linux-stable/net/netfilter/nf_conncount.c
Florian Westphal b36e4523d4 netfilter: nf_conncount: fix garbage collection confirm race
Yi-Hung Wei and Justin Pettit found a race in the garbage collection scheme
used by nf_conncount.

When doing list walk, we lookup the tuple in the conntrack table.
If the lookup fails we remove this tuple from our list because
the conntrack entry is gone.

This is the common cause, but turns out its not the only one.
The list entry could have been created just before by another cpu, i.e. the
conntrack entry might not yet have been inserted into the global hash.

The avoid this, we introduce a timestamp and the owning cpu.
If the entry appears to be stale, evict only if:
 1. The current cpu is the one that added the entry, or,
 2. The timestamp is older than two jiffies

The second constraint allows GC to be taken over by other
cpu too (e.g. because a cpu was offlined or napi got moved to another
cpu).

We can't pretend the 'doubtful' entry wasn't in our list.
Instead, when we don't find an entry indicate via IS_ERR
that entry was removed ('did not exist' or withheld
('might-be-unconfirmed').

This most likely also fixes a xt_connlimit imbalance earlier reported by
Dmitry Andrianov.

Cc: Dmitry Andrianov <dmitry.andrianov@alertme.com>
Reported-by: Justin Pettit <jpettit@vmware.com>
Reported-by: Yi-Hung Wei <yihung.wei@gmail.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Yi-Hung Wei <yihung.wei@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2018-06-26 18:28:57 +02:00

434 lines
11 KiB
C

/*
* count the number of connections matching an arbitrary key.
*
* (C) 2017 Red Hat GmbH
* Author: Florian Westphal <fw@strlen.de>
*
* split from xt_connlimit.c:
* (c) 2000 Gerd Knorr <kraxel@bytesex.org>
* Nov 2002: Martin Bene <martin.bene@icomedias.com>:
* only ignore TIME_WAIT or gone connections
* (C) CC Computer Consultants GmbH, 2007
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/in.h>
#include <linux/in6.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/jhash.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/rbtree.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/netfilter/nf_conntrack_tcp.h>
#include <linux/netfilter/x_tables.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_count.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_tuple.h>
#include <net/netfilter/nf_conntrack_zones.h>
#define CONNCOUNT_SLOTS 256U
#ifdef CONFIG_LOCKDEP
#define CONNCOUNT_LOCK_SLOTS 8U
#else
#define CONNCOUNT_LOCK_SLOTS 256U
#endif
#define CONNCOUNT_GC_MAX_NODES 8
#define MAX_KEYLEN 5
/* we will save the tuples of all connections we care about */
struct nf_conncount_tuple {
struct hlist_node node;
struct nf_conntrack_tuple tuple;
struct nf_conntrack_zone zone;
int cpu;
u32 jiffies32;
};
struct nf_conncount_rb {
struct rb_node node;
struct hlist_head hhead; /* connections/hosts in same subnet */
u32 key[MAX_KEYLEN];
};
static spinlock_t nf_conncount_locks[CONNCOUNT_LOCK_SLOTS] __cacheline_aligned_in_smp;
struct nf_conncount_data {
unsigned int keylen;
struct rb_root root[CONNCOUNT_SLOTS];
};
static u_int32_t conncount_rnd __read_mostly;
static struct kmem_cache *conncount_rb_cachep __read_mostly;
static struct kmem_cache *conncount_conn_cachep __read_mostly;
static inline bool already_closed(const struct nf_conn *conn)
{
if (nf_ct_protonum(conn) == IPPROTO_TCP)
return conn->proto.tcp.state == TCP_CONNTRACK_TIME_WAIT ||
conn->proto.tcp.state == TCP_CONNTRACK_CLOSE;
else
return false;
}
static int key_diff(const u32 *a, const u32 *b, unsigned int klen)
{
return memcmp(a, b, klen * sizeof(u32));
}
bool nf_conncount_add(struct hlist_head *head,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
struct nf_conncount_tuple *conn;
conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
if (conn == NULL)
return false;
conn->tuple = *tuple;
conn->zone = *zone;
conn->cpu = raw_smp_processor_id();
conn->jiffies32 = (u32)jiffies;
hlist_add_head(&conn->node, head);
return true;
}
EXPORT_SYMBOL_GPL(nf_conncount_add);
static const struct nf_conntrack_tuple_hash *
find_or_evict(struct net *net, struct nf_conncount_tuple *conn)
{
const struct nf_conntrack_tuple_hash *found;
unsigned long a, b;
int cpu = raw_smp_processor_id();
__s32 age;
found = nf_conntrack_find_get(net, &conn->zone, &conn->tuple);
if (found)
return found;
b = conn->jiffies32;
a = (u32)jiffies;
/* conn might have been added just before by another cpu and
* might still be unconfirmed. In this case, nf_conntrack_find()
* returns no result. Thus only evict if this cpu added the
* stale entry or if the entry is older than two jiffies.
*/
age = a - b;
if (conn->cpu == cpu || age >= 2) {
hlist_del(&conn->node);
kmem_cache_free(conncount_conn_cachep, conn);
return ERR_PTR(-ENOENT);
}
return ERR_PTR(-EAGAIN);
}
unsigned int nf_conncount_lookup(struct net *net, struct hlist_head *head,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone,
bool *addit)
{
const struct nf_conntrack_tuple_hash *found;
struct nf_conncount_tuple *conn;
struct nf_conn *found_ct;
struct hlist_node *n;
unsigned int length = 0;
*addit = tuple ? true : false;
/* check the saved connections */
hlist_for_each_entry_safe(conn, n, head, node) {
found = find_or_evict(net, conn);
if (IS_ERR(found)) {
/* Not found, but might be about to be confirmed */
if (PTR_ERR(found) == -EAGAIN) {
length++;
if (!tuple)
continue;
if (nf_ct_tuple_equal(&conn->tuple, tuple) &&
nf_ct_zone_id(&conn->zone, conn->zone.dir) ==
nf_ct_zone_id(zone, zone->dir))
*addit = false;
}
continue;
}
found_ct = nf_ct_tuplehash_to_ctrack(found);
if (tuple && nf_ct_tuple_equal(&conn->tuple, tuple) &&
nf_ct_zone_equal(found_ct, zone, zone->dir)) {
/*
* Just to be sure we have it only once in the list.
* We should not see tuples twice unless someone hooks
* this into a table without "-p tcp --syn".
*/
*addit = false;
} else if (already_closed(found_ct)) {
/*
* we do not care about connections which are
* closed already -> ditch it
*/
nf_ct_put(found_ct);
hlist_del(&conn->node);
kmem_cache_free(conncount_conn_cachep, conn);
continue;
}
nf_ct_put(found_ct);
length++;
}
return length;
}
EXPORT_SYMBOL_GPL(nf_conncount_lookup);
static void tree_nodes_free(struct rb_root *root,
struct nf_conncount_rb *gc_nodes[],
unsigned int gc_count)
{
struct nf_conncount_rb *rbconn;
while (gc_count) {
rbconn = gc_nodes[--gc_count];
rb_erase(&rbconn->node, root);
kmem_cache_free(conncount_rb_cachep, rbconn);
}
}
static unsigned int
count_tree(struct net *net, struct rb_root *root,
const u32 *key, u8 keylen,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
struct nf_conncount_rb *gc_nodes[CONNCOUNT_GC_MAX_NODES];
struct rb_node **rbnode, *parent;
struct nf_conncount_rb *rbconn;
struct nf_conncount_tuple *conn;
unsigned int gc_count;
bool no_gc = false;
restart:
gc_count = 0;
parent = NULL;
rbnode = &(root->rb_node);
while (*rbnode) {
int diff;
bool addit;
rbconn = rb_entry(*rbnode, struct nf_conncount_rb, node);
parent = *rbnode;
diff = key_diff(key, rbconn->key, keylen);
if (diff < 0) {
rbnode = &((*rbnode)->rb_left);
} else if (diff > 0) {
rbnode = &((*rbnode)->rb_right);
} else {
/* same source network -> be counted! */
unsigned int count;
count = nf_conncount_lookup(net, &rbconn->hhead, tuple,
zone, &addit);
tree_nodes_free(root, gc_nodes, gc_count);
if (!addit)
return count;
if (!nf_conncount_add(&rbconn->hhead, tuple, zone))
return 0; /* hotdrop */
return count + 1;
}
if (no_gc || gc_count >= ARRAY_SIZE(gc_nodes))
continue;
/* only used for GC on hhead, retval and 'addit' ignored */
nf_conncount_lookup(net, &rbconn->hhead, tuple, zone, &addit);
if (hlist_empty(&rbconn->hhead))
gc_nodes[gc_count++] = rbconn;
}
if (gc_count) {
no_gc = true;
tree_nodes_free(root, gc_nodes, gc_count);
/* tree_node_free before new allocation permits
* allocator to re-use newly free'd object.
*
* This is a rare event; in most cases we will find
* existing node to re-use. (or gc_count is 0).
*/
goto restart;
}
if (!tuple)
return 0;
/* no match, need to insert new node */
rbconn = kmem_cache_alloc(conncount_rb_cachep, GFP_ATOMIC);
if (rbconn == NULL)
return 0;
conn = kmem_cache_alloc(conncount_conn_cachep, GFP_ATOMIC);
if (conn == NULL) {
kmem_cache_free(conncount_rb_cachep, rbconn);
return 0;
}
conn->tuple = *tuple;
conn->zone = *zone;
memcpy(rbconn->key, key, sizeof(u32) * keylen);
INIT_HLIST_HEAD(&rbconn->hhead);
hlist_add_head(&conn->node, &rbconn->hhead);
rb_link_node(&rbconn->node, parent, rbnode);
rb_insert_color(&rbconn->node, root);
return 1;
}
/* Count and return number of conntrack entries in 'net' with particular 'key'.
* If 'tuple' is not null, insert it into the accounting data structure.
*/
unsigned int nf_conncount_count(struct net *net,
struct nf_conncount_data *data,
const u32 *key,
const struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_zone *zone)
{
struct rb_root *root;
int count;
u32 hash;
hash = jhash2(key, data->keylen, conncount_rnd) % CONNCOUNT_SLOTS;
root = &data->root[hash];
spin_lock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
count = count_tree(net, root, key, data->keylen, tuple, zone);
spin_unlock_bh(&nf_conncount_locks[hash % CONNCOUNT_LOCK_SLOTS]);
return count;
}
EXPORT_SYMBOL_GPL(nf_conncount_count);
struct nf_conncount_data *nf_conncount_init(struct net *net, unsigned int family,
unsigned int keylen)
{
struct nf_conncount_data *data;
int ret, i;
if (keylen % sizeof(u32) ||
keylen / sizeof(u32) > MAX_KEYLEN ||
keylen == 0)
return ERR_PTR(-EINVAL);
net_get_random_once(&conncount_rnd, sizeof(conncount_rnd));
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
ret = nf_ct_netns_get(net, family);
if (ret < 0) {
kfree(data);
return ERR_PTR(ret);
}
for (i = 0; i < ARRAY_SIZE(data->root); ++i)
data->root[i] = RB_ROOT;
data->keylen = keylen / sizeof(u32);
return data;
}
EXPORT_SYMBOL_GPL(nf_conncount_init);
void nf_conncount_cache_free(struct hlist_head *hhead)
{
struct nf_conncount_tuple *conn;
struct hlist_node *n;
hlist_for_each_entry_safe(conn, n, hhead, node)
kmem_cache_free(conncount_conn_cachep, conn);
}
EXPORT_SYMBOL_GPL(nf_conncount_cache_free);
static void destroy_tree(struct rb_root *r)
{
struct nf_conncount_rb *rbconn;
struct rb_node *node;
while ((node = rb_first(r)) != NULL) {
rbconn = rb_entry(node, struct nf_conncount_rb, node);
rb_erase(node, r);
nf_conncount_cache_free(&rbconn->hhead);
kmem_cache_free(conncount_rb_cachep, rbconn);
}
}
void nf_conncount_destroy(struct net *net, unsigned int family,
struct nf_conncount_data *data)
{
unsigned int i;
nf_ct_netns_put(net, family);
for (i = 0; i < ARRAY_SIZE(data->root); ++i)
destroy_tree(&data->root[i]);
kfree(data);
}
EXPORT_SYMBOL_GPL(nf_conncount_destroy);
static int __init nf_conncount_modinit(void)
{
int i;
BUILD_BUG_ON(CONNCOUNT_LOCK_SLOTS > CONNCOUNT_SLOTS);
BUILD_BUG_ON((CONNCOUNT_SLOTS % CONNCOUNT_LOCK_SLOTS) != 0);
for (i = 0; i < CONNCOUNT_LOCK_SLOTS; ++i)
spin_lock_init(&nf_conncount_locks[i]);
conncount_conn_cachep = kmem_cache_create("nf_conncount_tuple",
sizeof(struct nf_conncount_tuple),
0, 0, NULL);
if (!conncount_conn_cachep)
return -ENOMEM;
conncount_rb_cachep = kmem_cache_create("nf_conncount_rb",
sizeof(struct nf_conncount_rb),
0, 0, NULL);
if (!conncount_rb_cachep) {
kmem_cache_destroy(conncount_conn_cachep);
return -ENOMEM;
}
return 0;
}
static void __exit nf_conncount_modexit(void)
{
kmem_cache_destroy(conncount_conn_cachep);
kmem_cache_destroy(conncount_rb_cachep);
}
module_init(nf_conncount_modinit);
module_exit(nf_conncount_modexit);
MODULE_AUTHOR("Jan Engelhardt <jengelh@medozas.de>");
MODULE_AUTHOR("Florian Westphal <fw@strlen.de>");
MODULE_DESCRIPTION("netfilter: count number of connections matching a key");
MODULE_LICENSE("GPL");