linux-stable/net/netfilter/nf_flow_table_core.c
Pablo Neira Ayuso 9afb4b2734 netfilter: flowtable: fix stuck flows on cleanup due to pending work
To clear the flow table on flow table free, the following sequence
normally happens in order:

  1) gc_step work is stopped to disable any further stats/del requests.
  2) All flow table entries are set to teardown state.
  3) Run gc_step which will queue HW del work for each flow table entry.
  4) Waiting for the above del work to finish (flush).
  5) Run gc_step again, deleting all entries from the flow table.
  6) Flow table is freed.

But if a flow table entry already has pending HW stats or HW add work
step 3 will not queue HW del work (it will be skipped), step 4 will wait
for the pending add/stats to finish, and step 5 will queue HW del work
which might execute after freeing of the flow table.

To fix the above, this patch flushes the pending work, then it sets the
teardown flag to all flows in the flowtable and it forces a garbage
collector run to queue work to remove the flows from hardware, then it
flushes this new pending work and (finally) it forces another garbage
collector run to remove the entry from the software flowtable.

Stack trace:
[47773.882335] BUG: KASAN: use-after-free in down_read+0x99/0x460
[47773.883634] Write of size 8 at addr ffff888103b45aa8 by task kworker/u20:6/543704
[47773.885634] CPU: 3 PID: 543704 Comm: kworker/u20:6 Not tainted 5.12.0-rc7+ #2
[47773.886745] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009)
[47773.888438] Workqueue: nf_ft_offload_del flow_offload_work_handler [nf_flow_table]
[47773.889727] Call Trace:
[47773.890214]  dump_stack+0xbb/0x107
[47773.890818]  print_address_description.constprop.0+0x18/0x140
[47773.892990]  kasan_report.cold+0x7c/0xd8
[47773.894459]  kasan_check_range+0x145/0x1a0
[47773.895174]  down_read+0x99/0x460
[47773.899706]  nf_flow_offload_tuple+0x24f/0x3c0 [nf_flow_table]
[47773.907137]  flow_offload_work_handler+0x72d/0xbe0 [nf_flow_table]
[47773.913372]  process_one_work+0x8ac/0x14e0
[47773.921325]
[47773.921325] Allocated by task 592159:
[47773.922031]  kasan_save_stack+0x1b/0x40
[47773.922730]  __kasan_kmalloc+0x7a/0x90
[47773.923411]  tcf_ct_flow_table_get+0x3cb/0x1230 [act_ct]
[47773.924363]  tcf_ct_init+0x71c/0x1156 [act_ct]
[47773.925207]  tcf_action_init_1+0x45b/0x700
[47773.925987]  tcf_action_init+0x453/0x6b0
[47773.926692]  tcf_exts_validate+0x3d0/0x600
[47773.927419]  fl_change+0x757/0x4a51 [cls_flower]
[47773.928227]  tc_new_tfilter+0x89a/0x2070
[47773.936652]
[47773.936652] Freed by task 543704:
[47773.937303]  kasan_save_stack+0x1b/0x40
[47773.938039]  kasan_set_track+0x1c/0x30
[47773.938731]  kasan_set_free_info+0x20/0x30
[47773.939467]  __kasan_slab_free+0xe7/0x120
[47773.940194]  slab_free_freelist_hook+0x86/0x190
[47773.941038]  kfree+0xce/0x3a0
[47773.941644]  tcf_ct_flow_table_cleanup_work

Original patch description and stack trace by Paul Blakey.

Fixes: c29f74e0df ("netfilter: nf_flow_table: hardware offload support")
Reported-by: Paul Blakey <paulb@nvidia.com>
Tested-by: Paul Blakey <paulb@nvidia.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2022-08-24 07:43:21 +02:00

692 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/rhashtable.h>
#include <linux/netdevice.h>
#include <net/ip.h>
#include <net/ip6_route.h>
#include <net/netfilter/nf_tables.h>
#include <net/netfilter/nf_flow_table.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
#include <net/netfilter/nf_conntrack_tuple.h>
static DEFINE_MUTEX(flowtable_lock);
static LIST_HEAD(flowtables);
static void
flow_offload_fill_dir(struct flow_offload *flow,
enum flow_offload_tuple_dir dir)
{
struct flow_offload_tuple *ft = &flow->tuplehash[dir].tuple;
struct nf_conntrack_tuple *ctt = &flow->ct->tuplehash[dir].tuple;
ft->dir = dir;
switch (ctt->src.l3num) {
case NFPROTO_IPV4:
ft->src_v4 = ctt->src.u3.in;
ft->dst_v4 = ctt->dst.u3.in;
break;
case NFPROTO_IPV6:
ft->src_v6 = ctt->src.u3.in6;
ft->dst_v6 = ctt->dst.u3.in6;
break;
}
ft->l3proto = ctt->src.l3num;
ft->l4proto = ctt->dst.protonum;
switch (ctt->dst.protonum) {
case IPPROTO_TCP:
case IPPROTO_UDP:
ft->src_port = ctt->src.u.tcp.port;
ft->dst_port = ctt->dst.u.tcp.port;
break;
}
}
struct flow_offload *flow_offload_alloc(struct nf_conn *ct)
{
struct flow_offload *flow;
if (unlikely(nf_ct_is_dying(ct)))
return NULL;
flow = kzalloc(sizeof(*flow), GFP_ATOMIC);
if (!flow)
return NULL;
refcount_inc(&ct->ct_general.use);
flow->ct = ct;
flow_offload_fill_dir(flow, FLOW_OFFLOAD_DIR_ORIGINAL);
flow_offload_fill_dir(flow, FLOW_OFFLOAD_DIR_REPLY);
if (ct->status & IPS_SRC_NAT)
__set_bit(NF_FLOW_SNAT, &flow->flags);
if (ct->status & IPS_DST_NAT)
__set_bit(NF_FLOW_DNAT, &flow->flags);
return flow;
}
EXPORT_SYMBOL_GPL(flow_offload_alloc);
static u32 flow_offload_dst_cookie(struct flow_offload_tuple *flow_tuple)
{
const struct rt6_info *rt;
if (flow_tuple->l3proto == NFPROTO_IPV6) {
rt = (const struct rt6_info *)flow_tuple->dst_cache;
return rt6_get_cookie(rt);
}
return 0;
}
static int flow_offload_fill_route(struct flow_offload *flow,
const struct nf_flow_route *route,
enum flow_offload_tuple_dir dir)
{
struct flow_offload_tuple *flow_tuple = &flow->tuplehash[dir].tuple;
struct dst_entry *dst = route->tuple[dir].dst;
int i, j = 0;
switch (flow_tuple->l3proto) {
case NFPROTO_IPV4:
flow_tuple->mtu = ip_dst_mtu_maybe_forward(dst, true);
break;
case NFPROTO_IPV6:
flow_tuple->mtu = ip6_dst_mtu_maybe_forward(dst, true);
break;
}
flow_tuple->iifidx = route->tuple[dir].in.ifindex;
for (i = route->tuple[dir].in.num_encaps - 1; i >= 0; i--) {
flow_tuple->encap[j].id = route->tuple[dir].in.encap[i].id;
flow_tuple->encap[j].proto = route->tuple[dir].in.encap[i].proto;
if (route->tuple[dir].in.ingress_vlans & BIT(i))
flow_tuple->in_vlan_ingress |= BIT(j);
j++;
}
flow_tuple->encap_num = route->tuple[dir].in.num_encaps;
switch (route->tuple[dir].xmit_type) {
case FLOW_OFFLOAD_XMIT_DIRECT:
memcpy(flow_tuple->out.h_dest, route->tuple[dir].out.h_dest,
ETH_ALEN);
memcpy(flow_tuple->out.h_source, route->tuple[dir].out.h_source,
ETH_ALEN);
flow_tuple->out.ifidx = route->tuple[dir].out.ifindex;
flow_tuple->out.hw_ifidx = route->tuple[dir].out.hw_ifindex;
break;
case FLOW_OFFLOAD_XMIT_XFRM:
case FLOW_OFFLOAD_XMIT_NEIGH:
if (!dst_hold_safe(route->tuple[dir].dst))
return -1;
flow_tuple->dst_cache = dst;
flow_tuple->dst_cookie = flow_offload_dst_cookie(flow_tuple);
break;
default:
WARN_ON_ONCE(1);
break;
}
flow_tuple->xmit_type = route->tuple[dir].xmit_type;
return 0;
}
static void nft_flow_dst_release(struct flow_offload *flow,
enum flow_offload_tuple_dir dir)
{
if (flow->tuplehash[dir].tuple.xmit_type == FLOW_OFFLOAD_XMIT_NEIGH ||
flow->tuplehash[dir].tuple.xmit_type == FLOW_OFFLOAD_XMIT_XFRM)
dst_release(flow->tuplehash[dir].tuple.dst_cache);
}
int flow_offload_route_init(struct flow_offload *flow,
const struct nf_flow_route *route)
{
int err;
err = flow_offload_fill_route(flow, route, FLOW_OFFLOAD_DIR_ORIGINAL);
if (err < 0)
return err;
err = flow_offload_fill_route(flow, route, FLOW_OFFLOAD_DIR_REPLY);
if (err < 0)
goto err_route_reply;
flow->type = NF_FLOW_OFFLOAD_ROUTE;
return 0;
err_route_reply:
nft_flow_dst_release(flow, FLOW_OFFLOAD_DIR_ORIGINAL);
return err;
}
EXPORT_SYMBOL_GPL(flow_offload_route_init);
static void flow_offload_fixup_tcp(struct ip_ct_tcp *tcp)
{
tcp->seen[0].td_maxwin = 0;
tcp->seen[1].td_maxwin = 0;
}
static void flow_offload_fixup_ct(struct nf_conn *ct)
{
struct net *net = nf_ct_net(ct);
int l4num = nf_ct_protonum(ct);
s32 timeout;
if (l4num == IPPROTO_TCP) {
struct nf_tcp_net *tn = nf_tcp_pernet(net);
flow_offload_fixup_tcp(&ct->proto.tcp);
timeout = tn->timeouts[ct->proto.tcp.state];
timeout -= tn->offload_timeout;
} else if (l4num == IPPROTO_UDP) {
struct nf_udp_net *tn = nf_udp_pernet(net);
timeout = tn->timeouts[UDP_CT_REPLIED];
timeout -= tn->offload_timeout;
} else {
return;
}
if (timeout < 0)
timeout = 0;
if (nf_flow_timeout_delta(READ_ONCE(ct->timeout)) > (__s32)timeout)
WRITE_ONCE(ct->timeout, nfct_time_stamp + timeout);
}
static void flow_offload_route_release(struct flow_offload *flow)
{
nft_flow_dst_release(flow, FLOW_OFFLOAD_DIR_ORIGINAL);
nft_flow_dst_release(flow, FLOW_OFFLOAD_DIR_REPLY);
}
void flow_offload_free(struct flow_offload *flow)
{
switch (flow->type) {
case NF_FLOW_OFFLOAD_ROUTE:
flow_offload_route_release(flow);
break;
default:
break;
}
nf_ct_put(flow->ct);
kfree_rcu(flow, rcu_head);
}
EXPORT_SYMBOL_GPL(flow_offload_free);
static u32 flow_offload_hash(const void *data, u32 len, u32 seed)
{
const struct flow_offload_tuple *tuple = data;
return jhash(tuple, offsetof(struct flow_offload_tuple, __hash), seed);
}
static u32 flow_offload_hash_obj(const void *data, u32 len, u32 seed)
{
const struct flow_offload_tuple_rhash *tuplehash = data;
return jhash(&tuplehash->tuple, offsetof(struct flow_offload_tuple, __hash), seed);
}
static int flow_offload_hash_cmp(struct rhashtable_compare_arg *arg,
const void *ptr)
{
const struct flow_offload_tuple *tuple = arg->key;
const struct flow_offload_tuple_rhash *x = ptr;
if (memcmp(&x->tuple, tuple, offsetof(struct flow_offload_tuple, __hash)))
return 1;
return 0;
}
static const struct rhashtable_params nf_flow_offload_rhash_params = {
.head_offset = offsetof(struct flow_offload_tuple_rhash, node),
.hashfn = flow_offload_hash,
.obj_hashfn = flow_offload_hash_obj,
.obj_cmpfn = flow_offload_hash_cmp,
.automatic_shrinking = true,
};
unsigned long flow_offload_get_timeout(struct flow_offload *flow)
{
unsigned long timeout = NF_FLOW_TIMEOUT;
struct net *net = nf_ct_net(flow->ct);
int l4num = nf_ct_protonum(flow->ct);
if (l4num == IPPROTO_TCP) {
struct nf_tcp_net *tn = nf_tcp_pernet(net);
timeout = tn->offload_timeout;
} else if (l4num == IPPROTO_UDP) {
struct nf_udp_net *tn = nf_udp_pernet(net);
timeout = tn->offload_timeout;
}
return timeout;
}
int flow_offload_add(struct nf_flowtable *flow_table, struct flow_offload *flow)
{
int err;
flow->timeout = nf_flowtable_time_stamp + flow_offload_get_timeout(flow);
err = rhashtable_insert_fast(&flow_table->rhashtable,
&flow->tuplehash[0].node,
nf_flow_offload_rhash_params);
if (err < 0)
return err;
err = rhashtable_insert_fast(&flow_table->rhashtable,
&flow->tuplehash[1].node,
nf_flow_offload_rhash_params);
if (err < 0) {
rhashtable_remove_fast(&flow_table->rhashtable,
&flow->tuplehash[0].node,
nf_flow_offload_rhash_params);
return err;
}
nf_ct_offload_timeout(flow->ct);
if (nf_flowtable_hw_offload(flow_table)) {
__set_bit(NF_FLOW_HW, &flow->flags);
nf_flow_offload_add(flow_table, flow);
}
return 0;
}
EXPORT_SYMBOL_GPL(flow_offload_add);
void flow_offload_refresh(struct nf_flowtable *flow_table,
struct flow_offload *flow)
{
u32 timeout;
timeout = nf_flowtable_time_stamp + flow_offload_get_timeout(flow);
if (timeout - READ_ONCE(flow->timeout) > HZ)
WRITE_ONCE(flow->timeout, timeout);
else
return;
if (likely(!nf_flowtable_hw_offload(flow_table)))
return;
nf_flow_offload_add(flow_table, flow);
}
EXPORT_SYMBOL_GPL(flow_offload_refresh);
static inline bool nf_flow_has_expired(const struct flow_offload *flow)
{
return nf_flow_timeout_delta(flow->timeout) <= 0;
}
static void flow_offload_del(struct nf_flowtable *flow_table,
struct flow_offload *flow)
{
rhashtable_remove_fast(&flow_table->rhashtable,
&flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].node,
nf_flow_offload_rhash_params);
rhashtable_remove_fast(&flow_table->rhashtable,
&flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].node,
nf_flow_offload_rhash_params);
flow_offload_free(flow);
}
void flow_offload_teardown(struct flow_offload *flow)
{
clear_bit(IPS_OFFLOAD_BIT, &flow->ct->status);
set_bit(NF_FLOW_TEARDOWN, &flow->flags);
flow_offload_fixup_ct(flow->ct);
}
EXPORT_SYMBOL_GPL(flow_offload_teardown);
struct flow_offload_tuple_rhash *
flow_offload_lookup(struct nf_flowtable *flow_table,
struct flow_offload_tuple *tuple)
{
struct flow_offload_tuple_rhash *tuplehash;
struct flow_offload *flow;
int dir;
tuplehash = rhashtable_lookup(&flow_table->rhashtable, tuple,
nf_flow_offload_rhash_params);
if (!tuplehash)
return NULL;
dir = tuplehash->tuple.dir;
flow = container_of(tuplehash, struct flow_offload, tuplehash[dir]);
if (test_bit(NF_FLOW_TEARDOWN, &flow->flags))
return NULL;
if (unlikely(nf_ct_is_dying(flow->ct)))
return NULL;
return tuplehash;
}
EXPORT_SYMBOL_GPL(flow_offload_lookup);
static int
nf_flow_table_iterate(struct nf_flowtable *flow_table,
void (*iter)(struct nf_flowtable *flowtable,
struct flow_offload *flow, void *data),
void *data)
{
struct flow_offload_tuple_rhash *tuplehash;
struct rhashtable_iter hti;
struct flow_offload *flow;
int err = 0;
rhashtable_walk_enter(&flow_table->rhashtable, &hti);
rhashtable_walk_start(&hti);
while ((tuplehash = rhashtable_walk_next(&hti))) {
if (IS_ERR(tuplehash)) {
if (PTR_ERR(tuplehash) != -EAGAIN) {
err = PTR_ERR(tuplehash);
break;
}
continue;
}
if (tuplehash->tuple.dir)
continue;
flow = container_of(tuplehash, struct flow_offload, tuplehash[0]);
iter(flow_table, flow, data);
}
rhashtable_walk_stop(&hti);
rhashtable_walk_exit(&hti);
return err;
}
static void nf_flow_offload_gc_step(struct nf_flowtable *flow_table,
struct flow_offload *flow, void *data)
{
if (nf_flow_has_expired(flow) ||
nf_ct_is_dying(flow->ct))
flow_offload_teardown(flow);
if (test_bit(NF_FLOW_TEARDOWN, &flow->flags)) {
if (test_bit(NF_FLOW_HW, &flow->flags)) {
if (!test_bit(NF_FLOW_HW_DYING, &flow->flags))
nf_flow_offload_del(flow_table, flow);
else if (test_bit(NF_FLOW_HW_DEAD, &flow->flags))
flow_offload_del(flow_table, flow);
} else {
flow_offload_del(flow_table, flow);
}
} else if (test_bit(NF_FLOW_HW, &flow->flags)) {
nf_flow_offload_stats(flow_table, flow);
}
}
void nf_flow_table_gc_run(struct nf_flowtable *flow_table)
{
nf_flow_table_iterate(flow_table, nf_flow_offload_gc_step, NULL);
}
static void nf_flow_offload_work_gc(struct work_struct *work)
{
struct nf_flowtable *flow_table;
flow_table = container_of(work, struct nf_flowtable, gc_work.work);
nf_flow_table_gc_run(flow_table);
queue_delayed_work(system_power_efficient_wq, &flow_table->gc_work, HZ);
}
static void nf_flow_nat_port_tcp(struct sk_buff *skb, unsigned int thoff,
__be16 port, __be16 new_port)
{
struct tcphdr *tcph;
tcph = (void *)(skb_network_header(skb) + thoff);
inet_proto_csum_replace2(&tcph->check, skb, port, new_port, false);
}
static void nf_flow_nat_port_udp(struct sk_buff *skb, unsigned int thoff,
__be16 port, __be16 new_port)
{
struct udphdr *udph;
udph = (void *)(skb_network_header(skb) + thoff);
if (udph->check || skb->ip_summed == CHECKSUM_PARTIAL) {
inet_proto_csum_replace2(&udph->check, skb, port,
new_port, false);
if (!udph->check)
udph->check = CSUM_MANGLED_0;
}
}
static void nf_flow_nat_port(struct sk_buff *skb, unsigned int thoff,
u8 protocol, __be16 port, __be16 new_port)
{
switch (protocol) {
case IPPROTO_TCP:
nf_flow_nat_port_tcp(skb, thoff, port, new_port);
break;
case IPPROTO_UDP:
nf_flow_nat_port_udp(skb, thoff, port, new_port);
break;
}
}
void nf_flow_snat_port(const struct flow_offload *flow,
struct sk_buff *skb, unsigned int thoff,
u8 protocol, enum flow_offload_tuple_dir dir)
{
struct flow_ports *hdr;
__be16 port, new_port;
hdr = (void *)(skb_network_header(skb) + thoff);
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
port = hdr->source;
new_port = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.dst_port;
hdr->source = new_port;
break;
case FLOW_OFFLOAD_DIR_REPLY:
port = hdr->dest;
new_port = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.src_port;
hdr->dest = new_port;
break;
}
nf_flow_nat_port(skb, thoff, protocol, port, new_port);
}
EXPORT_SYMBOL_GPL(nf_flow_snat_port);
void nf_flow_dnat_port(const struct flow_offload *flow, struct sk_buff *skb,
unsigned int thoff, u8 protocol,
enum flow_offload_tuple_dir dir)
{
struct flow_ports *hdr;
__be16 port, new_port;
hdr = (void *)(skb_network_header(skb) + thoff);
switch (dir) {
case FLOW_OFFLOAD_DIR_ORIGINAL:
port = hdr->dest;
new_port = flow->tuplehash[FLOW_OFFLOAD_DIR_REPLY].tuple.src_port;
hdr->dest = new_port;
break;
case FLOW_OFFLOAD_DIR_REPLY:
port = hdr->source;
new_port = flow->tuplehash[FLOW_OFFLOAD_DIR_ORIGINAL].tuple.dst_port;
hdr->source = new_port;
break;
}
nf_flow_nat_port(skb, thoff, protocol, port, new_port);
}
EXPORT_SYMBOL_GPL(nf_flow_dnat_port);
int nf_flow_table_init(struct nf_flowtable *flowtable)
{
int err;
INIT_DELAYED_WORK(&flowtable->gc_work, nf_flow_offload_work_gc);
flow_block_init(&flowtable->flow_block);
init_rwsem(&flowtable->flow_block_lock);
err = rhashtable_init(&flowtable->rhashtable,
&nf_flow_offload_rhash_params);
if (err < 0)
return err;
queue_delayed_work(system_power_efficient_wq,
&flowtable->gc_work, HZ);
mutex_lock(&flowtable_lock);
list_add(&flowtable->list, &flowtables);
mutex_unlock(&flowtable_lock);
return 0;
}
EXPORT_SYMBOL_GPL(nf_flow_table_init);
static void nf_flow_table_do_cleanup(struct nf_flowtable *flow_table,
struct flow_offload *flow, void *data)
{
struct net_device *dev = data;
if (!dev) {
flow_offload_teardown(flow);
return;
}
if (net_eq(nf_ct_net(flow->ct), dev_net(dev)) &&
(flow->tuplehash[0].tuple.iifidx == dev->ifindex ||
flow->tuplehash[1].tuple.iifidx == dev->ifindex))
flow_offload_teardown(flow);
}
void nf_flow_table_gc_cleanup(struct nf_flowtable *flowtable,
struct net_device *dev)
{
nf_flow_table_iterate(flowtable, nf_flow_table_do_cleanup, dev);
flush_delayed_work(&flowtable->gc_work);
nf_flow_table_offload_flush(flowtable);
}
void nf_flow_table_cleanup(struct net_device *dev)
{
struct nf_flowtable *flowtable;
mutex_lock(&flowtable_lock);
list_for_each_entry(flowtable, &flowtables, list)
nf_flow_table_gc_cleanup(flowtable, dev);
mutex_unlock(&flowtable_lock);
}
EXPORT_SYMBOL_GPL(nf_flow_table_cleanup);
void nf_flow_table_free(struct nf_flowtable *flow_table)
{
mutex_lock(&flowtable_lock);
list_del(&flow_table->list);
mutex_unlock(&flowtable_lock);
cancel_delayed_work_sync(&flow_table->gc_work);
nf_flow_table_offload_flush(flow_table);
/* ... no more pending work after this stage ... */
nf_flow_table_iterate(flow_table, nf_flow_table_do_cleanup, NULL);
nf_flow_table_gc_run(flow_table);
nf_flow_table_offload_flush_cleanup(flow_table);
rhashtable_destroy(&flow_table->rhashtable);
}
EXPORT_SYMBOL_GPL(nf_flow_table_free);
static int nf_flow_table_init_net(struct net *net)
{
net->ft.stat = alloc_percpu(struct nf_flow_table_stat);
return net->ft.stat ? 0 : -ENOMEM;
}
static void nf_flow_table_fini_net(struct net *net)
{
free_percpu(net->ft.stat);
}
static int nf_flow_table_pernet_init(struct net *net)
{
int ret;
ret = nf_flow_table_init_net(net);
if (ret < 0)
return ret;
ret = nf_flow_table_init_proc(net);
if (ret < 0)
goto out_proc;
return 0;
out_proc:
nf_flow_table_fini_net(net);
return ret;
}
static void nf_flow_table_pernet_exit(struct list_head *net_exit_list)
{
struct net *net;
list_for_each_entry(net, net_exit_list, exit_list) {
nf_flow_table_fini_proc(net);
nf_flow_table_fini_net(net);
}
}
static struct pernet_operations nf_flow_table_net_ops = {
.init = nf_flow_table_pernet_init,
.exit_batch = nf_flow_table_pernet_exit,
};
static int __init nf_flow_table_module_init(void)
{
int ret;
ret = register_pernet_subsys(&nf_flow_table_net_ops);
if (ret < 0)
return ret;
ret = nf_flow_table_offload_init();
if (ret)
goto out_offload;
return 0;
out_offload:
unregister_pernet_subsys(&nf_flow_table_net_ops);
return ret;
}
static void __exit nf_flow_table_module_exit(void)
{
nf_flow_table_offload_exit();
unregister_pernet_subsys(&nf_flow_table_net_ops);
}
module_init(nf_flow_table_module_init);
module_exit(nf_flow_table_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Pablo Neira Ayuso <pablo@netfilter.org>");
MODULE_DESCRIPTION("Netfilter flow table module");