linux-stable/lib/stackdepot.c
Andrey Konovalov b29d318858 lib/stackdepot: store free stack records in a freelist
Instead of using the global pool_offset variable to find a free slot when
storing a new stack record, mainlain a freelist of free slots within the
allocated stack pools.

A global next_stack variable is used as the head of the freelist, and the
next field in the stack_record struct is reused as freelist link (when the
record is not in the freelist, this field is used as a link in the hash
table).

This is preparatory patch for implementing the eviction of stack records
from the stack depot.

Link: https://lkml.kernel.org/r/b9e4c79955c2121b69301778643b203d3fb09ccc.1700502145.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 16:51:45 -08:00

606 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Stack depot - a stack trace storage that avoids duplication.
*
* Internally, stack depot maintains a hash table of unique stacktraces. The
* stack traces themselves are stored contiguously one after another in a set
* of separate page allocations.
*
* Author: Alexander Potapenko <glider@google.com>
* Copyright (C) 2016 Google, Inc.
*
* Based on the code by Dmitry Chernenkov.
*/
#define pr_fmt(fmt) "stackdepot: " fmt
#include <linux/gfp.h>
#include <linux/jhash.h>
#include <linux/kernel.h>
#include <linux/kmsan.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/stacktrace.h>
#include <linux/stackdepot.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/memblock.h>
#include <linux/kasan-enabled.h>
#define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8)
#define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */
#define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER))
#define DEPOT_STACK_ALIGN 4
#define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN)
#define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_OFFSET_BITS - \
STACK_DEPOT_EXTRA_BITS)
#define DEPOT_POOLS_CAP 8192
#define DEPOT_MAX_POOLS \
(((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \
(1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP)
/* Compact structure that stores a reference to a stack. */
union handle_parts {
depot_stack_handle_t handle;
struct {
u32 pool_index : DEPOT_POOL_INDEX_BITS;
u32 offset : DEPOT_OFFSET_BITS;
u32 extra : STACK_DEPOT_EXTRA_BITS;
};
};
struct stack_record {
struct stack_record *next; /* Link in hash table or freelist */
u32 hash; /* Hash in hash table */
u32 size; /* Number of stored frames */
union handle_parts handle;
unsigned long entries[CONFIG_STACKDEPOT_MAX_FRAMES]; /* Frames */
};
#define DEPOT_STACK_RECORD_SIZE \
ALIGN(sizeof(struct stack_record), 1 << DEPOT_STACK_ALIGN)
static bool stack_depot_disabled;
static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT);
static bool __stack_depot_early_init_passed __initdata;
/* Use one hash table bucket per 16 KB of memory. */
#define STACK_HASH_TABLE_SCALE 14
/* Limit the number of buckets between 4K and 1M. */
#define STACK_BUCKET_NUMBER_ORDER_MIN 12
#define STACK_BUCKET_NUMBER_ORDER_MAX 20
/* Initial seed for jhash2. */
#define STACK_HASH_SEED 0x9747b28c
/* Hash table of pointers to stored stack traces. */
static struct stack_record **stack_table;
/* Fixed order of the number of table buckets. Used when KASAN is enabled. */
static unsigned int stack_bucket_number_order;
/* Hash mask for indexing the table. */
static unsigned int stack_hash_mask;
/* Array of memory regions that store stack traces. */
static void *stack_pools[DEPOT_MAX_POOLS];
/* Newly allocated pool that is not yet added to stack_pools. */
static void *new_pool;
/* Number of pools in stack_pools. */
static int pools_num;
/* Next stack in the freelist of stack records within stack_pools. */
static struct stack_record *next_stack;
/* Lock that protects the variables above. */
static DEFINE_RAW_SPINLOCK(pool_lock);
/*
* Stack depot tries to keep an extra pool allocated even before it runs out
* of space in the currently used pool. This flag marks whether this extra pool
* needs to be allocated. It has the value 0 when either an extra pool is not
* yet allocated or if the limit on the number of pools is reached.
*/
static int new_pool_required = 1;
static int __init disable_stack_depot(char *str)
{
return kstrtobool(str, &stack_depot_disabled);
}
early_param("stack_depot_disable", disable_stack_depot);
void __init stack_depot_request_early_init(void)
{
/* Too late to request early init now. */
WARN_ON(__stack_depot_early_init_passed);
__stack_depot_early_init_requested = true;
}
/* Allocates a hash table via memblock. Can only be used during early boot. */
int __init stack_depot_early_init(void)
{
unsigned long entries = 0;
/* This function must be called only once, from mm_init(). */
if (WARN_ON(__stack_depot_early_init_passed))
return 0;
__stack_depot_early_init_passed = true;
/*
* Print disabled message even if early init has not been requested:
* stack_depot_init() will not print one.
*/
if (stack_depot_disabled) {
pr_info("disabled\n");
return 0;
}
/*
* If KASAN is enabled, use the maximum order: KASAN is frequently used
* in fuzzing scenarios, which leads to a large number of different
* stack traces being stored in stack depot.
*/
if (kasan_enabled() && !stack_bucket_number_order)
stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX;
/*
* Check if early init has been requested after setting
* stack_bucket_number_order: stack_depot_init() uses its value.
*/
if (!__stack_depot_early_init_requested)
return 0;
/*
* If stack_bucket_number_order is not set, leave entries as 0 to rely
* on the automatic calculations performed by alloc_large_system_hash.
*/
if (stack_bucket_number_order)
entries = 1UL << stack_bucket_number_order;
pr_info("allocating hash table via alloc_large_system_hash\n");
stack_table = alloc_large_system_hash("stackdepot",
sizeof(struct stack_record *),
entries,
STACK_HASH_TABLE_SCALE,
HASH_EARLY | HASH_ZERO,
NULL,
&stack_hash_mask,
1UL << STACK_BUCKET_NUMBER_ORDER_MIN,
1UL << STACK_BUCKET_NUMBER_ORDER_MAX);
if (!stack_table) {
pr_err("hash table allocation failed, disabling\n");
stack_depot_disabled = true;
return -ENOMEM;
}
return 0;
}
/* Allocates a hash table via kvcalloc. Can be used after boot. */
int stack_depot_init(void)
{
static DEFINE_MUTEX(stack_depot_init_mutex);
unsigned long entries;
int ret = 0;
mutex_lock(&stack_depot_init_mutex);
if (stack_depot_disabled || stack_table)
goto out_unlock;
/*
* Similarly to stack_depot_early_init, use stack_bucket_number_order
* if assigned, and rely on automatic scaling otherwise.
*/
if (stack_bucket_number_order) {
entries = 1UL << stack_bucket_number_order;
} else {
int scale = STACK_HASH_TABLE_SCALE;
entries = nr_free_buffer_pages();
entries = roundup_pow_of_two(entries);
if (scale > PAGE_SHIFT)
entries >>= (scale - PAGE_SHIFT);
else
entries <<= (PAGE_SHIFT - scale);
}
if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN)
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN;
if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX)
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX;
pr_info("allocating hash table of %lu entries via kvcalloc\n", entries);
stack_table = kvcalloc(entries, sizeof(struct stack_record *), GFP_KERNEL);
if (!stack_table) {
pr_err("hash table allocation failed, disabling\n");
stack_depot_disabled = true;
ret = -ENOMEM;
goto out_unlock;
}
stack_hash_mask = entries - 1;
out_unlock:
mutex_unlock(&stack_depot_init_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(stack_depot_init);
/* Initializes a stack depol pool. */
static void depot_init_pool(void *pool)
{
const int records_in_pool = DEPOT_POOL_SIZE / DEPOT_STACK_RECORD_SIZE;
int i, offset;
/* Initialize handles and link stack records to each other. */
for (i = 0, offset = 0;
offset <= DEPOT_POOL_SIZE - DEPOT_STACK_RECORD_SIZE;
i++, offset += DEPOT_STACK_RECORD_SIZE) {
struct stack_record *stack = pool + offset;
stack->handle.pool_index = pools_num;
stack->handle.offset = offset >> DEPOT_STACK_ALIGN;
stack->handle.extra = 0;
if (i < records_in_pool - 1)
stack->next = (void *)stack + DEPOT_STACK_RECORD_SIZE;
else
stack->next = NULL;
}
/* Link stack records into the freelist. */
WARN_ON(next_stack);
next_stack = pool;
/* Save reference to the pool to be used by depot_fetch_stack(). */
stack_pools[pools_num] = pool;
/*
* WRITE_ONCE() pairs with potential concurrent read in
* depot_fetch_stack().
*/
WRITE_ONCE(pools_num, pools_num + 1);
}
/* Keeps the preallocated memory to be used for a new stack depot pool. */
static void depot_keep_new_pool(void **prealloc)
{
/*
* If a new pool is already saved or the maximum number of
* pools is reached, do not use the preallocated memory.
* Access new_pool_required non-atomically, as there are no concurrent
* write accesses to this variable.
*/
if (!new_pool_required)
return;
/*
* Use the preallocated memory for the new pool
* as long as we do not exceed the maximum number of pools.
*/
if (pools_num < DEPOT_MAX_POOLS) {
new_pool = *prealloc;
*prealloc = NULL;
}
/*
* At this point, either a new pool is kept or the maximum
* number of pools is reached. In either case, take note that
* keeping another pool is not required.
* smp_store_release() pairs with smp_load_acquire() in
* stack_depot_save().
*/
smp_store_release(&new_pool_required, 0);
}
/* Updates references to the current and the next stack depot pools. */
static bool depot_update_pools(void **prealloc)
{
/* Check if we still have objects in the freelist. */
if (next_stack)
goto out_keep_prealloc;
/* Check if we have a new pool saved and use it. */
if (new_pool) {
depot_init_pool(new_pool);
new_pool = NULL;
/* Take note that we might need a new new_pool. */
if (pools_num < DEPOT_MAX_POOLS)
smp_store_release(&new_pool_required, 1);
/* Try keeping the preallocated memory for new_pool. */
goto out_keep_prealloc;
}
/* Bail out if we reached the pool limit. */
if (unlikely(pools_num >= DEPOT_MAX_POOLS)) {
WARN_ONCE(1, "Stack depot reached limit capacity");
return false;
}
/* Check if we have preallocated memory and use it. */
if (*prealloc) {
depot_init_pool(*prealloc);
*prealloc = NULL;
return true;
}
return false;
out_keep_prealloc:
/* Keep the preallocated memory for a new pool if required. */
if (*prealloc)
depot_keep_new_pool(prealloc);
return true;
}
/* Allocates a new stack in a stack depot pool. */
static struct stack_record *
depot_alloc_stack(unsigned long *entries, int size, u32 hash, void **prealloc)
{
struct stack_record *stack;
/* Update current and new pools if required and possible. */
if (!depot_update_pools(prealloc))
return NULL;
/* Check if we have a stack record to save the stack trace. */
stack = next_stack;
if (!stack)
return NULL;
/* Advance the freelist. */
next_stack = stack->next;
/* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */
if (size > CONFIG_STACKDEPOT_MAX_FRAMES)
size = CONFIG_STACKDEPOT_MAX_FRAMES;
/* Save the stack trace. */
stack->next = NULL;
stack->hash = hash;
stack->size = size;
/* stack->handle is already filled in by depot_init_pool(). */
memcpy(stack->entries, entries, flex_array_size(stack, entries, size));
/*
* Let KMSAN know the stored stack record is initialized. This shall
* prevent false positive reports if instrumented code accesses it.
*/
kmsan_unpoison_memory(stack, DEPOT_STACK_RECORD_SIZE);
return stack;
}
static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle)
{
union handle_parts parts = { .handle = handle };
/*
* READ_ONCE() pairs with potential concurrent write in
* depot_init_pool().
*/
int pools_num_cached = READ_ONCE(pools_num);
void *pool;
size_t offset = parts.offset << DEPOT_STACK_ALIGN;
struct stack_record *stack;
if (parts.pool_index > pools_num_cached) {
WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n",
parts.pool_index, pools_num_cached, handle);
return NULL;
}
pool = stack_pools[parts.pool_index];
if (!pool)
return NULL;
stack = pool + offset;
return stack;
}
/* Calculates the hash for a stack. */
static inline u32 hash_stack(unsigned long *entries, unsigned int size)
{
return jhash2((u32 *)entries,
array_size(size, sizeof(*entries)) / sizeof(u32),
STACK_HASH_SEED);
}
/*
* Non-instrumented version of memcmp().
* Does not check the lexicographical order, only the equality.
*/
static inline
int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2,
unsigned int n)
{
for ( ; n-- ; u1++, u2++) {
if (*u1 != *u2)
return 1;
}
return 0;
}
/* Finds a stack in a bucket of the hash table. */
static inline struct stack_record *find_stack(struct stack_record *bucket,
unsigned long *entries, int size,
u32 hash)
{
struct stack_record *found;
for (found = bucket; found; found = found->next) {
if (found->hash == hash &&
found->size == size &&
!stackdepot_memcmp(entries, found->entries, size))
return found;
}
return NULL;
}
depot_stack_handle_t __stack_depot_save(unsigned long *entries,
unsigned int nr_entries,
gfp_t alloc_flags, bool can_alloc)
{
struct stack_record *found = NULL, **bucket;
depot_stack_handle_t handle = 0;
struct page *page = NULL;
void *prealloc = NULL;
unsigned long flags;
u32 hash;
/*
* If this stack trace is from an interrupt, including anything before
* interrupt entry usually leads to unbounded stack depot growth.
*
* Since use of filter_irq_stacks() is a requirement to ensure stack
* depot can efficiently deduplicate interrupt stacks, always
* filter_irq_stacks() to simplify all callers' use of stack depot.
*/
nr_entries = filter_irq_stacks(entries, nr_entries);
if (unlikely(nr_entries == 0) || stack_depot_disabled)
return 0;
hash = hash_stack(entries, nr_entries);
bucket = &stack_table[hash & stack_hash_mask];
/*
* Fast path: look the stack trace up without locking.
* smp_load_acquire() pairs with smp_store_release() to |bucket| below.
*/
found = find_stack(smp_load_acquire(bucket), entries, nr_entries, hash);
if (found)
goto exit;
/*
* Check if another stack pool needs to be allocated. If so, allocate
* the memory now: we won't be able to do that under the lock.
*
* smp_load_acquire() pairs with smp_store_release() in
* depot_update_pools() and depot_keep_new_pool().
*/
if (unlikely(can_alloc && smp_load_acquire(&new_pool_required))) {
/*
* Zero out zone modifiers, as we don't have specific zone
* requirements. Keep the flags related to allocation in atomic
* contexts and I/O.
*/
alloc_flags &= ~GFP_ZONEMASK;
alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
alloc_flags |= __GFP_NOWARN;
page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER);
if (page)
prealloc = page_address(page);
}
raw_spin_lock_irqsave(&pool_lock, flags);
found = find_stack(*bucket, entries, nr_entries, hash);
if (!found) {
struct stack_record *new =
depot_alloc_stack(entries, nr_entries, hash, &prealloc);
if (new) {
new->next = *bucket;
/*
* smp_store_release() pairs with smp_load_acquire()
* from |bucket| above.
*/
smp_store_release(bucket, new);
found = new;
}
} else if (prealloc) {
/*
* Stack depot already contains this stack trace, but let's
* keep the preallocated memory for future.
*/
depot_keep_new_pool(&prealloc);
}
raw_spin_unlock_irqrestore(&pool_lock, flags);
exit:
if (prealloc) {
/* Stack depot didn't use this memory, free it. */
free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER);
}
if (found)
handle = found->handle.handle;
return handle;
}
EXPORT_SYMBOL_GPL(__stack_depot_save);
depot_stack_handle_t stack_depot_save(unsigned long *entries,
unsigned int nr_entries,
gfp_t alloc_flags)
{
return __stack_depot_save(entries, nr_entries, alloc_flags, true);
}
EXPORT_SYMBOL_GPL(stack_depot_save);
unsigned int stack_depot_fetch(depot_stack_handle_t handle,
unsigned long **entries)
{
struct stack_record *stack;
*entries = NULL;
/*
* Let KMSAN know *entries is initialized. This shall prevent false
* positive reports if instrumented code accesses it.
*/
kmsan_unpoison_memory(entries, sizeof(*entries));
if (!handle || stack_depot_disabled)
return 0;
stack = depot_fetch_stack(handle);
*entries = stack->entries;
return stack->size;
}
EXPORT_SYMBOL_GPL(stack_depot_fetch);
void stack_depot_print(depot_stack_handle_t stack)
{
unsigned long *entries;
unsigned int nr_entries;
nr_entries = stack_depot_fetch(stack, &entries);
if (nr_entries > 0)
stack_trace_print(entries, nr_entries, 0);
}
EXPORT_SYMBOL_GPL(stack_depot_print);
int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size,
int spaces)
{
unsigned long *entries;
unsigned int nr_entries;
nr_entries = stack_depot_fetch(handle, &entries);
return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries,
spaces) : 0;
}
EXPORT_SYMBOL_GPL(stack_depot_snprint);
depot_stack_handle_t __must_check stack_depot_set_extra_bits(
depot_stack_handle_t handle, unsigned int extra_bits)
{
union handle_parts parts = { .handle = handle };
/* Don't set extra bits on empty handles. */
if (!handle)
return 0;
parts.extra = extra_bits;
return parts.handle;
}
EXPORT_SYMBOL(stack_depot_set_extra_bits);
unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle)
{
union handle_parts parts = { .handle = handle };
return parts.extra;
}
EXPORT_SYMBOL(stack_depot_get_extra_bits);