linux-stable/drivers/char/rtc.c
Al Viro afc9a42b74 the rest of drivers/*: annotate ->poll() instances
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-11-28 11:06:58 -05:00

1427 lines
34 KiB
C

/*
* Real Time Clock interface for Linux
*
* Copyright (C) 1996 Paul Gortmaker
*
* This driver allows use of the real time clock (built into
* nearly all computers) from user space. It exports the /dev/rtc
* interface supporting various ioctl() and also the
* /proc/driver/rtc pseudo-file for status information.
*
* The ioctls can be used to set the interrupt behaviour and
* generation rate from the RTC via IRQ 8. Then the /dev/rtc
* interface can be used to make use of these timer interrupts,
* be they interval or alarm based.
*
* The /dev/rtc interface will block on reads until an interrupt
* has been received. If a RTC interrupt has already happened,
* it will output an unsigned long and then block. The output value
* contains the interrupt status in the low byte and the number of
* interrupts since the last read in the remaining high bytes. The
* /dev/rtc interface can also be used with the select(2) call.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Based on other minimal char device drivers, like Alan's
* watchdog, Ted's random, etc. etc.
*
* 1.07 Paul Gortmaker.
* 1.08 Miquel van Smoorenburg: disallow certain things on the
* DEC Alpha as the CMOS clock is also used for other things.
* 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
* 1.09a Pete Zaitcev: Sun SPARC
* 1.09b Jeff Garzik: Modularize, init cleanup
* 1.09c Jeff Garzik: SMP cleanup
* 1.10 Paul Barton-Davis: add support for async I/O
* 1.10a Andrea Arcangeli: Alpha updates
* 1.10b Andrew Morton: SMP lock fix
* 1.10c Cesar Barros: SMP locking fixes and cleanup
* 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
* 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
* 1.11 Takashi Iwai: Kernel access functions
* rtc_register/rtc_unregister/rtc_control
* 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
* 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
* CONFIG_HPET_EMULATE_RTC
* 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
* 1.12ac Alan Cox: Allow read access to the day of week register
* 1.12b David John: Remove calls to the BKL.
*/
#define RTC_VERSION "1.12b"
/*
* Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
* interrupts disabled. Due to the index-port/data-port (0x70/0x71)
* design of the RTC, we don't want two different things trying to
* get to it at once. (e.g. the periodic 11 min sync from
* kernel/time/ntp.c vs. this driver.)
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/sched/signal.h>
#include <linux/sysctl.h>
#include <linux/wait.h>
#include <linux/bcd.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/ratelimit.h>
#include <asm/current.h>
#ifdef CONFIG_X86
#include <asm/hpet.h>
#endif
#ifdef CONFIG_SPARC32
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/io.h>
static unsigned long rtc_port;
static int rtc_irq;
#endif
#ifdef CONFIG_HPET_EMULATE_RTC
#undef RTC_IRQ
#endif
#ifdef RTC_IRQ
static int rtc_has_irq = 1;
#endif
#ifndef CONFIG_HPET_EMULATE_RTC
#define is_hpet_enabled() 0
#define hpet_set_alarm_time(hrs, min, sec) 0
#define hpet_set_periodic_freq(arg) 0
#define hpet_mask_rtc_irq_bit(arg) 0
#define hpet_set_rtc_irq_bit(arg) 0
#define hpet_rtc_timer_init() do { } while (0)
#define hpet_rtc_dropped_irq() 0
#define hpet_register_irq_handler(h) ({ 0; })
#define hpet_unregister_irq_handler(h) ({ 0; })
#ifdef RTC_IRQ
static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
return 0;
}
#endif
#endif
/*
* We sponge a minor off of the misc major. No need slurping
* up another valuable major dev number for this. If you add
* an ioctl, make sure you don't conflict with SPARC's RTC
* ioctls.
*/
static struct fasync_struct *rtc_async_queue;
static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
#ifdef RTC_IRQ
static void rtc_dropped_irq(struct timer_list *unused);
static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
#endif
static ssize_t rtc_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos);
static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
#ifdef RTC_IRQ
static __poll_t rtc_poll(struct file *file, poll_table *wait);
#endif
static void get_rtc_alm_time(struct rtc_time *alm_tm);
#ifdef RTC_IRQ
static void set_rtc_irq_bit_locked(unsigned char bit);
static void mask_rtc_irq_bit_locked(unsigned char bit);
static inline void set_rtc_irq_bit(unsigned char bit)
{
spin_lock_irq(&rtc_lock);
set_rtc_irq_bit_locked(bit);
spin_unlock_irq(&rtc_lock);
}
static void mask_rtc_irq_bit(unsigned char bit)
{
spin_lock_irq(&rtc_lock);
mask_rtc_irq_bit_locked(bit);
spin_unlock_irq(&rtc_lock);
}
#endif
#ifdef CONFIG_PROC_FS
static int rtc_proc_open(struct inode *inode, struct file *file);
#endif
/*
* Bits in rtc_status. (6 bits of room for future expansion)
*/
#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
#define RTC_TIMER_ON 0x02 /* missed irq timer active */
/*
* rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
* protected by the spin lock rtc_lock. However, ioctl can still disable the
* timer in rtc_status and then with del_timer after the interrupt has read
* rtc_status but before mod_timer is called, which would then reenable the
* timer (but you would need to have an awful timing before you'd trip on it)
*/
static unsigned long rtc_status; /* bitmapped status byte. */
static unsigned long rtc_freq; /* Current periodic IRQ rate */
static unsigned long rtc_irq_data; /* our output to the world */
static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
#ifdef RTC_IRQ
/*
* rtc_task_lock nests inside rtc_lock.
*/
static DEFINE_SPINLOCK(rtc_task_lock);
static rtc_task_t *rtc_callback;
#endif
/*
* If this driver ever becomes modularised, it will be really nice
* to make the epoch retain its value across module reload...
*/
static unsigned long epoch = 1900; /* year corresponding to 0x00 */
static const unsigned char days_in_mo[] =
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/*
* Returns true if a clock update is in progress
*/
static inline unsigned char rtc_is_updating(void)
{
unsigned long flags;
unsigned char uip;
spin_lock_irqsave(&rtc_lock, flags);
uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
spin_unlock_irqrestore(&rtc_lock, flags);
return uip;
}
#ifdef RTC_IRQ
/*
* A very tiny interrupt handler. It runs with interrupts disabled,
* but there is possibility of conflicting with the set_rtc_mmss()
* call (the rtc irq and the timer irq can easily run at the same
* time in two different CPUs). So we need to serialize
* accesses to the chip with the rtc_lock spinlock that each
* architecture should implement in the timer code.
* (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
*/
static irqreturn_t rtc_interrupt(int irq, void *dev_id)
{
/*
* Can be an alarm interrupt, update complete interrupt,
* or a periodic interrupt. We store the status in the
* low byte and the number of interrupts received since
* the last read in the remainder of rtc_irq_data.
*/
spin_lock(&rtc_lock);
rtc_irq_data += 0x100;
rtc_irq_data &= ~0xff;
if (is_hpet_enabled()) {
/*
* In this case it is HPET RTC interrupt handler
* calling us, with the interrupt information
* passed as arg1, instead of irq.
*/
rtc_irq_data |= (unsigned long)irq & 0xF0;
} else {
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
}
if (rtc_status & RTC_TIMER_ON)
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
spin_unlock(&rtc_lock);
/* Now do the rest of the actions */
spin_lock(&rtc_task_lock);
if (rtc_callback)
rtc_callback->func(rtc_callback->private_data);
spin_unlock(&rtc_task_lock);
wake_up_interruptible(&rtc_wait);
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
#endif
/*
* sysctl-tuning infrastructure.
*/
static struct ctl_table rtc_table[] = {
{
.procname = "max-user-freq",
.data = &rtc_max_user_freq,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{ }
};
static struct ctl_table rtc_root[] = {
{
.procname = "rtc",
.mode = 0555,
.child = rtc_table,
},
{ }
};
static struct ctl_table dev_root[] = {
{
.procname = "dev",
.mode = 0555,
.child = rtc_root,
},
{ }
};
static struct ctl_table_header *sysctl_header;
static int __init init_sysctl(void)
{
sysctl_header = register_sysctl_table(dev_root);
return 0;
}
static void __exit cleanup_sysctl(void)
{
unregister_sysctl_table(sysctl_header);
}
/*
* Now all the various file operations that we export.
*/
static ssize_t rtc_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
#ifndef RTC_IRQ
return -EIO;
#else
DECLARE_WAITQUEUE(wait, current);
unsigned long data;
ssize_t retval;
if (rtc_has_irq == 0)
return -EIO;
/*
* Historically this function used to assume that sizeof(unsigned long)
* is the same in userspace and kernelspace. This lead to problems
* for configurations with multiple ABIs such a the MIPS o32 and 64
* ABIs supported on the same kernel. So now we support read of both
* 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
* userspace ABI.
*/
if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
return -EINVAL;
add_wait_queue(&rtc_wait, &wait);
do {
/* First make it right. Then make it fast. Putting this whole
* block within the parentheses of a while would be too
* confusing. And no, xchg() is not the answer. */
__set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irq(&rtc_lock);
data = rtc_irq_data;
rtc_irq_data = 0;
spin_unlock_irq(&rtc_lock);
if (data != 0)
break;
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto out;
}
if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto out;
}
schedule();
} while (1);
if (count == sizeof(unsigned int)) {
retval = put_user(data,
(unsigned int __user *)buf) ?: sizeof(int);
} else {
retval = put_user(data,
(unsigned long __user *)buf) ?: sizeof(long);
}
if (!retval)
retval = count;
out:
__set_current_state(TASK_RUNNING);
remove_wait_queue(&rtc_wait, &wait);
return retval;
#endif
}
static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
{
struct rtc_time wtime;
#ifdef RTC_IRQ
if (rtc_has_irq == 0) {
switch (cmd) {
case RTC_AIE_OFF:
case RTC_AIE_ON:
case RTC_PIE_OFF:
case RTC_PIE_ON:
case RTC_UIE_OFF:
case RTC_UIE_ON:
case RTC_IRQP_READ:
case RTC_IRQP_SET:
return -EINVAL;
}
}
#endif
switch (cmd) {
#ifdef RTC_IRQ
case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
{
mask_rtc_irq_bit(RTC_AIE);
return 0;
}
case RTC_AIE_ON: /* Allow alarm interrupts. */
{
set_rtc_irq_bit(RTC_AIE);
return 0;
}
case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
{
/* can be called from isr via rtc_control() */
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
mask_rtc_irq_bit_locked(RTC_PIE);
if (rtc_status & RTC_TIMER_ON) {
rtc_status &= ~RTC_TIMER_ON;
del_timer(&rtc_irq_timer);
}
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
case RTC_PIE_ON: /* Allow periodic ints */
{
/* can be called from isr via rtc_control() */
unsigned long flags;
/*
* We don't really want Joe User enabling more
* than 64Hz of interrupts on a multi-user machine.
*/
if (!kernel && (rtc_freq > rtc_max_user_freq) &&
(!capable(CAP_SYS_RESOURCE)))
return -EACCES;
spin_lock_irqsave(&rtc_lock, flags);
if (!(rtc_status & RTC_TIMER_ON)) {
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
2*HZ/100);
rtc_status |= RTC_TIMER_ON;
}
set_rtc_irq_bit_locked(RTC_PIE);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
case RTC_UIE_OFF: /* Mask ints from RTC updates. */
{
mask_rtc_irq_bit(RTC_UIE);
return 0;
}
case RTC_UIE_ON: /* Allow ints for RTC updates. */
{
set_rtc_irq_bit(RTC_UIE);
return 0;
}
#endif
case RTC_ALM_READ: /* Read the present alarm time */
{
/*
* This returns a struct rtc_time. Reading >= 0xc0
* means "don't care" or "match all". Only the tm_hour,
* tm_min, and tm_sec values are filled in.
*/
memset(&wtime, 0, sizeof(struct rtc_time));
get_rtc_alm_time(&wtime);
break;
}
case RTC_ALM_SET: /* Store a time into the alarm */
{
/*
* This expects a struct rtc_time. Writing 0xff means
* "don't care" or "match all". Only the tm_hour,
* tm_min and tm_sec are used.
*/
unsigned char hrs, min, sec;
struct rtc_time alm_tm;
if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
sizeof(struct rtc_time)))
return -EFAULT;
hrs = alm_tm.tm_hour;
min = alm_tm.tm_min;
sec = alm_tm.tm_sec;
spin_lock_irq(&rtc_lock);
if (hpet_set_alarm_time(hrs, min, sec)) {
/*
* Fallthru and set alarm time in CMOS too,
* so that we will get proper value in RTC_ALM_READ
*/
}
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
RTC_ALWAYS_BCD) {
if (sec < 60)
sec = bin2bcd(sec);
else
sec = 0xff;
if (min < 60)
min = bin2bcd(min);
else
min = 0xff;
if (hrs < 24)
hrs = bin2bcd(hrs);
else
hrs = 0xff;
}
CMOS_WRITE(hrs, RTC_HOURS_ALARM);
CMOS_WRITE(min, RTC_MINUTES_ALARM);
CMOS_WRITE(sec, RTC_SECONDS_ALARM);
spin_unlock_irq(&rtc_lock);
return 0;
}
case RTC_RD_TIME: /* Read the time/date from RTC */
{
memset(&wtime, 0, sizeof(struct rtc_time));
rtc_get_rtc_time(&wtime);
break;
}
case RTC_SET_TIME: /* Set the RTC */
{
struct rtc_time rtc_tm;
unsigned char mon, day, hrs, min, sec, leap_yr;
unsigned char save_control, save_freq_select;
unsigned int yrs;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_yrs;
#endif
if (!capable(CAP_SYS_TIME))
return -EACCES;
if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
sizeof(struct rtc_time)))
return -EFAULT;
yrs = rtc_tm.tm_year + 1900;
mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
day = rtc_tm.tm_mday;
hrs = rtc_tm.tm_hour;
min = rtc_tm.tm_min;
sec = rtc_tm.tm_sec;
if (yrs < 1970)
return -EINVAL;
leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
if ((mon > 12) || (day == 0))
return -EINVAL;
if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
return -EINVAL;
if ((hrs >= 24) || (min >= 60) || (sec >= 60))
return -EINVAL;
yrs -= epoch;
if (yrs > 255) /* They are unsigned */
return -EINVAL;
spin_lock_irq(&rtc_lock);
#ifdef CONFIG_MACH_DECSTATION
real_yrs = yrs;
yrs = 72;
/*
* We want to keep the year set to 73 until March
* for non-leap years, so that Feb, 29th is handled
* correctly.
*/
if (!leap_yr && mon < 3) {
real_yrs--;
yrs = 73;
}
#endif
/* These limits and adjustments are independent of
* whether the chip is in binary mode or not.
*/
if (yrs > 169) {
spin_unlock_irq(&rtc_lock);
return -EINVAL;
}
if (yrs >= 100)
yrs -= 100;
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
|| RTC_ALWAYS_BCD) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hrs = bin2bcd(hrs);
day = bin2bcd(day);
mon = bin2bcd(mon);
yrs = bin2bcd(yrs);
}
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
#ifdef CONFIG_MACH_DECSTATION
CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
#endif
CMOS_WRITE(yrs, RTC_YEAR);
CMOS_WRITE(mon, RTC_MONTH);
CMOS_WRITE(day, RTC_DAY_OF_MONTH);
CMOS_WRITE(hrs, RTC_HOURS);
CMOS_WRITE(min, RTC_MINUTES);
CMOS_WRITE(sec, RTC_SECONDS);
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock_irq(&rtc_lock);
return 0;
}
#ifdef RTC_IRQ
case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
{
return put_user(rtc_freq, (unsigned long __user *)arg);
}
case RTC_IRQP_SET: /* Set periodic IRQ rate. */
{
int tmp = 0;
unsigned char val;
/* can be called from isr via rtc_control() */
unsigned long flags;
/*
* The max we can do is 8192Hz.
*/
if ((arg < 2) || (arg > 8192))
return -EINVAL;
/*
* We don't really want Joe User generating more
* than 64Hz of interrupts on a multi-user machine.
*/
if (!kernel && (arg > rtc_max_user_freq) &&
!capable(CAP_SYS_RESOURCE))
return -EACCES;
while (arg > (1<<tmp))
tmp++;
/*
* Check that the input was really a power of 2.
*/
if (arg != (1<<tmp))
return -EINVAL;
rtc_freq = arg;
spin_lock_irqsave(&rtc_lock, flags);
if (hpet_set_periodic_freq(arg)) {
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
val |= (16 - tmp);
CMOS_WRITE(val, RTC_FREQ_SELECT);
spin_unlock_irqrestore(&rtc_lock, flags);
return 0;
}
#endif
case RTC_EPOCH_READ: /* Read the epoch. */
{
return put_user(epoch, (unsigned long __user *)arg);
}
case RTC_EPOCH_SET: /* Set the epoch. */
{
/*
* There were no RTC clocks before 1900.
*/
if (arg < 1900)
return -EINVAL;
if (!capable(CAP_SYS_TIME))
return -EACCES;
epoch = arg;
return 0;
}
default:
return -ENOTTY;
}
return copy_to_user((void __user *)arg,
&wtime, sizeof wtime) ? -EFAULT : 0;
}
static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
long ret;
ret = rtc_do_ioctl(cmd, arg, 0);
return ret;
}
/*
* We enforce only one user at a time here with the open/close.
* Also clear the previous interrupt data on an open, and clean
* up things on a close.
*/
static int rtc_open(struct inode *inode, struct file *file)
{
spin_lock_irq(&rtc_lock);
if (rtc_status & RTC_IS_OPEN)
goto out_busy;
rtc_status |= RTC_IS_OPEN;
rtc_irq_data = 0;
spin_unlock_irq(&rtc_lock);
return 0;
out_busy:
spin_unlock_irq(&rtc_lock);
return -EBUSY;
}
static int rtc_fasync(int fd, struct file *filp, int on)
{
return fasync_helper(fd, filp, on, &rtc_async_queue);
}
static int rtc_release(struct inode *inode, struct file *file)
{
#ifdef RTC_IRQ
unsigned char tmp;
if (rtc_has_irq == 0)
goto no_irq;
/*
* Turn off all interrupts once the device is no longer
* in use, and clear the data.
*/
spin_lock_irq(&rtc_lock);
if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
tmp = CMOS_READ(RTC_CONTROL);
tmp &= ~RTC_PIE;
tmp &= ~RTC_AIE;
tmp &= ~RTC_UIE;
CMOS_WRITE(tmp, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
}
if (rtc_status & RTC_TIMER_ON) {
rtc_status &= ~RTC_TIMER_ON;
del_timer(&rtc_irq_timer);
}
spin_unlock_irq(&rtc_lock);
no_irq:
#endif
spin_lock_irq(&rtc_lock);
rtc_irq_data = 0;
rtc_status &= ~RTC_IS_OPEN;
spin_unlock_irq(&rtc_lock);
return 0;
}
#ifdef RTC_IRQ
static __poll_t rtc_poll(struct file *file, poll_table *wait)
{
unsigned long l;
if (rtc_has_irq == 0)
return 0;
poll_wait(file, &rtc_wait, wait);
spin_lock_irq(&rtc_lock);
l = rtc_irq_data;
spin_unlock_irq(&rtc_lock);
if (l != 0)
return POLLIN | POLLRDNORM;
return 0;
}
#endif
int rtc_register(rtc_task_t *task)
{
#ifndef RTC_IRQ
return -EIO;
#else
if (task == NULL || task->func == NULL)
return -EINVAL;
spin_lock_irq(&rtc_lock);
if (rtc_status & RTC_IS_OPEN) {
spin_unlock_irq(&rtc_lock);
return -EBUSY;
}
spin_lock(&rtc_task_lock);
if (rtc_callback) {
spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return -EBUSY;
}
rtc_status |= RTC_IS_OPEN;
rtc_callback = task;
spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return 0;
#endif
}
EXPORT_SYMBOL(rtc_register);
int rtc_unregister(rtc_task_t *task)
{
#ifndef RTC_IRQ
return -EIO;
#else
unsigned char tmp;
spin_lock_irq(&rtc_lock);
spin_lock(&rtc_task_lock);
if (rtc_callback != task) {
spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return -ENXIO;
}
rtc_callback = NULL;
/* disable controls */
if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
tmp = CMOS_READ(RTC_CONTROL);
tmp &= ~RTC_PIE;
tmp &= ~RTC_AIE;
tmp &= ~RTC_UIE;
CMOS_WRITE(tmp, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
}
if (rtc_status & RTC_TIMER_ON) {
rtc_status &= ~RTC_TIMER_ON;
del_timer(&rtc_irq_timer);
}
rtc_status &= ~RTC_IS_OPEN;
spin_unlock(&rtc_task_lock);
spin_unlock_irq(&rtc_lock);
return 0;
#endif
}
EXPORT_SYMBOL(rtc_unregister);
int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
{
#ifndef RTC_IRQ
return -EIO;
#else
unsigned long flags;
if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
return -EINVAL;
spin_lock_irqsave(&rtc_task_lock, flags);
if (rtc_callback != task) {
spin_unlock_irqrestore(&rtc_task_lock, flags);
return -ENXIO;
}
spin_unlock_irqrestore(&rtc_task_lock, flags);
return rtc_do_ioctl(cmd, arg, 1);
#endif
}
EXPORT_SYMBOL(rtc_control);
/*
* The various file operations we support.
*/
static const struct file_operations rtc_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = rtc_read,
#ifdef RTC_IRQ
.poll = rtc_poll,
#endif
.unlocked_ioctl = rtc_ioctl,
.open = rtc_open,
.release = rtc_release,
.fasync = rtc_fasync,
};
static struct miscdevice rtc_dev = {
.minor = RTC_MINOR,
.name = "rtc",
.fops = &rtc_fops,
};
#ifdef CONFIG_PROC_FS
static const struct file_operations rtc_proc_fops = {
.owner = THIS_MODULE,
.open = rtc_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static resource_size_t rtc_size;
static struct resource * __init rtc_request_region(resource_size_t size)
{
struct resource *r;
if (RTC_IOMAPPED)
r = request_region(RTC_PORT(0), size, "rtc");
else
r = request_mem_region(RTC_PORT(0), size, "rtc");
if (r)
rtc_size = size;
return r;
}
static void rtc_release_region(void)
{
if (RTC_IOMAPPED)
release_region(RTC_PORT(0), rtc_size);
else
release_mem_region(RTC_PORT(0), rtc_size);
}
static int __init rtc_init(void)
{
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *ent;
#endif
#if defined(__alpha__) || defined(__mips__)
unsigned int year, ctrl;
char *guess = NULL;
#endif
#ifdef CONFIG_SPARC32
struct device_node *ebus_dp;
struct platform_device *op;
#else
void *r;
#ifdef RTC_IRQ
irq_handler_t rtc_int_handler_ptr;
#endif
#endif
#ifdef CONFIG_SPARC32
for_each_node_by_name(ebus_dp, "ebus") {
struct device_node *dp;
for (dp = ebus_dp; dp; dp = dp->sibling) {
if (!strcmp(dp->name, "rtc")) {
op = of_find_device_by_node(dp);
if (op) {
rtc_port = op->resource[0].start;
rtc_irq = op->irqs[0];
goto found;
}
}
}
}
rtc_has_irq = 0;
printk(KERN_ERR "rtc_init: no PC rtc found\n");
return -EIO;
found:
if (!rtc_irq) {
rtc_has_irq = 0;
goto no_irq;
}
/*
* XXX Interrupt pin #7 in Espresso is shared between RTC and
* PCI Slot 2 INTA# (and some INTx# in Slot 1).
*/
if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
(void *)&rtc_port)) {
rtc_has_irq = 0;
printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
return -EIO;
}
no_irq:
#else
r = rtc_request_region(RTC_IO_EXTENT);
/*
* If we've already requested a smaller range (for example, because
* PNPBIOS or ACPI told us how the device is configured), the request
* above might fail because it's too big.
*
* If so, request just the range we actually use.
*/
if (!r)
r = rtc_request_region(RTC_IO_EXTENT_USED);
if (!r) {
#ifdef RTC_IRQ
rtc_has_irq = 0;
#endif
printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
(long)(RTC_PORT(0)));
return -EIO;
}
#ifdef RTC_IRQ
if (is_hpet_enabled()) {
int err;
rtc_int_handler_ptr = hpet_rtc_interrupt;
err = hpet_register_irq_handler(rtc_interrupt);
if (err != 0) {
printk(KERN_WARNING "hpet_register_irq_handler failed "
"in rtc_init().");
return err;
}
} else {
rtc_int_handler_ptr = rtc_interrupt;
}
if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
rtc_has_irq = 0;
printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
rtc_release_region();
return -EIO;
}
hpet_rtc_timer_init();
#endif
#endif /* CONFIG_SPARC32 vs. others */
if (misc_register(&rtc_dev)) {
#ifdef RTC_IRQ
free_irq(RTC_IRQ, NULL);
hpet_unregister_irq_handler(rtc_interrupt);
rtc_has_irq = 0;
#endif
rtc_release_region();
return -ENODEV;
}
#ifdef CONFIG_PROC_FS
ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
if (!ent)
printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
#endif
#if defined(__alpha__) || defined(__mips__)
rtc_freq = HZ;
/* Each operating system on an Alpha uses its own epoch.
Let's try to guess which one we are using now. */
if (rtc_is_updating() != 0)
msleep(20);
spin_lock_irq(&rtc_lock);
year = CMOS_READ(RTC_YEAR);
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
year = bcd2bin(year); /* This should never happen... */
if (year < 20) {
epoch = 2000;
guess = "SRM (post-2000)";
} else if (year >= 20 && year < 48) {
epoch = 1980;
guess = "ARC console";
} else if (year >= 48 && year < 72) {
epoch = 1952;
guess = "Digital UNIX";
#if defined(__mips__)
} else if (year >= 72 && year < 74) {
epoch = 2000;
guess = "Digital DECstation";
#else
} else if (year >= 70) {
epoch = 1900;
guess = "Standard PC (1900)";
#endif
}
if (guess)
printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
guess, epoch);
#endif
#ifdef RTC_IRQ
if (rtc_has_irq == 0)
goto no_irq2;
spin_lock_irq(&rtc_lock);
rtc_freq = 1024;
if (!hpet_set_periodic_freq(rtc_freq)) {
/*
* Initialize periodic frequency to CMOS reset default,
* which is 1024Hz
*/
CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
RTC_FREQ_SELECT);
}
spin_unlock_irq(&rtc_lock);
no_irq2:
#endif
(void) init_sysctl();
printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
return 0;
}
static void __exit rtc_exit(void)
{
cleanup_sysctl();
remove_proc_entry("driver/rtc", NULL);
misc_deregister(&rtc_dev);
#ifdef CONFIG_SPARC32
if (rtc_has_irq)
free_irq(rtc_irq, &rtc_port);
#else
rtc_release_region();
#ifdef RTC_IRQ
if (rtc_has_irq) {
free_irq(RTC_IRQ, NULL);
hpet_unregister_irq_handler(hpet_rtc_interrupt);
}
#endif
#endif /* CONFIG_SPARC32 */
}
module_init(rtc_init);
module_exit(rtc_exit);
#ifdef RTC_IRQ
/*
* At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
* (usually during an IDE disk interrupt, with IRQ unmasking off)
* Since the interrupt handler doesn't get called, the IRQ status
* byte doesn't get read, and the RTC stops generating interrupts.
* A timer is set, and will call this function if/when that happens.
* To get it out of this stalled state, we just read the status.
* At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
* (You *really* shouldn't be trying to use a non-realtime system
* for something that requires a steady > 1KHz signal anyways.)
*/
static void rtc_dropped_irq(struct timer_list *unused)
{
unsigned long freq;
spin_lock_irq(&rtc_lock);
if (hpet_rtc_dropped_irq()) {
spin_unlock_irq(&rtc_lock);
return;
}
/* Just in case someone disabled the timer from behind our back... */
if (rtc_status & RTC_TIMER_ON)
mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
rtc_irq_data += ((rtc_freq/HZ)<<8);
rtc_irq_data &= ~0xff;
rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
freq = rtc_freq;
spin_unlock_irq(&rtc_lock);
printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
freq);
/* Now we have new data */
wake_up_interruptible(&rtc_wait);
kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
}
#endif
#ifdef CONFIG_PROC_FS
/*
* Info exported via "/proc/driver/rtc".
*/
static int rtc_proc_show(struct seq_file *seq, void *v)
{
#define YN(bit) ((ctrl & bit) ? "yes" : "no")
#define NY(bit) ((ctrl & bit) ? "no" : "yes")
struct rtc_time tm;
unsigned char batt, ctrl;
unsigned long freq;
spin_lock_irq(&rtc_lock);
batt = CMOS_READ(RTC_VALID) & RTC_VRT;
ctrl = CMOS_READ(RTC_CONTROL);
freq = rtc_freq;
spin_unlock_irq(&rtc_lock);
rtc_get_rtc_time(&tm);
/*
* There is no way to tell if the luser has the RTC set for local
* time or for Universal Standard Time (GMT). Probably local though.
*/
seq_printf(seq,
"rtc_time\t: %02d:%02d:%02d\n"
"rtc_date\t: %04d-%02d-%02d\n"
"rtc_epoch\t: %04lu\n",
tm.tm_hour, tm.tm_min, tm.tm_sec,
tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
get_rtc_alm_time(&tm);
/*
* We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
* match any value for that particular field. Values that are
* greater than a valid time, but less than 0xc0 shouldn't appear.
*/
seq_puts(seq, "alarm\t\t: ");
if (tm.tm_hour <= 24)
seq_printf(seq, "%02d:", tm.tm_hour);
else
seq_puts(seq, "**:");
if (tm.tm_min <= 59)
seq_printf(seq, "%02d:", tm.tm_min);
else
seq_puts(seq, "**:");
if (tm.tm_sec <= 59)
seq_printf(seq, "%02d\n", tm.tm_sec);
else
seq_puts(seq, "**\n");
seq_printf(seq,
"DST_enable\t: %s\n"
"BCD\t\t: %s\n"
"24hr\t\t: %s\n"
"square_wave\t: %s\n"
"alarm_IRQ\t: %s\n"
"update_IRQ\t: %s\n"
"periodic_IRQ\t: %s\n"
"periodic_freq\t: %ld\n"
"batt_status\t: %s\n",
YN(RTC_DST_EN),
NY(RTC_DM_BINARY),
YN(RTC_24H),
YN(RTC_SQWE),
YN(RTC_AIE),
YN(RTC_UIE),
YN(RTC_PIE),
freq,
batt ? "okay" : "dead");
return 0;
#undef YN
#undef NY
}
static int rtc_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, rtc_proc_show, NULL);
}
#endif
static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
{
unsigned long uip_watchdog = jiffies, flags;
unsigned char ctrl;
#ifdef CONFIG_MACH_DECSTATION
unsigned int real_year;
#endif
/*
* read RTC once any update in progress is done. The update
* can take just over 2ms. We wait 20ms. There is no need to
* to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
* If you need to know *exactly* when a second has started, enable
* periodic update complete interrupts, (via ioctl) and then
* immediately read /dev/rtc which will block until you get the IRQ.
* Once the read clears, read the RTC time (again via ioctl). Easy.
*/
while (rtc_is_updating() != 0 &&
time_before(jiffies, uip_watchdog + 2*HZ/100))
cpu_relax();
/*
* Only the values that we read from the RTC are set. We leave
* tm_wday, tm_yday and tm_isdst untouched. Note that while the
* RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
* only updated by the RTC when initially set to a non-zero value.
*/
spin_lock_irqsave(&rtc_lock, flags);
rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
/* Only set from 2.6.16 onwards */
rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
#ifdef CONFIG_MACH_DECSTATION
real_year = CMOS_READ(RTC_DEC_YEAR);
#endif
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irqrestore(&rtc_lock, flags);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
}
#ifdef CONFIG_MACH_DECSTATION
rtc_tm->tm_year += real_year - 72;
#endif
/*
* Account for differences between how the RTC uses the values
* and how they are defined in a struct rtc_time;
*/
rtc_tm->tm_year += epoch - 1900;
if (rtc_tm->tm_year <= 69)
rtc_tm->tm_year += 100;
rtc_tm->tm_mon--;
}
static void get_rtc_alm_time(struct rtc_time *alm_tm)
{
unsigned char ctrl;
/*
* Only the values that we read from the RTC are set. That
* means only tm_hour, tm_min, and tm_sec.
*/
spin_lock_irq(&rtc_lock);
alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
ctrl = CMOS_READ(RTC_CONTROL);
spin_unlock_irq(&rtc_lock);
if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
}
}
#ifdef RTC_IRQ
/*
* Used to disable/enable interrupts for any one of UIE, AIE, PIE.
* Rumour has it that if you frob the interrupt enable/disable
* bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
* ensure you actually start getting interrupts. Probably for
* compatibility with older/broken chipset RTC implementations.
* We also clear out any old irq data after an ioctl() that
* meddles with the interrupt enable/disable bits.
*/
static void mask_rtc_irq_bit_locked(unsigned char bit)
{
unsigned char val;
if (hpet_mask_rtc_irq_bit(bit))
return;
val = CMOS_READ(RTC_CONTROL);
val &= ~bit;
CMOS_WRITE(val, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
rtc_irq_data = 0;
}
static void set_rtc_irq_bit_locked(unsigned char bit)
{
unsigned char val;
if (hpet_set_rtc_irq_bit(bit))
return;
val = CMOS_READ(RTC_CONTROL);
val |= bit;
CMOS_WRITE(val, RTC_CONTROL);
CMOS_READ(RTC_INTR_FLAGS);
rtc_irq_data = 0;
}
#endif
MODULE_AUTHOR("Paul Gortmaker");
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(RTC_MINOR);