folio_order;
atomic_t _compound_mapcount;
atomic_t _subpages_mapcount;
atomic_t _pincount;
#ifdef CONFIG_64BIT
unsigned int _folio_nr_pages;
#endif
};
struct page __page_1;
};
union {
struct {
unsigned long _flags_2;
unsigned long _head_2;
void *_hugetlb_subpool;
void *_hugetlb_cgroup;
void *_hugetlb_cgroup_rsvd;
void *_hugetlb_hwpoison;
};
struct page __page_2;
};
};
#define FOLIO_MATCH(pg, fl) \
static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
FOLIO_MATCH(flags, flags);
FOLIO_MATCH(lru, lru);
FOLIO_MATCH(mapping, mapping);
FOLIO_MATCH(compound_head, lru);
FOLIO_MATCH(index, index);
FOLIO_MATCH(private, private);
FOLIO_MATCH(_mapcount, _mapcount);
FOLIO_MATCH(_refcount, _refcount);
#ifdef CONFIG_MEMCG
FOLIO_MATCH(memcg_data, memcg_data);
#endif
#undef FOLIO_MATCH
#define FOLIO_MATCH(pg, fl) \
static_assert(offsetof(struct folio, fl) == \
offsetof(struct page, pg) + sizeof(struct page))
FOLIO_MATCH(flags, _flags_1);
FOLIO_MATCH(compound_head, _head_1);
FOLIO_MATCH(compound_dtor, _folio_dtor);
FOLIO_MATCH(compound_order, _folio_order);
FOLIO_MATCH(compound_mapcount, _compound_mapcount);
FOLIO_MATCH(subpages_mapcount, _subpages_mapcount);
FOLIO_MATCH(compound_pincount, _pincount);
#ifdef CONFIG_64BIT
FOLIO_MATCH(compound_nr, _folio_nr_pages);
#endif
#undef FOLIO_MATCH
#define FOLIO_MATCH(pg, fl) \
static_assert(offsetof(struct folio, fl) == \
offsetof(struct page, pg) + 2 * sizeof(struct page))
FOLIO_MATCH(flags, _flags_2);
FOLIO_MATCH(compound_head, _head_2);
FOLIO_MATCH(hugetlb_subpool, _hugetlb_subpool);
FOLIO_MATCH(hugetlb_cgroup, _hugetlb_cgroup);
FOLIO_MATCH(hugetlb_cgroup_rsvd, _hugetlb_cgroup_rsvd);
FOLIO_MATCH(hugetlb_hwpoison, _hugetlb_hwpoison);
#undef FOLIO_MATCH
static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
{
struct page *tail = &folio->page + 1;
return &tail->compound_mapcount;
}
static inline atomic_t *folio_subpages_mapcount_ptr(struct folio *folio)
{
struct page *tail = &folio->page + 1;
return &tail->subpages_mapcount;
}
static inline atomic_t *compound_mapcount_ptr(struct page *page)
{
return &page[1].compound_mapcount;
}
static inline atomic_t *subpages_mapcount_ptr(struct page *page)
{
return &page[1].subpages_mapcount;
}
static inline atomic_t *compound_pincount_ptr(struct page *page)
{
return &page[1].compound_pincount;
}
/*
* Used for sizing the vmemmap region on some architectures
*/
#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
/*
* page_private can be used on tail pages. However, PagePrivate is only
* checked by the VM on the head page. So page_private on the tail pages
* should be used for data that's ancillary to the head page (eg attaching
* buffer heads to tail pages after attaching buffer heads to the head page)
*/
#define page_private(page) ((page)->private)
static inline void set_page_private(struct page *page, unsigned long private)
{
page->private = private;
}
static inline void *folio_get_private(struct folio *folio)
{
return folio->private;
}
struct page_frag_cache {
void * va;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
__u16 offset;
__u16 size;
#else
__u32 offset;
#endif
/* we maintain a pagecount bias, so that we dont dirty cache line
* containing page->_refcount every time we allocate a fragment.
*/
unsigned int pagecnt_bias;
bool pfmemalloc;
};
typedef unsigned long vm_flags_t;
/*
* A region containing a mapping of a non-memory backed file under NOMMU
* conditions. These are held in a global tree and are pinned by the VMAs that
* map parts of them.
*/
struct vm_region {
struct rb_node vm_rb; /* link in global region tree */
vm_flags_t vm_flags; /* VMA vm_flags */
unsigned long vm_start; /* start address of region */
unsigned long vm_end; /* region initialised to here */
unsigned long vm_top; /* region allocated to here */
unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
struct file *vm_file; /* the backing file or NULL */
int vm_usage; /* region usage count (access under nommu_region_sem) */
bool vm_icache_flushed : 1; /* true if the icache has been flushed for
* this region */
};
#ifdef CONFIG_USERFAULTFD
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
struct vm_userfaultfd_ctx {
struct userfaultfd_ctx *ctx;
};
#else /* CONFIG_USERFAULTFD */
#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
struct vm_userfaultfd_ctx {};
#endif /* CONFIG_USERFAULTFD */
struct anon_vma_name {
struct kref kref;
/* The name needs to be at the end because it is dynamically sized. */
char name[];
};
/*
* This struct describes a virtual memory area. There is one of these
* per VM-area/task. A VM area is any part of the process virtual memory
* space that has a special rule for the page-fault handlers (ie a shared
* library, the executable area etc).
*/
struct vm_area_struct {
/* The first cache line has the info for VMA tree walking. */
unsigned long vm_start; /* Our start address within vm_mm. */
unsigned long vm_end; /* The first byte after our end address
within vm_mm. */
struct mm_struct *vm_mm; /* The address space we belong to. */
/*
* Access permissions of this VMA.
* See vmf_insert_mixed_prot() for discussion.
*/
pgprot_t vm_page_prot;
unsigned long vm_flags; /* Flags, see mm.h. */
/*
* For areas with an address space and backing store,
* linkage into the address_space->i_mmap interval tree.
*
*/
struct {
struct rb_node rb;
unsigned long rb_subtree_last;
} shared;
/*
* A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
* list, after a COW of one of the file pages. A MAP_SHARED vma
* can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
* or brk vma (with NULL file) can only be in an anon_vma list.
*/
struct list_head anon_vma_chain; /* Serialized by mmap_lock &
* page_table_lock */
struct anon_vma *anon_vma; /* Serialized by page_table_lock */
/* Function pointers to deal with this struct. */
const struct vm_operations_struct *vm_ops;
/* Information about our backing store: */
unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
units */
struct file * vm_file; /* File we map to (can be NULL). */
void * vm_private_data; /* was vm_pte (shared mem) */
#ifdef CONFIG_ANON_VMA_NAME
/*
* For private and shared anonymous mappings, a pointer to a null
* terminated string containing the name given to the vma, or NULL if
* unnamed. Serialized by mmap_sem. Use anon_vma_name to access.
*/
struct anon_vma_name *anon_name;
#endif
#ifdef CONFIG_SWAP
atomic_long_t swap_readahead_info;
#endif
#ifndef CONFIG_MMU
struct vm_region *vm_region; /* NOMMU mapping region */
#endif
#ifdef CONFIG_NUMA
struct mempolicy *vm_policy; /* NUMA policy for the VMA */
#endif
struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
} __randomize_layout;
struct kioctx_table;
struct mm_struct {
struct {
struct maple_tree mm_mt;
#ifdef CONFIG_MMU
unsigned long (*get_unmapped_area) (struct file *filp,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags);
#endif
unsigned long mmap_base; /* base of mmap area */
unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
/* Base addresses for compatible mmap() */
unsigned long mmap_compat_base;
unsigned long mmap_compat_legacy_base;
#endif
unsigned long task_size; /* size of task vm space */
pgd_t * pgd;
#ifdef CONFIG_MEMBARRIER
/**
* @membarrier_state: Flags controlling membarrier behavior.
*
* This field is close to @pgd to hopefully fit in the same
* cache-line, which needs to be touched by switch_mm().
*/
atomic_t membarrier_state;
#endif
/**
* @mm_users: The number of users including userspace.
*
* Use mmget()/mmget_not_zero()/mmput() to modify. When this
* drops to 0 (i.e. when the task exits and there are no other
* temporary reference holders), we also release a reference on
* @mm_count (which may then free the &struct mm_struct if
* @mm_count also drops to 0).
*/
atomic_t mm_users;
/**
* @mm_count: The number of references to &struct mm_struct
* (@mm_users count as 1).
*
* Use mmgrab()/mmdrop() to modify. When this drops to 0, the
* &struct mm_struct is freed.
*/
atomic_t mm_count;
#ifdef CONFIG_SCHED_MM_CID
/**
* @cid_lock: Protect cid bitmap updates vs lookups.
*
* Prevent situations where updates to the cid bitmap happen
* concurrently with lookups. Those can lead to situations
* where a lookup cannot find a free bit simply because it was
* unlucky enough to load, non-atomically, bitmap words as they
* were being concurrently updated by the updaters.
*/
raw_spinlock_t cid_lock;
#endif
#ifdef CONFIG_MMU
atomic_long_t pgtables_bytes; /* PTE page table pages */
#endif
int map_count; /* number of VMAs */
spinlock_t page_table_lock; /* Protects page tables and some
* counters
*/
/*
* With some kernel config, the current mmap_lock's offset
* inside 'mm_struct' is at 0x120, which is very optimal, as
* its two hot fields 'count' and 'owner' sit in 2 different
* cachelines, and when mmap_lock is highly contended, both
* of the 2 fields will be accessed frequently, current layout
* will help to reduce cache bouncing.
*
* So please be careful with adding new fields before
* mmap_lock, which can easily push the 2 fields into one
* cacheline.
*/
struct rw_semaphore mmap_lock;
struct list_head mmlist; /* List of maybe swapped mm's. These
* are globally strung together off
* init_mm.mmlist, and are protected
* by mmlist_lock
*/
unsigned long hiwater_rss; /* High-watermark of RSS usage */
unsigned long hiwater_vm; /* High-water virtual memory usage */
unsigned long total_vm; /* Total pages mapped */
unsigned long locked_vm; /* Pages that have PG_mlocked set */
atomic64_t pinned_vm; /* Refcount permanently increased */
unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
unsigned long stack_vm; /* VM_STACK */
unsigned long def_flags;
/**
* @write_protect_seq: Locked when any thread is write
* protecting pages mapped by this mm to enforce a later COW,
* for instance during page table copying for fork().
*/
seqcount_t write_protect_seq;
spinlock_t arg_lock; /* protect the below fields */
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
struct percpu_counter rss_stat[NR_MM_COUNTERS];
struct linux_binfmt *binfmt;
/* Architecture-specific MM context */
mm_context_t context;
unsigned long flags; /* Must use atomic bitops to access */
#ifdef CONFIG_AIO
spinlock_t ioctx_lock;
struct kioctx_table __rcu *ioctx_table;
#endif
#ifdef CONFIG_MEMCG
/*
* "owner" points to a task that is regarded as the canonical
* user/owner of this mm. All of the following must be true in
* order for it to be changed:
*
* current == mm->owner
* current->mm != mm
* new_owner->mm == mm
* new_owner->alloc_lock is held
*/
struct task_struct __rcu *owner;
#endif
struct user_namespace *user_ns;
/* store ref to file /proc/<pid>/exe symlink points to */
struct file __rcu *exe_file;
#ifdef CONFIG_MMU_NOTIFIER
struct mmu_notifier_subscriptions *notifier_subscriptions;
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
pgtable_t pmd_huge_pte; /* protected by page_table_lock */
#endif
#ifdef CONFIG_NUMA_BALANCING
/*
* numa_next_scan is the next time that PTEs will be remapped
* PROT_NONE to trigger NUMA hinting faults; such faults gather
* statistics and migrate pages to new nodes if necessary.
*/
unsigned long numa_next_scan;
/* Restart point for scanning and remapping PTEs. */
unsigned long numa_scan_offset;
/* numa_scan_seq prevents two threads remapping PTEs. */
int numa_scan_seq;
#endif
/*
* An operation with batched TLB flushing is going on. Anything
* that can move process memory needs to flush the TLB when
* moving a PROT_NONE mapped page.
*/
atomic_t tlb_flush_pending;
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
/* See flush_tlb_batched_pending() */
atomic_t tlb_flush_batched;
#endif
struct uprobes_state uprobes_state;
#ifdef CONFIG_PREEMPT_RT
struct rcu_head delayed_drop;
#endif
#ifdef CONFIG_HUGETLB_PAGE
atomic_long_t hugetlb_usage;
#endif
struct work_struct async_put_work;
#ifdef CONFIG_IOMMU_SVA
u32 pasid;
#endif
#ifdef CONFIG_KSM
/*
* Represent how many pages of this process are involved in KSM
* merging.
*/
unsigned long ksm_merging_pages;
/*
* Represent how many pages are checked for ksm merging
* including merged and not merged.
*/
unsigned long ksm_rmap_items;
#endif
#ifdef CONFIG_LRU_GEN
struct {
/* this mm_struct is on lru_gen_mm_list */
struct list_head list;
/*
* Set when switching to this mm_struct, as a hint of
* whether it has been used since the last time per-node
* page table walkers cleared the corresponding bits.
*/
unsigned long bitmap;
#ifdef CONFIG_MEMCG
/* points to the memcg of "owner" above */
struct mem_cgroup *memcg;
#endif
} lru_gen;
#endif /* CONFIG_LRU_GEN */
} __randomize_layout;
/*
* The mm_cpumask needs to be at the end of mm_struct, because it
* is dynamically sized based on nr_cpu_ids.
*/
unsigned long cpu_bitmap[];
};
#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN)
extern struct mm_struct init_mm;
/* Pointer magic because the dynamic array size confuses some compilers. */
static inline void mm_init_cpumask(struct mm_struct *mm)
{
unsigned long cpu_bitmap = (unsigned long)mm;
cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
cpumask_clear((struct cpumask *)cpu_bitmap);
}
/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
{
return (struct cpumask *)&mm->cpu_bitmap;
}
#ifdef CONFIG_LRU_GEN
struct lru_gen_mm_list {
/* mm_struct list for page table walkers */
struct list_head fifo;
/* protects the list above */
spinlock_t lock;
};
void lru_gen_add_mm(struct mm_struct *mm);
void lru_gen_del_mm(struct mm_struct *mm);
#ifdef CONFIG_MEMCG
void lru_gen_migrate_mm(struct mm_struct *mm);
#endif
static inline void lru_gen_init_mm(struct mm_struct *mm)
{
INIT_LIST_HEAD(&mm->lru_gen.list);
mm->lru_gen.bitmap = 0;
#ifdef CONFIG_MEMCG
mm->lru_gen.memcg = NULL;
#endif
}
static inline void lru_gen_use_mm(struct mm_struct *mm)
{
/*
* When the bitmap is set, page reclaim knows this mm_struct has been
* used since the last time it cleared the bitmap. So it might be worth
* walking the page tables of this mm_struct to clear the accessed bit.
*/
WRITE_ONCE(mm->lru_gen.bitmap, -1);
}
#else /* !CONFIG_LRU_GEN */
static inline void lru_gen_add_mm(struct mm_struct *mm)
{
}
static inline void lru_gen_del_mm(struct mm_struct *mm)
{
}
#ifdef CONFIG_MEMCG
static inline void lru_gen_migrate_mm(struct mm_struct *mm)
{
}
#endif
static inline void lru_gen_init_mm(struct mm_struct *mm)
{
}
static inline void lru_gen_use_mm(struct mm_struct *mm)
{
}
#endif /* CONFIG_LRU_GEN */
struct vma_iterator {
struct ma_state mas;
};
#define VMA_ITERATOR(name, __mm, __addr) \
struct vma_iterator name = { \
.mas = { \
.tree = &(__mm)->mm_mt, \
.index = __addr, \
.node = MAS_START, \
}, \
}
static inline void vma_iter_init(struct vma_iterator *vmi,
struct mm_struct *mm, unsigned long addr)
{
vmi->mas.tree = &mm->mm_mt;
vmi->mas.index = addr;
vmi->mas.node = MAS_START;
}
#ifdef CONFIG_SCHED_MM_CID
/* Accessor for struct mm_struct's cidmask. */
static inline cpumask_t *mm_cidmask(struct mm_struct *mm)
{
unsigned long cid_bitmap = (unsigned long)mm;
cid_bitmap += offsetof(struct mm_struct, cpu_bitmap);
/* Skip cpu_bitmap */
cid_bitmap += cpumask_size();
return (struct cpumask *)cid_bitmap;
}
static inline void mm_init_cid(struct mm_struct *mm)
{
raw_spin_lock_init(&mm->cid_lock);
cpumask_clear(mm_cidmask(mm));
}
static inline unsigned int mm_cid_size(void)
{
return cpumask_size();
}
#else /* CONFIG_SCHED_MM_CID */
static inline void mm_init_cid(struct mm_struct *mm) { }
static inline unsigned int mm_cid_size(void)
{
return 0;
}
#endif /* CONFIG_SCHED_MM_CID */
struct mmu_gather;
extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
extern void tlb_finish_mmu(struct mmu_gather *tlb);
struct vm_fault;
/**
* typedef vm_fault_t - Return type for page fault handlers.
*
* Page fault handlers return a bitmask of %VM_FAULT values.
*/
typedef __bitwise unsigned int vm_fault_t;
/**
* enum vm_fault_reason - Page fault handlers return a bitmask of
* these values to tell the core VM what happened when handling the
* fault. Used to decide whether a process gets delivered SIGBUS or
* just gets major/minor fault counters bumped up.
*
* @VM_FAULT_OOM: Out Of Memory
* @VM_FAULT_SIGBUS: Bad access
* @VM_FAULT_MAJOR: Page read from storage
* @VM_FAULT_HWPOISON: Hit poisoned small page
* @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
* in upper bits
* @VM_FAULT_SIGSEGV: segmentation fault
* @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
* @VM_FAULT_LOCKED: ->fault locked the returned page
* @VM_FAULT_RETRY: ->fault blocked, must retry
* @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
* @VM_FAULT_DONE_COW: ->fault has fully handled COW
* @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
* fsync() to complete (for synchronous page faults
* in DAX)
* @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
* @VM_FAULT_HINDEX_MASK: mask HINDEX value
*
*/
enum vm_fault_reason {
VM_FAULT_OOM = (__force vm_fault_t)0x000001,
VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
};
/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
#define VM_FAULT_RESULT_TRACE \
{ VM_FAULT_OOM, "OOM" }, \
{ VM_FAULT_SIGBUS, "SIGBUS" }, \
{ VM_FAULT_MAJOR, "MAJOR" }, \
{ VM_FAULT_HWPOISON, "HWPOISON" }, \
{ VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
{ VM_FAULT_SIGSEGV, "SIGSEGV" }, \
{ VM_FAULT_NOPAGE, "NOPAGE" }, \
{ VM_FAULT_LOCKED, "LOCKED" }, \
{ VM_FAULT_RETRY, "RETRY" }, \
{ VM_FAULT_FALLBACK, "FALLBACK" }, \
{ VM_FAULT_DONE_COW, "DONE_COW" }, \
{ VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
struct vm_special_mapping {
const char *name; /* The name, e.g. "[vdso]". */
/*
* If .fault is not provided, this points to a
* NULL-terminated array of pages that back the special mapping.
*
* This must not be NULL unless .fault is provided.
*/
struct page **pages;
/*
* If non-NULL, then this is called to resolve page faults
* on the special mapping. If used, .pages is not checked.
*/
vm_fault_t (*fault)(const struct vm_special_mapping *sm,
struct vm_area_struct *vma,
struct vm_fault *vmf);
int (*mremap)(const struct vm_special_mapping *sm,
struct vm_area_struct *new_vma);
};
enum tlb_flush_reason {
TLB_FLUSH_ON_TASK_SWITCH,
TLB_REMOTE_SHOOTDOWN,
TLB_LOCAL_SHOOTDOWN,
TLB_LOCAL_MM_SHOOTDOWN,
TLB_REMOTE_SEND_IPI,
NR_TLB_FLUSH_REASONS,
};
/*
* A swap entry has to fit into a "unsigned long", as the entry is hidden
* in the "index" field of the swapper address space.
*/
typedef struct {
unsigned long val;
} swp_entry_t;
/**
* enum fault_flag - Fault flag definitions.
* @FAULT_FLAG_WRITE: Fault was a write fault.
* @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
* @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
* @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
* @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
* @FAULT_FLAG_TRIED: The fault has been tried once.
* @FAULT_FLAG_USER: The fault originated in userspace.
* @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
* @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
* @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
* @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
* COW mapping, making sure that an exclusive anon page is
* mapped after the fault.
* @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
* We should only access orig_pte if this flag set.
*
* About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
* whether we would allow page faults to retry by specifying these two
* fault flags correctly. Currently there can be three legal combinations:
*
* (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
* this is the first try
*
* (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
* we've already tried at least once
*
* (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
*
* The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
* be used. Note that page faults can be allowed to retry for multiple times,
* in which case we'll have an initial fault with flags (a) then later on
* continuous faults with flags (b). We should always try to detect pending
* signals before a retry to make sure the continuous page faults can still be
* interrupted if necessary.
*
* The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
* FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
* applied to mappings that are not COW mappings.
*/
enum fault_flag {
FAULT_FLAG_WRITE = 1 << 0,
FAULT_FLAG_MKWRITE = 1 << 1,
FAULT_FLAG_ALLOW_RETRY = 1 << 2,
FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
FAULT_FLAG_KILLABLE = 1 << 4,
FAULT_FLAG_TRIED = 1 << 5,
FAULT_FLAG_USER = 1 << 6,
FAULT_FLAG_REMOTE = 1 << 7,
FAULT_FLAG_INSTRUCTION = 1 << 8,
FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
FAULT_FLAG_UNSHARE = 1 << 10,
FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
};
typedef unsigned int __bitwise zap_flags_t;
#endif /* _LINUX_MM_TYPES_H */