linux-stable/drivers/clk/tegra/clk-tegra124-dfll-fcpu.c
Joseph Lo b3cf8d0695 clk: tegra: dfll: CVB calculation alignment with the regulator
The CVB table contains calibration data for the CPU DFLL based on
process characterization. The regulator step and offset parameters depend
on the regulator supplying vdd-cpu, not on the specific Tegra SKU.

When using a PWM controlled regulator, the voltage step and offset are
determined by the regulator type in use. This is specified in DT. When
using an I2C controlled regulator, we can retrieve them from CPU regulator
Then pass this information to the CVB table calculation function.

Based on the work done of "Peter De Schrijver <pdeschrijver@nvidia.com>"
and "Alex Frid <afrid@nvidia.com>".

Signed-off-by: Joseph Lo <josephl@nvidia.com>
Acked-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Thierry Reding <treding@nvidia.com>
2019-02-06 14:28:41 +01:00

226 lines
6.2 KiB
C

/*
* Tegra124 DFLL FCPU clock source driver
*
* Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
*
* Aleksandr Frid <afrid@nvidia.com>
* Paul Walmsley <pwalmsley@nvidia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <soc/tegra/fuse.h>
#include "clk.h"
#include "clk-dfll.h"
#include "cvb.h"
struct dfll_fcpu_data {
const unsigned long *cpu_max_freq_table;
unsigned int cpu_max_freq_table_size;
const struct cvb_table *cpu_cvb_tables;
unsigned int cpu_cvb_tables_size;
};
/* Maximum CPU frequency, indexed by CPU speedo id */
static const unsigned long tegra124_cpu_max_freq_table[] = {
[0] = 2014500000UL,
[1] = 2320500000UL,
[2] = 2116500000UL,
[3] = 2524500000UL,
};
static const struct cvb_table tegra124_cpu_cvb_tables[] = {
{
.speedo_id = -1,
.process_id = -1,
.min_millivolts = 900,
.max_millivolts = 1260,
.speedo_scale = 100,
.voltage_scale = 1000,
.entries = {
{ 204000000UL, { 1112619, -29295, 402 } },
{ 306000000UL, { 1150460, -30585, 402 } },
{ 408000000UL, { 1190122, -31865, 402 } },
{ 510000000UL, { 1231606, -33155, 402 } },
{ 612000000UL, { 1274912, -34435, 402 } },
{ 714000000UL, { 1320040, -35725, 402 } },
{ 816000000UL, { 1366990, -37005, 402 } },
{ 918000000UL, { 1415762, -38295, 402 } },
{ 1020000000UL, { 1466355, -39575, 402 } },
{ 1122000000UL, { 1518771, -40865, 402 } },
{ 1224000000UL, { 1573009, -42145, 402 } },
{ 1326000000UL, { 1629068, -43435, 402 } },
{ 1428000000UL, { 1686950, -44715, 402 } },
{ 1530000000UL, { 1746653, -46005, 402 } },
{ 1632000000UL, { 1808179, -47285, 402 } },
{ 1734000000UL, { 1871526, -48575, 402 } },
{ 1836000000UL, { 1936696, -49855, 402 } },
{ 1938000000UL, { 2003687, -51145, 402 } },
{ 2014500000UL, { 2054787, -52095, 402 } },
{ 2116500000UL, { 2124957, -53385, 402 } },
{ 2218500000UL, { 2196950, -54665, 402 } },
{ 2320500000UL, { 2270765, -55955, 402 } },
{ 2422500000UL, { 2346401, -57235, 402 } },
{ 2524500000UL, { 2437299, -58535, 402 } },
{ 0UL, { 0, 0, 0 } },
},
.cpu_dfll_data = {
.tune0_low = 0x005020ff,
.tune0_high = 0x005040ff,
.tune1 = 0x00000060,
}
},
};
static const struct dfll_fcpu_data tegra124_dfll_fcpu_data = {
.cpu_max_freq_table = tegra124_cpu_max_freq_table,
.cpu_max_freq_table_size = ARRAY_SIZE(tegra124_cpu_max_freq_table),
.cpu_cvb_tables = tegra124_cpu_cvb_tables,
.cpu_cvb_tables_size = ARRAY_SIZE(tegra124_cpu_cvb_tables)
};
static const struct of_device_id tegra124_dfll_fcpu_of_match[] = {
{
.compatible = "nvidia,tegra124-dfll",
.data = &tegra124_dfll_fcpu_data,
},
{ },
};
static void get_alignment_from_dt(struct device *dev,
struct rail_alignment *align)
{
if (of_property_read_u32(dev->of_node,
"nvidia,pwm-voltage-step-microvolts",
&align->step_uv))
align->step_uv = 0;
if (of_property_read_u32(dev->of_node,
"nvidia,pwm-min-microvolts",
&align->offset_uv))
align->offset_uv = 0;
}
static int get_alignment_from_regulator(struct device *dev,
struct rail_alignment *align)
{
struct regulator *reg = devm_regulator_get(dev, "vdd-cpu");
if (IS_ERR(reg))
return PTR_ERR(reg);
align->offset_uv = regulator_list_voltage(reg, 0);
align->step_uv = regulator_get_linear_step(reg);
devm_regulator_put(reg);
return 0;
}
static int tegra124_dfll_fcpu_probe(struct platform_device *pdev)
{
int process_id, speedo_id, speedo_value, err;
struct tegra_dfll_soc_data *soc;
const struct dfll_fcpu_data *fcpu_data;
struct rail_alignment align;
fcpu_data = of_device_get_match_data(&pdev->dev);
if (!fcpu_data)
return -ENODEV;
process_id = tegra_sku_info.cpu_process_id;
speedo_id = tegra_sku_info.cpu_speedo_id;
speedo_value = tegra_sku_info.cpu_speedo_value;
if (speedo_id >= fcpu_data->cpu_max_freq_table_size) {
dev_err(&pdev->dev, "unknown max CPU freq for speedo_id=%d\n",
speedo_id);
return -ENODEV;
}
soc = devm_kzalloc(&pdev->dev, sizeof(*soc), GFP_KERNEL);
if (!soc)
return -ENOMEM;
soc->dev = get_cpu_device(0);
if (!soc->dev) {
dev_err(&pdev->dev, "no CPU0 device\n");
return -ENODEV;
}
if (of_property_read_bool(pdev->dev.of_node, "nvidia,pwm-to-pmic")) {
get_alignment_from_dt(&pdev->dev, &align);
} else {
err = get_alignment_from_regulator(&pdev->dev, &align);
if (err)
return err;
}
soc->max_freq = fcpu_data->cpu_max_freq_table[speedo_id];
soc->cvb = tegra_cvb_add_opp_table(soc->dev, fcpu_data->cpu_cvb_tables,
fcpu_data->cpu_cvb_tables_size,
&align, process_id, speedo_id,
speedo_value, soc->max_freq);
soc->alignment = align;
if (IS_ERR(soc->cvb)) {
dev_err(&pdev->dev, "couldn't add OPP table: %ld\n",
PTR_ERR(soc->cvb));
return PTR_ERR(soc->cvb);
}
err = tegra_dfll_register(pdev, soc);
if (err < 0) {
tegra_cvb_remove_opp_table(soc->dev, soc->cvb, soc->max_freq);
return err;
}
return 0;
}
static int tegra124_dfll_fcpu_remove(struct platform_device *pdev)
{
struct tegra_dfll_soc_data *soc;
soc = tegra_dfll_unregister(pdev);
if (IS_ERR(soc))
dev_err(&pdev->dev, "failed to unregister DFLL: %ld\n",
PTR_ERR(soc));
tegra_cvb_remove_opp_table(soc->dev, soc->cvb, soc->max_freq);
return 0;
}
static const struct dev_pm_ops tegra124_dfll_pm_ops = {
SET_RUNTIME_PM_OPS(tegra_dfll_runtime_suspend,
tegra_dfll_runtime_resume, NULL)
};
static struct platform_driver tegra124_dfll_fcpu_driver = {
.probe = tegra124_dfll_fcpu_probe,
.remove = tegra124_dfll_fcpu_remove,
.driver = {
.name = "tegra124-dfll",
.of_match_table = tegra124_dfll_fcpu_of_match,
.pm = &tegra124_dfll_pm_ops,
},
};
builtin_platform_driver(tegra124_dfll_fcpu_driver);