mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-30 08:02:30 +00:00
c3c7011969
add the schedstat_set() API, to allow the reduction of CONFIG_SCHEDSTAT related #ifdefs. No code changed. Signed-off-by: Ingo Molnar <mingo@elte.hu>
237 lines
7.1 KiB
C
237 lines
7.1 KiB
C
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/*
|
|
* bump this up when changing the output format or the meaning of an existing
|
|
* format, so that tools can adapt (or abort)
|
|
*/
|
|
#define SCHEDSTAT_VERSION 14
|
|
|
|
static int show_schedstat(struct seq_file *seq, void *v)
|
|
{
|
|
int cpu;
|
|
|
|
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
|
seq_printf(seq, "timestamp %lu\n", jiffies);
|
|
for_each_online_cpu(cpu) {
|
|
struct rq *rq = cpu_rq(cpu);
|
|
#ifdef CONFIG_SMP
|
|
struct sched_domain *sd;
|
|
int dcnt = 0;
|
|
#endif
|
|
|
|
/* runqueue-specific stats */
|
|
seq_printf(seq,
|
|
"cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %llu %llu %lu",
|
|
cpu, rq->yld_both_empty,
|
|
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
|
|
rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
|
|
rq->ttwu_cnt, rq->ttwu_local,
|
|
rq->rq_sched_info.cpu_time,
|
|
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
|
|
|
|
seq_printf(seq, "\n");
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* domain-specific stats */
|
|
preempt_disable();
|
|
for_each_domain(cpu, sd) {
|
|
enum cpu_idle_type itype;
|
|
char mask_str[NR_CPUS];
|
|
|
|
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
|
|
seq_printf(seq, "domain%d %s", dcnt++, mask_str);
|
|
for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
|
|
itype++) {
|
|
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
|
|
"%lu",
|
|
sd->lb_cnt[itype],
|
|
sd->lb_balanced[itype],
|
|
sd->lb_failed[itype],
|
|
sd->lb_imbalance[itype],
|
|
sd->lb_gained[itype],
|
|
sd->lb_hot_gained[itype],
|
|
sd->lb_nobusyq[itype],
|
|
sd->lb_nobusyg[itype]);
|
|
}
|
|
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
|
|
" %lu %lu %lu\n",
|
|
sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
|
|
sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
|
|
sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
|
|
sd->ttwu_wake_remote, sd->ttwu_move_affine,
|
|
sd->ttwu_move_balance);
|
|
}
|
|
preempt_enable();
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int schedstat_open(struct inode *inode, struct file *file)
|
|
{
|
|
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
|
char *buf = kmalloc(size, GFP_KERNEL);
|
|
struct seq_file *m;
|
|
int res;
|
|
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
res = single_open(file, show_schedstat, NULL);
|
|
if (!res) {
|
|
m = file->private_data;
|
|
m->buf = buf;
|
|
m->size = size;
|
|
} else
|
|
kfree(buf);
|
|
return res;
|
|
}
|
|
|
|
const struct file_operations proc_schedstat_operations = {
|
|
.open = schedstat_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq) {
|
|
rq->rq_sched_info.run_delay += delta;
|
|
rq->rq_sched_info.pcnt++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Expects runqueue lock to be held for atomicity of update
|
|
*/
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{
|
|
if (rq)
|
|
rq->rq_sched_info.cpu_time += delta;
|
|
}
|
|
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
|
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
|
# define schedstat_set(var, val) do { var = (val); } while (0)
|
|
#else /* !CONFIG_SCHEDSTATS */
|
|
static inline void
|
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
|
{}
|
|
static inline void
|
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
|
{}
|
|
# define schedstat_inc(rq, field) do { } while (0)
|
|
# define schedstat_add(rq, field, amt) do { } while (0)
|
|
# define schedstat_set(var, val) do { } while (0)
|
|
#endif
|
|
|
|
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
|
/*
|
|
* Called when a process is dequeued from the active array and given
|
|
* the cpu. We should note that with the exception of interactive
|
|
* tasks, the expired queue will become the active queue after the active
|
|
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
|
* expired queue. (Interactive tasks may be requeued directly to the
|
|
* active queue, thus delaying tasks in the expired queue from running;
|
|
* see scheduler_tick()).
|
|
*
|
|
* This function is only called from sched_info_arrive(), rather than
|
|
* dequeue_task(). Even though a task may be queued and dequeued multiple
|
|
* times as it is shuffled about, we're really interested in knowing how
|
|
* long it was from the *first* time it was queued to the time that it
|
|
* finally hit a cpu.
|
|
*/
|
|
static inline void sched_info_dequeued(struct task_struct *t)
|
|
{
|
|
t->sched_info.last_queued = 0;
|
|
}
|
|
|
|
/*
|
|
* Called when a task finally hits the cpu. We can now calculate how
|
|
* long it was waiting to run. We also note when it began so that we
|
|
* can keep stats on how long its timeslice is.
|
|
*/
|
|
static void sched_info_arrive(struct task_struct *t)
|
|
{
|
|
unsigned long long now = sched_clock(), delta = 0;
|
|
|
|
if (t->sched_info.last_queued)
|
|
delta = now - t->sched_info.last_queued;
|
|
sched_info_dequeued(t);
|
|
t->sched_info.run_delay += delta;
|
|
t->sched_info.last_arrival = now;
|
|
t->sched_info.pcnt++;
|
|
|
|
rq_sched_info_arrive(task_rq(t), delta);
|
|
}
|
|
|
|
/*
|
|
* Called when a process is queued into either the active or expired
|
|
* array. The time is noted and later used to determine how long we
|
|
* had to wait for us to reach the cpu. Since the expired queue will
|
|
* become the active queue after active queue is empty, without dequeuing
|
|
* and requeuing any tasks, we are interested in queuing to either. It
|
|
* is unusual but not impossible for tasks to be dequeued and immediately
|
|
* requeued in the same or another array: this can happen in sched_yield(),
|
|
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
|
* to runqueue.
|
|
*
|
|
* This function is only called from enqueue_task(), but also only updates
|
|
* the timestamp if it is already not set. It's assumed that
|
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
|
*/
|
|
static inline void sched_info_queued(struct task_struct *t)
|
|
{
|
|
if (unlikely(sched_info_on()))
|
|
if (!t->sched_info.last_queued)
|
|
t->sched_info.last_queued = sched_clock();
|
|
}
|
|
|
|
/*
|
|
* Called when a process ceases being the active-running process, either
|
|
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
|
*/
|
|
static inline void sched_info_depart(struct task_struct *t)
|
|
{
|
|
unsigned long long delta = sched_clock() - t->sched_info.last_arrival;
|
|
|
|
t->sched_info.cpu_time += delta;
|
|
rq_sched_info_depart(task_rq(t), delta);
|
|
}
|
|
|
|
/*
|
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
|
* their time slice. (This may also be called when switching to or from
|
|
* the idle task.) We are only called when prev != next.
|
|
*/
|
|
static inline void
|
|
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
struct rq *rq = task_rq(prev);
|
|
|
|
/*
|
|
* prev now departs the cpu. It's not interesting to record
|
|
* stats about how efficient we were at scheduling the idle
|
|
* process, however.
|
|
*/
|
|
if (prev != rq->idle)
|
|
sched_info_depart(prev);
|
|
|
|
if (next != rq->idle)
|
|
sched_info_arrive(next);
|
|
}
|
|
static inline void
|
|
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
if (unlikely(sched_info_on()))
|
|
__sched_info_switch(prev, next);
|
|
}
|
|
#else
|
|
#define sched_info_queued(t) do { } while (0)
|
|
#define sched_info_switch(t, next) do { } while (0)
|
|
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
|
|