linux-stable/drivers/block/skd_main.c
Jens Axboe b4f42e2831 block: remove struct request buffer member
This was used in the olden days, back when onions were proper
yellow. Basically it mapped to the current buffer to be
transferred. With highmem being added more than a decade ago,
most drivers map pages out of a bio, and rq->buffer isn't
pointing at anything valid.

Convert old style drivers to just use bio_data().

For the discard payload use case, just reference the page
in the bio.

Signed-off-by: Jens Axboe <axboe@fb.com>
2014-04-15 14:03:02 -06:00

5418 lines
138 KiB
C

/* Copyright 2012 STEC, Inc.
*
* This file is licensed under the terms of the 3-clause
* BSD License (http://opensource.org/licenses/BSD-3-Clause)
* or the GNU GPL-2.0 (http://www.gnu.org/licenses/gpl-2.0.html),
* at your option. Both licenses are also available in the LICENSE file
* distributed with this project. This file may not be copied, modified,
* or distributed except in accordance with those terms.
* Gordoni Waidhofer <gwaidhofer@stec-inc.com>
* Initial Driver Design!
* Thomas Swann <tswann@stec-inc.com>
* Interrupt handling.
* Ramprasad Chinthekindi <rchinthekindi@stec-inc.com>
* biomode implementation.
* Akhil Bhansali <abhansali@stec-inc.com>
* Added support for DISCARD / FLUSH and FUA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/blkdev.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/compiler.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/time.h>
#include <linux/hdreg.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/scatterlist.h>
#include <linux/version.h>
#include <linux/err.h>
#include <linux/scatterlist.h>
#include <linux/aer.h>
#include <linux/ctype.h>
#include <linux/wait.h>
#include <linux/uio.h>
#include <scsi/scsi.h>
#include <scsi/sg.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include "skd_s1120.h"
static int skd_dbg_level;
static int skd_isr_comp_limit = 4;
enum {
STEC_LINK_2_5GTS = 0,
STEC_LINK_5GTS = 1,
STEC_LINK_8GTS = 2,
STEC_LINK_UNKNOWN = 0xFF
};
enum {
SKD_FLUSH_INITIALIZER,
SKD_FLUSH_ZERO_SIZE_FIRST,
SKD_FLUSH_DATA_SECOND,
};
#define SKD_ASSERT(expr) \
do { \
if (unlikely(!(expr))) { \
pr_err("Assertion failed! %s,%s,%s,line=%d\n", \
# expr, __FILE__, __func__, __LINE__); \
} \
} while (0)
#define DRV_NAME "skd"
#define DRV_VERSION "2.2.1"
#define DRV_BUILD_ID "0260"
#define PFX DRV_NAME ": "
#define DRV_BIN_VERSION 0x100
#define DRV_VER_COMPL "2.2.1." DRV_BUILD_ID
MODULE_AUTHOR("bug-reports: support@stec-inc.com");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver (b" DRV_BUILD_ID ")");
MODULE_VERSION(DRV_VERSION "-" DRV_BUILD_ID);
#define PCI_VENDOR_ID_STEC 0x1B39
#define PCI_DEVICE_ID_S1120 0x0001
#define SKD_FUA_NV (1 << 1)
#define SKD_MINORS_PER_DEVICE 16
#define SKD_MAX_QUEUE_DEPTH 200u
#define SKD_PAUSE_TIMEOUT (5 * 1000)
#define SKD_N_FITMSG_BYTES (512u)
#define SKD_N_SPECIAL_CONTEXT 32u
#define SKD_N_SPECIAL_FITMSG_BYTES (128u)
/* SG elements are 32 bytes, so we can make this 4096 and still be under the
* 128KB limit. That allows 4096*4K = 16M xfer size
*/
#define SKD_N_SG_PER_REQ_DEFAULT 256u
#define SKD_N_SG_PER_SPECIAL 256u
#define SKD_N_COMPLETION_ENTRY 256u
#define SKD_N_READ_CAP_BYTES (8u)
#define SKD_N_INTERNAL_BYTES (512u)
/* 5 bits of uniqifier, 0xF800 */
#define SKD_ID_INCR (0x400)
#define SKD_ID_TABLE_MASK (3u << 8u)
#define SKD_ID_RW_REQUEST (0u << 8u)
#define SKD_ID_INTERNAL (1u << 8u)
#define SKD_ID_SPECIAL_REQUEST (2u << 8u)
#define SKD_ID_FIT_MSG (3u << 8u)
#define SKD_ID_SLOT_MASK 0x00FFu
#define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
#define SKD_N_TIMEOUT_SLOT 4u
#define SKD_TIMEOUT_SLOT_MASK 3u
#define SKD_N_MAX_SECTORS 2048u
#define SKD_MAX_RETRIES 2u
#define SKD_TIMER_SECONDS(seconds) (seconds)
#define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
#define INQ_STD_NBYTES 36
#define SKD_DISCARD_CDB_LENGTH 24
enum skd_drvr_state {
SKD_DRVR_STATE_LOAD,
SKD_DRVR_STATE_IDLE,
SKD_DRVR_STATE_BUSY,
SKD_DRVR_STATE_STARTING,
SKD_DRVR_STATE_ONLINE,
SKD_DRVR_STATE_PAUSING,
SKD_DRVR_STATE_PAUSED,
SKD_DRVR_STATE_DRAINING_TIMEOUT,
SKD_DRVR_STATE_RESTARTING,
SKD_DRVR_STATE_RESUMING,
SKD_DRVR_STATE_STOPPING,
SKD_DRVR_STATE_FAULT,
SKD_DRVR_STATE_DISAPPEARED,
SKD_DRVR_STATE_PROTOCOL_MISMATCH,
SKD_DRVR_STATE_BUSY_ERASE,
SKD_DRVR_STATE_BUSY_SANITIZE,
SKD_DRVR_STATE_BUSY_IMMINENT,
SKD_DRVR_STATE_WAIT_BOOT,
SKD_DRVR_STATE_SYNCING,
};
#define SKD_WAIT_BOOT_TIMO SKD_TIMER_SECONDS(90u)
#define SKD_STARTING_TIMO SKD_TIMER_SECONDS(8u)
#define SKD_RESTARTING_TIMO SKD_TIMER_MINUTES(4u)
#define SKD_DRAINING_TIMO SKD_TIMER_SECONDS(6u)
#define SKD_BUSY_TIMO SKD_TIMER_MINUTES(20u)
#define SKD_STARTED_BUSY_TIMO SKD_TIMER_SECONDS(60u)
#define SKD_START_WAIT_SECONDS 90u
enum skd_req_state {
SKD_REQ_STATE_IDLE,
SKD_REQ_STATE_SETUP,
SKD_REQ_STATE_BUSY,
SKD_REQ_STATE_COMPLETED,
SKD_REQ_STATE_TIMEOUT,
SKD_REQ_STATE_ABORTED,
};
enum skd_fit_msg_state {
SKD_MSG_STATE_IDLE,
SKD_MSG_STATE_BUSY,
};
enum skd_check_status_action {
SKD_CHECK_STATUS_REPORT_GOOD,
SKD_CHECK_STATUS_REPORT_SMART_ALERT,
SKD_CHECK_STATUS_REQUEUE_REQUEST,
SKD_CHECK_STATUS_REPORT_ERROR,
SKD_CHECK_STATUS_BUSY_IMMINENT,
};
struct skd_fitmsg_context {
enum skd_fit_msg_state state;
struct skd_fitmsg_context *next;
u32 id;
u16 outstanding;
u32 length;
u32 offset;
u8 *msg_buf;
dma_addr_t mb_dma_address;
};
struct skd_request_context {
enum skd_req_state state;
struct skd_request_context *next;
u16 id;
u32 fitmsg_id;
struct request *req;
u8 flush_cmd;
u8 discard_page;
u32 timeout_stamp;
u8 sg_data_dir;
struct scatterlist *sg;
u32 n_sg;
u32 sg_byte_count;
struct fit_sg_descriptor *sksg_list;
dma_addr_t sksg_dma_address;
struct fit_completion_entry_v1 completion;
struct fit_comp_error_info err_info;
};
#define SKD_DATA_DIR_HOST_TO_CARD 1
#define SKD_DATA_DIR_CARD_TO_HOST 2
#define SKD_DATA_DIR_NONE 3 /* especially for DISCARD requests. */
struct skd_special_context {
struct skd_request_context req;
u8 orphaned;
void *data_buf;
dma_addr_t db_dma_address;
u8 *msg_buf;
dma_addr_t mb_dma_address;
};
struct skd_sg_io {
fmode_t mode;
void __user *argp;
struct sg_io_hdr sg;
u8 cdb[16];
u32 dxfer_len;
u32 iovcnt;
struct sg_iovec *iov;
struct sg_iovec no_iov_iov;
struct skd_special_context *skspcl;
};
typedef enum skd_irq_type {
SKD_IRQ_LEGACY,
SKD_IRQ_MSI,
SKD_IRQ_MSIX
} skd_irq_type_t;
#define SKD_MAX_BARS 2
struct skd_device {
volatile void __iomem *mem_map[SKD_MAX_BARS];
resource_size_t mem_phys[SKD_MAX_BARS];
u32 mem_size[SKD_MAX_BARS];
skd_irq_type_t irq_type;
u32 msix_count;
struct skd_msix_entry *msix_entries;
struct pci_dev *pdev;
int pcie_error_reporting_is_enabled;
spinlock_t lock;
struct gendisk *disk;
struct request_queue *queue;
struct device *class_dev;
int gendisk_on;
int sync_done;
atomic_t device_count;
u32 devno;
u32 major;
char name[32];
char isr_name[30];
enum skd_drvr_state state;
u32 drive_state;
u32 in_flight;
u32 cur_max_queue_depth;
u32 queue_low_water_mark;
u32 dev_max_queue_depth;
u32 num_fitmsg_context;
u32 num_req_context;
u32 timeout_slot[SKD_N_TIMEOUT_SLOT];
u32 timeout_stamp;
struct skd_fitmsg_context *skmsg_free_list;
struct skd_fitmsg_context *skmsg_table;
struct skd_request_context *skreq_free_list;
struct skd_request_context *skreq_table;
struct skd_special_context *skspcl_free_list;
struct skd_special_context *skspcl_table;
struct skd_special_context internal_skspcl;
u32 read_cap_blocksize;
u32 read_cap_last_lba;
int read_cap_is_valid;
int inquiry_is_valid;
u8 inq_serial_num[13]; /*12 chars plus null term */
u8 id_str[80]; /* holds a composite name (pci + sernum) */
u8 skcomp_cycle;
u32 skcomp_ix;
struct fit_completion_entry_v1 *skcomp_table;
struct fit_comp_error_info *skerr_table;
dma_addr_t cq_dma_address;
wait_queue_head_t waitq;
struct timer_list timer;
u32 timer_countdown;
u32 timer_substate;
int n_special;
int sgs_per_request;
u32 last_mtd;
u32 proto_ver;
int dbg_level;
u32 connect_time_stamp;
int connect_retries;
#define SKD_MAX_CONNECT_RETRIES 16
u32 drive_jiffies;
u32 timo_slot;
struct work_struct completion_worker;
};
#define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
#define SKD_READL(DEV, OFF) skd_reg_read32(DEV, OFF)
#define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
{
u32 val;
if (likely(skdev->dbg_level < 2))
return readl(skdev->mem_map[1] + offset);
else {
barrier();
val = readl(skdev->mem_map[1] + offset);
barrier();
pr_debug("%s:%s:%d offset %x = %x\n",
skdev->name, __func__, __LINE__, offset, val);
return val;
}
}
static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
u32 offset)
{
if (likely(skdev->dbg_level < 2)) {
writel(val, skdev->mem_map[1] + offset);
barrier();
} else {
barrier();
writel(val, skdev->mem_map[1] + offset);
barrier();
pr_debug("%s:%s:%d offset %x = %x\n",
skdev->name, __func__, __LINE__, offset, val);
}
}
static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
u32 offset)
{
if (likely(skdev->dbg_level < 2)) {
writeq(val, skdev->mem_map[1] + offset);
barrier();
} else {
barrier();
writeq(val, skdev->mem_map[1] + offset);
barrier();
pr_debug("%s:%s:%d offset %x = %016llx\n",
skdev->name, __func__, __LINE__, offset, val);
}
}
#define SKD_IRQ_DEFAULT SKD_IRQ_MSI
static int skd_isr_type = SKD_IRQ_DEFAULT;
module_param(skd_isr_type, int, 0444);
MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
" (0==legacy, 1==MSI, 2==MSI-X, default==1)");
#define SKD_MAX_REQ_PER_MSG_DEFAULT 1
static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
module_param(skd_max_req_per_msg, int, 0444);
MODULE_PARM_DESC(skd_max_req_per_msg,
"Maximum SCSI requests packed in a single message."
" (1-14, default==1)");
#define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
#define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
module_param(skd_max_queue_depth, int, 0444);
MODULE_PARM_DESC(skd_max_queue_depth,
"Maximum SCSI requests issued to s1120."
" (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
module_param(skd_sgs_per_request, int, 0444);
MODULE_PARM_DESC(skd_sgs_per_request,
"Maximum SG elements per block request."
" (1-4096, default==256)");
static int skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
module_param(skd_max_pass_thru, int, 0444);
MODULE_PARM_DESC(skd_max_pass_thru,
"Maximum SCSI pass-thru at a time." " (1-50, default==32)");
module_param(skd_dbg_level, int, 0444);
MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
module_param(skd_isr_comp_limit, int, 0444);
MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
/* Major device number dynamically assigned. */
static u32 skd_major;
static void skd_destruct(struct skd_device *skdev);
static const struct block_device_operations skd_blockdev_ops;
static void skd_send_fitmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg);
static void skd_send_special_fitmsg(struct skd_device *skdev,
struct skd_special_context *skspcl);
static void skd_request_fn(struct request_queue *rq);
static void skd_end_request(struct skd_device *skdev,
struct skd_request_context *skreq, int error);
static int skd_preop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq);
static void skd_postop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq);
static void skd_restart_device(struct skd_device *skdev);
static int skd_quiesce_dev(struct skd_device *skdev);
static int skd_unquiesce_dev(struct skd_device *skdev);
static void skd_release_special(struct skd_device *skdev,
struct skd_special_context *skspcl);
static void skd_disable_interrupts(struct skd_device *skdev);
static void skd_isr_fwstate(struct skd_device *skdev);
static void skd_recover_requests(struct skd_device *skdev, int requeue);
static void skd_soft_reset(struct skd_device *skdev);
static const char *skd_name(struct skd_device *skdev);
const char *skd_drive_state_to_str(int state);
const char *skd_skdev_state_to_str(enum skd_drvr_state state);
static void skd_log_skdev(struct skd_device *skdev, const char *event);
static void skd_log_skmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg, const char *event);
static void skd_log_skreq(struct skd_device *skdev,
struct skd_request_context *skreq, const char *event);
/*
*****************************************************************************
* READ/WRITE REQUESTS
*****************************************************************************
*/
static void skd_fail_all_pending(struct skd_device *skdev)
{
struct request_queue *q = skdev->queue;
struct request *req;
for (;; ) {
req = blk_peek_request(q);
if (req == NULL)
break;
blk_start_request(req);
__blk_end_request_all(req, -EIO);
}
}
static void
skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
int data_dir, unsigned lba,
unsigned count)
{
if (data_dir == READ)
scsi_req->cdb[0] = 0x28;
else
scsi_req->cdb[0] = 0x2a;
scsi_req->cdb[1] = 0;
scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
scsi_req->cdb[4] = (lba & 0xff00) >> 8;
scsi_req->cdb[5] = (lba & 0xff);
scsi_req->cdb[6] = 0;
scsi_req->cdb[7] = (count & 0xff00) >> 8;
scsi_req->cdb[8] = count & 0xff;
scsi_req->cdb[9] = 0;
}
static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
struct skd_request_context *skreq)
{
skreq->flush_cmd = 1;
scsi_req->cdb[0] = 0x35;
scsi_req->cdb[1] = 0;
scsi_req->cdb[2] = 0;
scsi_req->cdb[3] = 0;
scsi_req->cdb[4] = 0;
scsi_req->cdb[5] = 0;
scsi_req->cdb[6] = 0;
scsi_req->cdb[7] = 0;
scsi_req->cdb[8] = 0;
scsi_req->cdb[9] = 0;
}
static void
skd_prep_discard_cdb(struct skd_scsi_request *scsi_req,
struct skd_request_context *skreq,
struct page *page,
u32 lba, u32 count)
{
char *buf;
unsigned long len;
struct request *req;
buf = page_address(page);
len = SKD_DISCARD_CDB_LENGTH;
scsi_req->cdb[0] = UNMAP;
scsi_req->cdb[8] = len;
put_unaligned_be16(6 + 16, &buf[0]);
put_unaligned_be16(16, &buf[2]);
put_unaligned_be64(lba, &buf[8]);
put_unaligned_be32(count, &buf[16]);
req = skreq->req;
blk_add_request_payload(req, page, len);
}
static void skd_request_fn_not_online(struct request_queue *q);
static void skd_request_fn(struct request_queue *q)
{
struct skd_device *skdev = q->queuedata;
struct skd_fitmsg_context *skmsg = NULL;
struct fit_msg_hdr *fmh = NULL;
struct skd_request_context *skreq;
struct request *req = NULL;
struct skd_scsi_request *scsi_req;
struct page *page;
unsigned long io_flags;
int error;
u32 lba;
u32 count;
int data_dir;
u32 be_lba;
u32 be_count;
u64 be_dmaa;
u64 cmdctxt;
u32 timo_slot;
void *cmd_ptr;
int flush, fua;
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
skd_request_fn_not_online(q);
return;
}
if (blk_queue_stopped(skdev->queue)) {
if (skdev->skmsg_free_list == NULL ||
skdev->skreq_free_list == NULL ||
skdev->in_flight >= skdev->queue_low_water_mark)
/* There is still some kind of shortage */
return;
queue_flag_clear(QUEUE_FLAG_STOPPED, skdev->queue);
}
/*
* Stop conditions:
* - There are no more native requests
* - There are already the maximum number of requests in progress
* - There are no more skd_request_context entries
* - There are no more FIT msg buffers
*/
for (;; ) {
flush = fua = 0;
req = blk_peek_request(q);
/* Are there any native requests to start? */
if (req == NULL)
break;
lba = (u32)blk_rq_pos(req);
count = blk_rq_sectors(req);
data_dir = rq_data_dir(req);
io_flags = req->cmd_flags;
if (io_flags & REQ_FLUSH)
flush++;
if (io_flags & REQ_FUA)
fua++;
pr_debug("%s:%s:%d new req=%p lba=%u(0x%x) "
"count=%u(0x%x) dir=%d\n",
skdev->name, __func__, __LINE__,
req, lba, lba, count, count, data_dir);
/* At this point we know there is a request */
/* Are too many requets already in progress? */
if (skdev->in_flight >= skdev->cur_max_queue_depth) {
pr_debug("%s:%s:%d qdepth %d, limit %d\n",
skdev->name, __func__, __LINE__,
skdev->in_flight, skdev->cur_max_queue_depth);
break;
}
/* Is a skd_request_context available? */
skreq = skdev->skreq_free_list;
if (skreq == NULL) {
pr_debug("%s:%s:%d Out of req=%p\n",
skdev->name, __func__, __LINE__, q);
break;
}
SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
SKD_ASSERT((skreq->id & SKD_ID_INCR) == 0);
/* Now we check to see if we can get a fit msg */
if (skmsg == NULL) {
if (skdev->skmsg_free_list == NULL) {
pr_debug("%s:%s:%d Out of msg\n",
skdev->name, __func__, __LINE__);
break;
}
}
skreq->flush_cmd = 0;
skreq->n_sg = 0;
skreq->sg_byte_count = 0;
skreq->discard_page = 0;
/*
* OK to now dequeue request from q.
*
* At this point we are comitted to either start or reject
* the native request. Note that skd_request_context is
* available but is still at the head of the free list.
*/
blk_start_request(req);
skreq->req = req;
skreq->fitmsg_id = 0;
/* Either a FIT msg is in progress or we have to start one. */
if (skmsg == NULL) {
/* Are there any FIT msg buffers available? */
skmsg = skdev->skmsg_free_list;
if (skmsg == NULL) {
pr_debug("%s:%s:%d Out of msg skdev=%p\n",
skdev->name, __func__, __LINE__,
skdev);
break;
}
SKD_ASSERT(skmsg->state == SKD_MSG_STATE_IDLE);
SKD_ASSERT((skmsg->id & SKD_ID_INCR) == 0);
skdev->skmsg_free_list = skmsg->next;
skmsg->state = SKD_MSG_STATE_BUSY;
skmsg->id += SKD_ID_INCR;
/* Initialize the FIT msg header */
fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
memset(fmh, 0, sizeof(*fmh));
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
skmsg->length = sizeof(*fmh);
}
skreq->fitmsg_id = skmsg->id;
/*
* Note that a FIT msg may have just been started
* but contains no SoFIT requests yet.
*/
/*
* Transcode the request, checking as we go. The outcome of
* the transcoding is represented by the error variable.
*/
cmd_ptr = &skmsg->msg_buf[skmsg->length];
memset(cmd_ptr, 0, 32);
be_lba = cpu_to_be32(lba);
be_count = cpu_to_be32(count);
be_dmaa = cpu_to_be64((u64)skreq->sksg_dma_address);
cmdctxt = skreq->id + SKD_ID_INCR;
scsi_req = cmd_ptr;
scsi_req->hdr.tag = cmdctxt;
scsi_req->hdr.sg_list_dma_address = be_dmaa;
if (data_dir == READ)
skreq->sg_data_dir = SKD_DATA_DIR_CARD_TO_HOST;
else
skreq->sg_data_dir = SKD_DATA_DIR_HOST_TO_CARD;
if (io_flags & REQ_DISCARD) {
page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
if (!page) {
pr_err("request_fn:Page allocation failed.\n");
skd_end_request(skdev, skreq, -ENOMEM);
break;
}
skreq->discard_page = 1;
skd_prep_discard_cdb(scsi_req, skreq, page, lba, count);
} else if (flush == SKD_FLUSH_ZERO_SIZE_FIRST) {
skd_prep_zerosize_flush_cdb(scsi_req, skreq);
SKD_ASSERT(skreq->flush_cmd == 1);
} else {
skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
}
if (fua)
scsi_req->cdb[1] |= SKD_FUA_NV;
if (!req->bio)
goto skip_sg;
error = skd_preop_sg_list(skdev, skreq);
if (error != 0) {
/*
* Complete the native request with error.
* Note that the request context is still at the
* head of the free list, and that the SoFIT request
* was encoded into the FIT msg buffer but the FIT
* msg length has not been updated. In short, the
* only resource that has been allocated but might
* not be used is that the FIT msg could be empty.
*/
pr_debug("%s:%s:%d error Out\n",
skdev->name, __func__, __LINE__);
skd_end_request(skdev, skreq, error);
continue;
}
skip_sg:
scsi_req->hdr.sg_list_len_bytes =
cpu_to_be32(skreq->sg_byte_count);
/* Complete resource allocations. */
skdev->skreq_free_list = skreq->next;
skreq->state = SKD_REQ_STATE_BUSY;
skreq->id += SKD_ID_INCR;
skmsg->length += sizeof(struct skd_scsi_request);
fmh->num_protocol_cmds_coalesced++;
/*
* Update the active request counts.
* Capture the timeout timestamp.
*/
skreq->timeout_stamp = skdev->timeout_stamp;
timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
skdev->timeout_slot[timo_slot]++;
skdev->in_flight++;
pr_debug("%s:%s:%d req=0x%x busy=%d\n",
skdev->name, __func__, __LINE__,
skreq->id, skdev->in_flight);
/*
* If the FIT msg buffer is full send it.
*/
if (skmsg->length >= SKD_N_FITMSG_BYTES ||
fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
skd_send_fitmsg(skdev, skmsg);
skmsg = NULL;
fmh = NULL;
}
}
/*
* Is a FIT msg in progress? If it is empty put the buffer back
* on the free list. If it is non-empty send what we got.
* This minimizes latency when there are fewer requests than
* what fits in a FIT msg.
*/
if (skmsg != NULL) {
/* Bigger than just a FIT msg header? */
if (skmsg->length > sizeof(struct fit_msg_hdr)) {
pr_debug("%s:%s:%d sending msg=%p, len %d\n",
skdev->name, __func__, __LINE__,
skmsg, skmsg->length);
skd_send_fitmsg(skdev, skmsg);
} else {
/*
* The FIT msg is empty. It means we got started
* on the msg, but the requests were rejected.
*/
skmsg->state = SKD_MSG_STATE_IDLE;
skmsg->id += SKD_ID_INCR;
skmsg->next = skdev->skmsg_free_list;
skdev->skmsg_free_list = skmsg;
}
skmsg = NULL;
fmh = NULL;
}
/*
* If req is non-NULL it means there is something to do but
* we are out of a resource.
*/
if (req)
blk_stop_queue(skdev->queue);
}
static void skd_end_request(struct skd_device *skdev,
struct skd_request_context *skreq, int error)
{
struct request *req = skreq->req;
unsigned int io_flags = req->cmd_flags;
if ((io_flags & REQ_DISCARD) &&
(skreq->discard_page == 1)) {
struct bio *bio = req->bio;
pr_debug("%s:%s:%d, free the page!",
skdev->name, __func__, __LINE__);
__free_page(bio->bi_io_vec->bv_page);
}
if (unlikely(error)) {
struct request *req = skreq->req;
char *cmd = (rq_data_dir(req) == READ) ? "read" : "write";
u32 lba = (u32)blk_rq_pos(req);
u32 count = blk_rq_sectors(req);
pr_err("(%s): Error cmd=%s sect=%u count=%u id=0x%x\n",
skd_name(skdev), cmd, lba, count, skreq->id);
} else
pr_debug("%s:%s:%d id=0x%x error=%d\n",
skdev->name, __func__, __LINE__, skreq->id, error);
__blk_end_request_all(skreq->req, error);
}
static int skd_preop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq)
{
struct request *req = skreq->req;
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
struct scatterlist *sg = &skreq->sg[0];
int n_sg;
int i;
skreq->sg_byte_count = 0;
/* SKD_ASSERT(skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD ||
skreq->sg_data_dir == SKD_DATA_DIR_CARD_TO_HOST); */
n_sg = blk_rq_map_sg(skdev->queue, req, sg);
if (n_sg <= 0)
return -EINVAL;
/*
* Map scatterlist to PCI bus addresses.
* Note PCI might change the number of entries.
*/
n_sg = pci_map_sg(skdev->pdev, sg, n_sg, pci_dir);
if (n_sg <= 0)
return -EINVAL;
SKD_ASSERT(n_sg <= skdev->sgs_per_request);
skreq->n_sg = n_sg;
for (i = 0; i < n_sg; i++) {
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
u32 cnt = sg_dma_len(&sg[i]);
uint64_t dma_addr = sg_dma_address(&sg[i]);
sgd->control = FIT_SGD_CONTROL_NOT_LAST;
sgd->byte_count = cnt;
skreq->sg_byte_count += cnt;
sgd->host_side_addr = dma_addr;
sgd->dev_side_addr = 0;
}
skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
if (unlikely(skdev->dbg_level > 1)) {
pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
skdev->name, __func__, __LINE__,
skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
for (i = 0; i < n_sg; i++) {
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
"addr=0x%llx next=0x%llx\n",
skdev->name, __func__, __LINE__,
i, sgd->byte_count, sgd->control,
sgd->host_side_addr, sgd->next_desc_ptr);
}
}
return 0;
}
static void skd_postop_sg_list(struct skd_device *skdev,
struct skd_request_context *skreq)
{
int writing = skreq->sg_data_dir == SKD_DATA_DIR_HOST_TO_CARD;
int pci_dir = writing ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE;
/*
* restore the next ptr for next IO request so we
* don't have to set it every time.
*/
skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
skreq->sksg_dma_address +
((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, pci_dir);
}
static void skd_request_fn_not_online(struct request_queue *q)
{
struct skd_device *skdev = q->queuedata;
int error;
SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
skd_log_skdev(skdev, "req_not_online");
switch (skdev->state) {
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_WAIT_BOOT:
/* In case of starting, we haven't started the queue,
* so we can't get here... but requests are
* possibly hanging out waiting for us because we
* reported the dev/skd0 already. They'll wait
* forever if connect doesn't complete.
* What to do??? delay dev/skd0 ??
*/
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
return;
case SKD_DRVR_STATE_BUSY_SANITIZE:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_DISAPPEARED:
default:
error = -EIO;
break;
}
/* If we get here, terminate all pending block requeusts
* with EIO and any scsi pass thru with appropriate sense
*/
skd_fail_all_pending(skdev);
}
/*
*****************************************************************************
* TIMER
*****************************************************************************
*/
static void skd_timer_tick_not_online(struct skd_device *skdev);
static void skd_timer_tick(ulong arg)
{
struct skd_device *skdev = (struct skd_device *)arg;
u32 timo_slot;
u32 overdue_timestamp;
unsigned long reqflags;
u32 state;
if (skdev->state == SKD_DRVR_STATE_FAULT)
/* The driver has declared fault, and we want it to
* stay that way until driver is reloaded.
*/
return;
spin_lock_irqsave(&skdev->lock, reqflags);
state = SKD_READL(skdev, FIT_STATUS);
state &= FIT_SR_DRIVE_STATE_MASK;
if (state != skdev->drive_state)
skd_isr_fwstate(skdev);
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
skd_timer_tick_not_online(skdev);
goto timer_func_out;
}
skdev->timeout_stamp++;
timo_slot = skdev->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
/*
* All requests that happened during the previous use of
* this slot should be done by now. The previous use was
* over 7 seconds ago.
*/
if (skdev->timeout_slot[timo_slot] == 0)
goto timer_func_out;
/* Something is overdue */
overdue_timestamp = skdev->timeout_stamp - SKD_N_TIMEOUT_SLOT;
pr_debug("%s:%s:%d found %d timeouts, draining busy=%d\n",
skdev->name, __func__, __LINE__,
skdev->timeout_slot[timo_slot], skdev->in_flight);
pr_err("(%s): Overdue IOs (%d), busy %d\n",
skd_name(skdev), skdev->timeout_slot[timo_slot],
skdev->in_flight);
skdev->timer_countdown = SKD_DRAINING_TIMO;
skdev->state = SKD_DRVR_STATE_DRAINING_TIMEOUT;
skdev->timo_slot = timo_slot;
blk_stop_queue(skdev->queue);
timer_func_out:
mod_timer(&skdev->timer, (jiffies + HZ));
spin_unlock_irqrestore(&skdev->lock, reqflags);
}
static void skd_timer_tick_not_online(struct skd_device *skdev)
{
switch (skdev->state) {
case SKD_DRVR_STATE_IDLE:
case SKD_DRVR_STATE_LOAD:
break;
case SKD_DRVR_STATE_BUSY_SANITIZE:
pr_debug("%s:%s:%d drive busy sanitize[%x], driver[%x]\n",
skdev->name, __func__, __LINE__,
skdev->drive_state, skdev->state);
/* If we've been in sanitize for 3 seconds, we figure we're not
* going to get anymore completions, so recover requests now
*/
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
skd_recover_requests(skdev, 0);
break;
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
pr_debug("%s:%s:%d busy[%x], countdown=%d\n",
skdev->name, __func__, __LINE__,
skdev->state, skdev->timer_countdown);
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
pr_debug("%s:%s:%d busy[%x], timedout=%d, restarting device.",
skdev->name, __func__, __LINE__,
skdev->state, skdev->timer_countdown);
skd_restart_device(skdev);
break;
case SKD_DRVR_STATE_WAIT_BOOT:
case SKD_DRVR_STATE_STARTING:
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
/* For now, we fault the drive. Could attempt resets to
* revcover at some point. */
skdev->state = SKD_DRVR_STATE_FAULT;
pr_err("(%s): DriveFault Connect Timeout (%x)\n",
skd_name(skdev), skdev->drive_state);
/*start the queue so we can respond with error to requests */
/* wakeup anyone waiting for startup complete */
blk_start_queue(skdev->queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_ONLINE:
/* shouldn't get here. */
break;
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
break;
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
pr_debug("%s:%s:%d "
"draining busy [%d] tick[%d] qdb[%d] tmls[%d]\n",
skdev->name, __func__, __LINE__,
skdev->timo_slot,
skdev->timer_countdown,
skdev->in_flight,
skdev->timeout_slot[skdev->timo_slot]);
/* if the slot has cleared we can let the I/O continue */
if (skdev->timeout_slot[skdev->timo_slot] == 0) {
pr_debug("%s:%s:%d Slot drained, starting queue.\n",
skdev->name, __func__, __LINE__);
skdev->state = SKD_DRVR_STATE_ONLINE;
blk_start_queue(skdev->queue);
return;
}
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
skd_restart_device(skdev);
break;
case SKD_DRVR_STATE_RESTARTING:
if (skdev->timer_countdown > 0) {
skdev->timer_countdown--;
return;
}
/* For now, we fault the drive. Could attempt resets to
* revcover at some point. */
skdev->state = SKD_DRVR_STATE_FAULT;
pr_err("(%s): DriveFault Reconnect Timeout (%x)\n",
skd_name(skdev), skdev->drive_state);
/*
* Recovering does two things:
* 1. completes IO with error
* 2. reclaims dma resources
* When is it safe to recover requests?
* - if the drive state is faulted
* - if the state is still soft reset after out timeout
* - if the drive registers are dead (state = FF)
* If it is "unsafe", we still need to recover, so we will
* disable pci bus mastering and disable our interrupts.
*/
if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
(skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
(skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
/* It never came out of soft reset. Try to
* recover the requests and then let them
* fail. This is to mitigate hung processes. */
skd_recover_requests(skdev, 0);
else {
pr_err("(%s): Disable BusMaster (%x)\n",
skd_name(skdev), skdev->drive_state);
pci_disable_device(skdev->pdev);
skd_disable_interrupts(skdev);
skd_recover_requests(skdev, 0);
}
/*start the queue so we can respond with error to requests */
/* wakeup anyone waiting for startup complete */
blk_start_queue(skdev->queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_RESUMING:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_DISAPPEARED:
default:
break;
}
}
static int skd_start_timer(struct skd_device *skdev)
{
int rc;
init_timer(&skdev->timer);
setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
rc = mod_timer(&skdev->timer, (jiffies + HZ));
if (rc)
pr_err("%s: failed to start timer %d\n",
__func__, rc);
return rc;
}
static void skd_kill_timer(struct skd_device *skdev)
{
del_timer_sync(&skdev->timer);
}
/*
*****************************************************************************
* IOCTL
*****************************************************************************
*/
static int skd_ioctl_sg_io(struct skd_device *skdev,
fmode_t mode, void __user *argp);
static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static int skd_sg_io_prep_buffering(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static int skd_sg_io_copy_buffer(struct skd_device *skdev,
struct skd_sg_io *sksgio, int dxfer_dir);
static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio);
static int skd_sg_io_release_skspcl(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static int skd_sg_io_put_status(struct skd_device *skdev,
struct skd_sg_io *sksgio);
static void skd_complete_special(struct skd_device *skdev,
volatile struct fit_completion_entry_v1
*skcomp,
volatile struct fit_comp_error_info *skerr,
struct skd_special_context *skspcl);
static int skd_bdev_ioctl(struct block_device *bdev, fmode_t mode,
uint cmd_in, ulong arg)
{
int rc = 0;
struct gendisk *disk = bdev->bd_disk;
struct skd_device *skdev = disk->private_data;
void __user *p = (void *)arg;
pr_debug("%s:%s:%d %s: CMD[%s] ioctl mode 0x%x, cmd 0x%x arg %0lx\n",
skdev->name, __func__, __LINE__,
disk->disk_name, current->comm, mode, cmd_in, arg);
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
switch (cmd_in) {
case SG_SET_TIMEOUT:
case SG_GET_TIMEOUT:
case SG_GET_VERSION_NUM:
rc = scsi_cmd_ioctl(disk->queue, disk, mode, cmd_in, p);
break;
case SG_IO:
rc = skd_ioctl_sg_io(skdev, mode, p);
break;
default:
rc = -ENOTTY;
break;
}
pr_debug("%s:%s:%d %s: completion rc %d\n",
skdev->name, __func__, __LINE__, disk->disk_name, rc);
return rc;
}
static int skd_ioctl_sg_io(struct skd_device *skdev, fmode_t mode,
void __user *argp)
{
int rc;
struct skd_sg_io sksgio;
memset(&sksgio, 0, sizeof(sksgio));
sksgio.mode = mode;
sksgio.argp = argp;
sksgio.iov = &sksgio.no_iov_iov;
switch (skdev->state) {
case SKD_DRVR_STATE_ONLINE:
case SKD_DRVR_STATE_BUSY_IMMINENT:
break;
default:
pr_debug("%s:%s:%d drive not online\n",
skdev->name, __func__, __LINE__);
rc = -ENXIO;
goto out;
}
rc = skd_sg_io_get_and_check_args(skdev, &sksgio);
if (rc)
goto out;
rc = skd_sg_io_obtain_skspcl(skdev, &sksgio);
if (rc)
goto out;
rc = skd_sg_io_prep_buffering(skdev, &sksgio);
if (rc)
goto out;
rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_TO_DEV);
if (rc)
goto out;
rc = skd_sg_io_send_fitmsg(skdev, &sksgio);
if (rc)
goto out;
rc = skd_sg_io_await(skdev, &sksgio);
if (rc)
goto out;
rc = skd_sg_io_copy_buffer(skdev, &sksgio, SG_DXFER_FROM_DEV);
if (rc)
goto out;
rc = skd_sg_io_put_status(skdev, &sksgio);
if (rc)
goto out;
rc = 0;
out:
skd_sg_io_release_skspcl(skdev, &sksgio);
if (sksgio.iov != NULL && sksgio.iov != &sksgio.no_iov_iov)
kfree(sksgio.iov);
return rc;
}
static int skd_sg_io_get_and_check_args(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct sg_io_hdr *sgp = &sksgio->sg;
int i, acc;
if (!access_ok(VERIFY_WRITE, sksgio->argp, sizeof(sg_io_hdr_t))) {
pr_debug("%s:%s:%d access sg failed %p\n",
skdev->name, __func__, __LINE__, sksgio->argp);
return -EFAULT;
}
if (__copy_from_user(sgp, sksgio->argp, sizeof(sg_io_hdr_t))) {
pr_debug("%s:%s:%d copy_from_user sg failed %p\n",
skdev->name, __func__, __LINE__, sksgio->argp);
return -EFAULT;
}
if (sgp->interface_id != SG_INTERFACE_ID_ORIG) {
pr_debug("%s:%s:%d interface_id invalid 0x%x\n",
skdev->name, __func__, __LINE__, sgp->interface_id);
return -EINVAL;
}
if (sgp->cmd_len > sizeof(sksgio->cdb)) {
pr_debug("%s:%s:%d cmd_len invalid %d\n",
skdev->name, __func__, __LINE__, sgp->cmd_len);
return -EINVAL;
}
if (sgp->iovec_count > 256) {
pr_debug("%s:%s:%d iovec_count invalid %d\n",
skdev->name, __func__, __LINE__, sgp->iovec_count);
return -EINVAL;
}
if (sgp->dxfer_len > (PAGE_SIZE * SKD_N_SG_PER_SPECIAL)) {
pr_debug("%s:%s:%d dxfer_len invalid %d\n",
skdev->name, __func__, __LINE__, sgp->dxfer_len);
return -EINVAL;
}
switch (sgp->dxfer_direction) {
case SG_DXFER_NONE:
acc = -1;
break;
case SG_DXFER_TO_DEV:
acc = VERIFY_READ;
break;
case SG_DXFER_FROM_DEV:
case SG_DXFER_TO_FROM_DEV:
acc = VERIFY_WRITE;
break;
default:
pr_debug("%s:%s:%d dxfer_dir invalid %d\n",
skdev->name, __func__, __LINE__, sgp->dxfer_direction);
return -EINVAL;
}
if (copy_from_user(sksgio->cdb, sgp->cmdp, sgp->cmd_len)) {
pr_debug("%s:%s:%d copy_from_user cmdp failed %p\n",
skdev->name, __func__, __LINE__, sgp->cmdp);
return -EFAULT;
}
if (sgp->mx_sb_len != 0) {
if (!access_ok(VERIFY_WRITE, sgp->sbp, sgp->mx_sb_len)) {
pr_debug("%s:%s:%d access sbp failed %p\n",
skdev->name, __func__, __LINE__, sgp->sbp);
return -EFAULT;
}
}
if (sgp->iovec_count == 0) {
sksgio->iov[0].iov_base = sgp->dxferp;
sksgio->iov[0].iov_len = sgp->dxfer_len;
sksgio->iovcnt = 1;
sksgio->dxfer_len = sgp->dxfer_len;
} else {
struct sg_iovec *iov;
uint nbytes = sizeof(*iov) * sgp->iovec_count;
size_t iov_data_len;
iov = kmalloc(nbytes, GFP_KERNEL);
if (iov == NULL) {
pr_debug("%s:%s:%d alloc iovec failed %d\n",
skdev->name, __func__, __LINE__,
sgp->iovec_count);
return -ENOMEM;
}
sksgio->iov = iov;
sksgio->iovcnt = sgp->iovec_count;
if (copy_from_user(iov, sgp->dxferp, nbytes)) {
pr_debug("%s:%s:%d copy_from_user iovec failed %p\n",
skdev->name, __func__, __LINE__, sgp->dxferp);
return -EFAULT;
}
/*
* Sum up the vecs, making sure they don't overflow
*/
iov_data_len = 0;
for (i = 0; i < sgp->iovec_count; i++) {
if (iov_data_len + iov[i].iov_len < iov_data_len)
return -EINVAL;
iov_data_len += iov[i].iov_len;
}
/* SG_IO howto says that the shorter of the two wins */
if (sgp->dxfer_len < iov_data_len) {
sksgio->iovcnt = iov_shorten((struct iovec *)iov,
sgp->iovec_count,
sgp->dxfer_len);
sksgio->dxfer_len = sgp->dxfer_len;
} else
sksgio->dxfer_len = iov_data_len;
}
if (sgp->dxfer_direction != SG_DXFER_NONE) {
struct sg_iovec *iov = sksgio->iov;
for (i = 0; i < sksgio->iovcnt; i++, iov++) {
if (!access_ok(acc, iov->iov_base, iov->iov_len)) {
pr_debug("%s:%s:%d access data failed %p/%d\n",
skdev->name, __func__, __LINE__,
iov->iov_base, (int)iov->iov_len);
return -EFAULT;
}
}
}
return 0;
}
static int skd_sg_io_obtain_skspcl(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct skd_special_context *skspcl = NULL;
int rc;
for (;;) {
ulong flags;
spin_lock_irqsave(&skdev->lock, flags);
skspcl = skdev->skspcl_free_list;
if (skspcl != NULL) {
skdev->skspcl_free_list =
(struct skd_special_context *)skspcl->req.next;
skspcl->req.id += SKD_ID_INCR;
skspcl->req.state = SKD_REQ_STATE_SETUP;
skspcl->orphaned = 0;
skspcl->req.n_sg = 0;
}
spin_unlock_irqrestore(&skdev->lock, flags);
if (skspcl != NULL) {
rc = 0;
break;
}
pr_debug("%s:%s:%d blocking\n",
skdev->name, __func__, __LINE__);
rc = wait_event_interruptible_timeout(
skdev->waitq,
(skdev->skspcl_free_list != NULL),
msecs_to_jiffies(sksgio->sg.timeout));
pr_debug("%s:%s:%d unblocking, rc=%d\n",
skdev->name, __func__, __LINE__, rc);
if (rc <= 0) {
if (rc == 0)
rc = -ETIMEDOUT;
else
rc = -EINTR;
break;
}
/*
* If we get here rc > 0 meaning the timeout to
* wait_event_interruptible_timeout() had time left, hence the
* sought event -- non-empty free list -- happened.
* Retry the allocation.
*/
}
sksgio->skspcl = skspcl;
return rc;
}
static int skd_skreq_prep_buffering(struct skd_device *skdev,
struct skd_request_context *skreq,
u32 dxfer_len)
{
u32 resid = dxfer_len;
/*
* The DMA engine must have aligned addresses and byte counts.
*/
resid += (-resid) & 3;
skreq->sg_byte_count = resid;
skreq->n_sg = 0;
while (resid > 0) {
u32 nbytes = PAGE_SIZE;
u32 ix = skreq->n_sg;
struct scatterlist *sg = &skreq->sg[ix];
struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
struct page *page;
if (nbytes > resid)
nbytes = resid;
page = alloc_page(GFP_KERNEL);
if (page == NULL)
return -ENOMEM;
sg_set_page(sg, page, nbytes, 0);
/* TODO: This should be going through a pci_???()
* routine to do proper mapping. */
sksg->control = FIT_SGD_CONTROL_NOT_LAST;
sksg->byte_count = nbytes;
sksg->host_side_addr = sg_phys(sg);
sksg->dev_side_addr = 0;
sksg->next_desc_ptr = skreq->sksg_dma_address +
(ix + 1) * sizeof(*sksg);
skreq->n_sg++;
resid -= nbytes;
}
if (skreq->n_sg > 0) {
u32 ix = skreq->n_sg - 1;
struct fit_sg_descriptor *sksg = &skreq->sksg_list[ix];
sksg->control = FIT_SGD_CONTROL_LAST;
sksg->next_desc_ptr = 0;
}
if (unlikely(skdev->dbg_level > 1)) {
u32 i;
pr_debug("%s:%s:%d skreq=%x sksg_list=%p sksg_dma=%llx\n",
skdev->name, __func__, __LINE__,
skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
for (i = 0; i < skreq->n_sg; i++) {
struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
"addr=0x%llx next=0x%llx\n",
skdev->name, __func__, __LINE__,
i, sgd->byte_count, sgd->control,
sgd->host_side_addr, sgd->next_desc_ptr);
}
}
return 0;
}
static int skd_sg_io_prep_buffering(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct skd_special_context *skspcl = sksgio->skspcl;
struct skd_request_context *skreq = &skspcl->req;
u32 dxfer_len = sksgio->dxfer_len;
int rc;
rc = skd_skreq_prep_buffering(skdev, skreq, dxfer_len);
/*
* Eventually, errors or not, skd_release_special() is called
* to recover allocations including partial allocations.
*/
return rc;
}
static int skd_sg_io_copy_buffer(struct skd_device *skdev,
struct skd_sg_io *sksgio, int dxfer_dir)
{
struct skd_special_context *skspcl = sksgio->skspcl;
u32 iov_ix = 0;
struct sg_iovec curiov;
u32 sksg_ix = 0;
u8 *bufp = NULL;
u32 buf_len = 0;
u32 resid = sksgio->dxfer_len;
int rc;
curiov.iov_len = 0;
curiov.iov_base = NULL;
if (dxfer_dir != sksgio->sg.dxfer_direction) {
if (dxfer_dir != SG_DXFER_TO_DEV ||
sksgio->sg.dxfer_direction != SG_DXFER_TO_FROM_DEV)
return 0;
}
while (resid > 0) {
u32 nbytes = PAGE_SIZE;
if (curiov.iov_len == 0) {
curiov = sksgio->iov[iov_ix++];
continue;
}
if (buf_len == 0) {
struct page *page;
page = sg_page(&skspcl->req.sg[sksg_ix++]);
bufp = page_address(page);
buf_len = PAGE_SIZE;
}
nbytes = min_t(u32, nbytes, resid);
nbytes = min_t(u32, nbytes, curiov.iov_len);
nbytes = min_t(u32, nbytes, buf_len);
if (dxfer_dir == SG_DXFER_TO_DEV)
rc = __copy_from_user(bufp, curiov.iov_base, nbytes);
else
rc = __copy_to_user(curiov.iov_base, bufp, nbytes);
if (rc)
return -EFAULT;
resid -= nbytes;
curiov.iov_len -= nbytes;
curiov.iov_base += nbytes;
buf_len -= nbytes;
}
return 0;
}
static int skd_sg_io_send_fitmsg(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct skd_special_context *skspcl = sksgio->skspcl;
struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
memset(skspcl->msg_buf, 0, SKD_N_SPECIAL_FITMSG_BYTES);
/* Initialize the FIT msg header */
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
fmh->num_protocol_cmds_coalesced = 1;
/* Initialize the SCSI request */
if (sksgio->sg.dxfer_direction != SG_DXFER_NONE)
scsi_req->hdr.sg_list_dma_address =
cpu_to_be64(skspcl->req.sksg_dma_address);
scsi_req->hdr.tag = skspcl->req.id;
scsi_req->hdr.sg_list_len_bytes =
cpu_to_be32(skspcl->req.sg_byte_count);
memcpy(scsi_req->cdb, sksgio->cdb, sizeof(scsi_req->cdb));
skspcl->req.state = SKD_REQ_STATE_BUSY;
skd_send_special_fitmsg(skdev, skspcl);
return 0;
}
static int skd_sg_io_await(struct skd_device *skdev, struct skd_sg_io *sksgio)
{
unsigned long flags;
int rc;
rc = wait_event_interruptible_timeout(skdev->waitq,
(sksgio->skspcl->req.state !=
SKD_REQ_STATE_BUSY),
msecs_to_jiffies(sksgio->sg.
timeout));
spin_lock_irqsave(&skdev->lock, flags);
if (sksgio->skspcl->req.state == SKD_REQ_STATE_ABORTED) {
pr_debug("%s:%s:%d skspcl %p aborted\n",
skdev->name, __func__, __LINE__, sksgio->skspcl);
/* Build check cond, sense and let command finish. */
/* For a timeout, we must fabricate completion and sense
* data to complete the command */
sksgio->skspcl->req.completion.status =
SAM_STAT_CHECK_CONDITION;
memset(&sksgio->skspcl->req.err_info, 0,
sizeof(sksgio->skspcl->req.err_info));
sksgio->skspcl->req.err_info.type = 0x70;
sksgio->skspcl->req.err_info.key = ABORTED_COMMAND;
sksgio->skspcl->req.err_info.code = 0x44;
sksgio->skspcl->req.err_info.qual = 0;
rc = 0;
} else if (sksgio->skspcl->req.state != SKD_REQ_STATE_BUSY)
/* No longer on the adapter. We finish. */
rc = 0;
else {
/* Something's gone wrong. Still busy. Timeout or
* user interrupted (control-C). Mark as an orphan
* so it will be disposed when completed. */
sksgio->skspcl->orphaned = 1;
sksgio->skspcl = NULL;
if (rc == 0) {
pr_debug("%s:%s:%d timed out %p (%u ms)\n",
skdev->name, __func__, __LINE__,
sksgio, sksgio->sg.timeout);
rc = -ETIMEDOUT;
} else {
pr_debug("%s:%s:%d cntlc %p\n",
skdev->name, __func__, __LINE__, sksgio);
rc = -EINTR;
}
}
spin_unlock_irqrestore(&skdev->lock, flags);
return rc;
}
static int skd_sg_io_put_status(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct sg_io_hdr *sgp = &sksgio->sg;
struct skd_special_context *skspcl = sksgio->skspcl;
int resid = 0;
u32 nb = be32_to_cpu(skspcl->req.completion.num_returned_bytes);
sgp->status = skspcl->req.completion.status;
resid = sksgio->dxfer_len - nb;
sgp->masked_status = sgp->status & STATUS_MASK;
sgp->msg_status = 0;
sgp->host_status = 0;
sgp->driver_status = 0;
sgp->resid = resid;
if (sgp->masked_status || sgp->host_status || sgp->driver_status)
sgp->info |= SG_INFO_CHECK;
pr_debug("%s:%s:%d status %x masked %x resid 0x%x\n",
skdev->name, __func__, __LINE__,
sgp->status, sgp->masked_status, sgp->resid);
if (sgp->masked_status == SAM_STAT_CHECK_CONDITION) {
if (sgp->mx_sb_len > 0) {
struct fit_comp_error_info *ei = &skspcl->req.err_info;
u32 nbytes = sizeof(*ei);
nbytes = min_t(u32, nbytes, sgp->mx_sb_len);
sgp->sb_len_wr = nbytes;
if (__copy_to_user(sgp->sbp, ei, nbytes)) {
pr_debug("%s:%s:%d copy_to_user sense failed %p\n",
skdev->name, __func__, __LINE__,
sgp->sbp);
return -EFAULT;
}
}
}
if (__copy_to_user(sksgio->argp, sgp, sizeof(sg_io_hdr_t))) {
pr_debug("%s:%s:%d copy_to_user sg failed %p\n",
skdev->name, __func__, __LINE__, sksgio->argp);
return -EFAULT;
}
return 0;
}
static int skd_sg_io_release_skspcl(struct skd_device *skdev,
struct skd_sg_io *sksgio)
{
struct skd_special_context *skspcl = sksgio->skspcl;
if (skspcl != NULL) {
ulong flags;
sksgio->skspcl = NULL;
spin_lock_irqsave(&skdev->lock, flags);
skd_release_special(skdev, skspcl);
spin_unlock_irqrestore(&skdev->lock, flags);
}
return 0;
}
/*
*****************************************************************************
* INTERNAL REQUESTS -- generated by driver itself
*****************************************************************************
*/
static int skd_format_internal_skspcl(struct skd_device *skdev)
{
struct skd_special_context *skspcl = &skdev->internal_skspcl;
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
struct fit_msg_hdr *fmh;
uint64_t dma_address;
struct skd_scsi_request *scsi;
fmh = (struct fit_msg_hdr *)&skspcl->msg_buf[0];
fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
fmh->num_protocol_cmds_coalesced = 1;
scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
memset(scsi, 0, sizeof(*scsi));
dma_address = skspcl->req.sksg_dma_address;
scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
sgd->control = FIT_SGD_CONTROL_LAST;
sgd->byte_count = 0;
sgd->host_side_addr = skspcl->db_dma_address;
sgd->dev_side_addr = 0;
sgd->next_desc_ptr = 0LL;
return 1;
}
#define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
static void skd_send_internal_skspcl(struct skd_device *skdev,
struct skd_special_context *skspcl,
u8 opcode)
{
struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
struct skd_scsi_request *scsi;
unsigned char *buf = skspcl->data_buf;
int i;
if (skspcl->req.state != SKD_REQ_STATE_IDLE)
/*
* A refresh is already in progress.
* Just wait for it to finish.
*/
return;
SKD_ASSERT((skspcl->req.id & SKD_ID_INCR) == 0);
skspcl->req.state = SKD_REQ_STATE_BUSY;
skspcl->req.id += SKD_ID_INCR;
scsi = (struct skd_scsi_request *)&skspcl->msg_buf[64];
scsi->hdr.tag = skspcl->req.id;
memset(scsi->cdb, 0, sizeof(scsi->cdb));
switch (opcode) {
case TEST_UNIT_READY:
scsi->cdb[0] = TEST_UNIT_READY;
sgd->byte_count = 0;
scsi->hdr.sg_list_len_bytes = 0;
break;
case READ_CAPACITY:
scsi->cdb[0] = READ_CAPACITY;
sgd->byte_count = SKD_N_READ_CAP_BYTES;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
break;
case INQUIRY:
scsi->cdb[0] = INQUIRY;
scsi->cdb[1] = 0x01; /* evpd */
scsi->cdb[2] = 0x80; /* serial number page */
scsi->cdb[4] = 0x10;
sgd->byte_count = 16;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
break;
case SYNCHRONIZE_CACHE:
scsi->cdb[0] = SYNCHRONIZE_CACHE;
sgd->byte_count = 0;
scsi->hdr.sg_list_len_bytes = 0;
break;
case WRITE_BUFFER:
scsi->cdb[0] = WRITE_BUFFER;
scsi->cdb[1] = 0x02;
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
sgd->byte_count = WR_BUF_SIZE;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
/* fill incrementing byte pattern */
for (i = 0; i < sgd->byte_count; i++)
buf[i] = i & 0xFF;
break;
case READ_BUFFER:
scsi->cdb[0] = READ_BUFFER;
scsi->cdb[1] = 0x02;
scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
sgd->byte_count = WR_BUF_SIZE;
scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
memset(skspcl->data_buf, 0, sgd->byte_count);
break;
default:
SKD_ASSERT("Don't know what to send");
return;
}
skd_send_special_fitmsg(skdev, skspcl);
}
static void skd_refresh_device_data(struct skd_device *skdev)
{
struct skd_special_context *skspcl = &skdev->internal_skspcl;
skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
}
static int skd_chk_read_buf(struct skd_device *skdev,
struct skd_special_context *skspcl)
{
unsigned char *buf = skspcl->data_buf;
int i;
/* check for incrementing byte pattern */
for (i = 0; i < WR_BUF_SIZE; i++)
if (buf[i] != (i & 0xFF))
return 1;
return 0;
}
static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
u8 code, u8 qual, u8 fruc)
{
/* If the check condition is of special interest, log a message */
if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
&& (code == 0x04) && (qual == 0x06)) {
pr_err("(%s): *** LOST_WRITE_DATA ERROR *** key/asc/"
"ascq/fruc %02x/%02x/%02x/%02x\n",
skd_name(skdev), key, code, qual, fruc);
}
}
static void skd_complete_internal(struct skd_device *skdev,
volatile struct fit_completion_entry_v1
*skcomp,
volatile struct fit_comp_error_info *skerr,
struct skd_special_context *skspcl)
{
u8 *buf = skspcl->data_buf;
u8 status;
int i;
struct skd_scsi_request *scsi =
(struct skd_scsi_request *)&skspcl->msg_buf[64];
SKD_ASSERT(skspcl == &skdev->internal_skspcl);
pr_debug("%s:%s:%d complete internal %x\n",
skdev->name, __func__, __LINE__, scsi->cdb[0]);
skspcl->req.completion = *skcomp;
skspcl->req.state = SKD_REQ_STATE_IDLE;
skspcl->req.id += SKD_ID_INCR;
status = skspcl->req.completion.status;
skd_log_check_status(skdev, status, skerr->key, skerr->code,
skerr->qual, skerr->fruc);
switch (scsi->cdb[0]) {
case TEST_UNIT_READY:
if (status == SAM_STAT_GOOD)
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
else if ((status == SAM_STAT_CHECK_CONDITION) &&
(skerr->key == MEDIUM_ERROR))
skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
pr_debug("%s:%s:%d TUR failed, don't send anymore state 0x%x\n",
skdev->name, __func__, __LINE__,
skdev->state);
return;
}
pr_debug("%s:%s:%d **** TUR failed, retry skerr\n",
skdev->name, __func__, __LINE__);
skd_send_internal_skspcl(skdev, skspcl, 0x00);
}
break;
case WRITE_BUFFER:
if (status == SAM_STAT_GOOD)
skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
pr_debug("%s:%s:%d write buffer failed, don't send anymore state 0x%x\n",
skdev->name, __func__, __LINE__,
skdev->state);
return;
}
pr_debug("%s:%s:%d **** write buffer failed, retry skerr\n",
skdev->name, __func__, __LINE__);
skd_send_internal_skspcl(skdev, skspcl, 0x00);
}
break;
case READ_BUFFER:
if (status == SAM_STAT_GOOD) {
if (skd_chk_read_buf(skdev, skspcl) == 0)
skd_send_internal_skspcl(skdev, skspcl,
READ_CAPACITY);
else {
pr_err(
"(%s):*** W/R Buffer mismatch %d ***\n",
skd_name(skdev), skdev->connect_retries);
if (skdev->connect_retries <
SKD_MAX_CONNECT_RETRIES) {
skdev->connect_retries++;
skd_soft_reset(skdev);
} else {
pr_err(
"(%s): W/R Buffer Connect Error\n",
skd_name(skdev));
return;
}
}
} else {
if (skdev->state == SKD_DRVR_STATE_STOPPING) {
pr_debug("%s:%s:%d "
"read buffer failed, don't send anymore state 0x%x\n",
skdev->name, __func__, __LINE__,
skdev->state);
return;
}
pr_debug("%s:%s:%d "
"**** read buffer failed, retry skerr\n",
skdev->name, __func__, __LINE__);
skd_send_internal_skspcl(skdev, skspcl, 0x00);
}
break;
case READ_CAPACITY:
skdev->read_cap_is_valid = 0;
if (status == SAM_STAT_GOOD) {
skdev->read_cap_last_lba =
(buf[0] << 24) | (buf[1] << 16) |
(buf[2] << 8) | buf[3];
skdev->read_cap_blocksize =
(buf[4] << 24) | (buf[5] << 16) |
(buf[6] << 8) | buf[7];
pr_debug("%s:%s:%d last lba %d, bs %d\n",
skdev->name, __func__, __LINE__,
skdev->read_cap_last_lba,
skdev->read_cap_blocksize);
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
skdev->read_cap_is_valid = 1;
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
} else if ((status == SAM_STAT_CHECK_CONDITION) &&
(skerr->key == MEDIUM_ERROR)) {
skdev->read_cap_last_lba = ~0;
set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
pr_debug("%s:%s:%d "
"**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n",
skdev->name, __func__, __LINE__);
skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
} else {
pr_debug("%s:%s:%d **** READCAP failed, retry TUR\n",
skdev->name, __func__, __LINE__);
skd_send_internal_skspcl(skdev, skspcl,
TEST_UNIT_READY);
}
break;
case INQUIRY:
skdev->inquiry_is_valid = 0;
if (status == SAM_STAT_GOOD) {
skdev->inquiry_is_valid = 1;
for (i = 0; i < 12; i++)
skdev->inq_serial_num[i] = buf[i + 4];
skdev->inq_serial_num[12] = 0;
}
if (skd_unquiesce_dev(skdev) < 0)
pr_debug("%s:%s:%d **** failed, to ONLINE device\n",
skdev->name, __func__, __LINE__);
/* connection is complete */
skdev->connect_retries = 0;
break;
case SYNCHRONIZE_CACHE:
if (status == SAM_STAT_GOOD)
skdev->sync_done = 1;
else
skdev->sync_done = -1;
wake_up_interruptible(&skdev->waitq);
break;
default:
SKD_ASSERT("we didn't send this");
}
}
/*
*****************************************************************************
* FIT MESSAGES
*****************************************************************************
*/
static void skd_send_fitmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg)
{
u64 qcmd;
struct fit_msg_hdr *fmh;
pr_debug("%s:%s:%d dma address 0x%llx, busy=%d\n",
skdev->name, __func__, __LINE__,
skmsg->mb_dma_address, skdev->in_flight);
pr_debug("%s:%s:%d msg_buf 0x%p, offset %x\n",
skdev->name, __func__, __LINE__,
skmsg->msg_buf, skmsg->offset);
qcmd = skmsg->mb_dma_address;
qcmd |= FIT_QCMD_QID_NORMAL;
fmh = (struct fit_msg_hdr *)skmsg->msg_buf;
skmsg->outstanding = fmh->num_protocol_cmds_coalesced;
if (unlikely(skdev->dbg_level > 1)) {
u8 *bp = (u8 *)skmsg->msg_buf;
int i;
for (i = 0; i < skmsg->length; i += 8) {
pr_debug("%s:%s:%d msg[%2d] %02x %02x %02x %02x "
"%02x %02x %02x %02x\n",
skdev->name, __func__, __LINE__,
i, bp[i + 0], bp[i + 1], bp[i + 2],
bp[i + 3], bp[i + 4], bp[i + 5],
bp[i + 6], bp[i + 7]);
if (i == 0)
i = 64 - 8;
}
}
if (skmsg->length > 256)
qcmd |= FIT_QCMD_MSGSIZE_512;
else if (skmsg->length > 128)
qcmd |= FIT_QCMD_MSGSIZE_256;
else if (skmsg->length > 64)
qcmd |= FIT_QCMD_MSGSIZE_128;
else
/*
* This makes no sense because the FIT msg header is
* 64 bytes. If the msg is only 64 bytes long it has
* no payload.
*/
qcmd |= FIT_QCMD_MSGSIZE_64;
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
}
static void skd_send_special_fitmsg(struct skd_device *skdev,
struct skd_special_context *skspcl)
{
u64 qcmd;
if (unlikely(skdev->dbg_level > 1)) {
u8 *bp = (u8 *)skspcl->msg_buf;
int i;
for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
pr_debug("%s:%s:%d spcl[%2d] %02x %02x %02x %02x "
"%02x %02x %02x %02x\n",
skdev->name, __func__, __LINE__, i,
bp[i + 0], bp[i + 1], bp[i + 2], bp[i + 3],
bp[i + 4], bp[i + 5], bp[i + 6], bp[i + 7]);
if (i == 0)
i = 64 - 8;
}
pr_debug("%s:%s:%d skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
skdev->name, __func__, __LINE__,
skspcl, skspcl->req.id, skspcl->req.sksg_list,
skspcl->req.sksg_dma_address);
for (i = 0; i < skspcl->req.n_sg; i++) {
struct fit_sg_descriptor *sgd =
&skspcl->req.sksg_list[i];
pr_debug("%s:%s:%d sg[%d] count=%u ctrl=0x%x "
"addr=0x%llx next=0x%llx\n",
skdev->name, __func__, __LINE__,
i, sgd->byte_count, sgd->control,
sgd->host_side_addr, sgd->next_desc_ptr);
}
}
/*
* Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
* and one 64-byte SSDI command.
*/
qcmd = skspcl->mb_dma_address;
qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
}
/*
*****************************************************************************
* COMPLETION QUEUE
*****************************************************************************
*/
static void skd_complete_other(struct skd_device *skdev,
volatile struct fit_completion_entry_v1 *skcomp,
volatile struct fit_comp_error_info *skerr);
struct sns_info {
u8 type;
u8 stat;
u8 key;
u8 asc;
u8 ascq;
u8 mask;
enum skd_check_status_action action;
};
static struct sns_info skd_chkstat_table[] = {
/* Good */
{ 0x70, 0x02, RECOVERED_ERROR, 0, 0, 0x1c,
SKD_CHECK_STATUS_REPORT_GOOD },
/* Smart alerts */
{ 0x70, 0x02, NO_SENSE, 0x0B, 0x00, 0x1E, /* warnings */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
{ 0x70, 0x02, NO_SENSE, 0x5D, 0x00, 0x1E, /* thresholds */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F, /* temperature over trigger */
SKD_CHECK_STATUS_REPORT_SMART_ALERT },
/* Retry (with limits) */
{ 0x70, 0x02, 0x0B, 0, 0, 0x1C, /* This one is for DMA ERROR */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x0B, 0x00, 0x1E, /* warnings */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x5D, 0x00, 0x1E, /* thresholds */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
{ 0x70, 0x02, 0x06, 0x80, 0x30, 0x1F, /* backup power */
SKD_CHECK_STATUS_REQUEUE_REQUEST },
/* Busy (or about to be) */
{ 0x70, 0x02, 0x06, 0x3f, 0x01, 0x1F, /* fw changed */
SKD_CHECK_STATUS_BUSY_IMMINENT },
};
/*
* Look up status and sense data to decide how to handle the error
* from the device.
* mask says which fields must match e.g., mask=0x18 means check
* type and stat, ignore key, asc, ascq.
*/
static enum skd_check_status_action
skd_check_status(struct skd_device *skdev,
u8 cmp_status, volatile struct fit_comp_error_info *skerr)
{
int i, n;
pr_err("(%s): key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
skd_name(skdev), skerr->key, skerr->code, skerr->qual,
skerr->fruc);
pr_debug("%s:%s:%d stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
skdev->name, __func__, __LINE__, skerr->type, cmp_status,
skerr->key, skerr->code, skerr->qual, skerr->fruc);
/* Does the info match an entry in the good category? */
n = sizeof(skd_chkstat_table) / sizeof(skd_chkstat_table[0]);
for (i = 0; i < n; i++) {
struct sns_info *sns = &skd_chkstat_table[i];
if (sns->mask & 0x10)
if (skerr->type != sns->type)
continue;
if (sns->mask & 0x08)
if (cmp_status != sns->stat)
continue;
if (sns->mask & 0x04)
if (skerr->key != sns->key)
continue;
if (sns->mask & 0x02)
if (skerr->code != sns->asc)
continue;
if (sns->mask & 0x01)
if (skerr->qual != sns->ascq)
continue;
if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
pr_err("(%s): SMART Alert: sense key/asc/ascq "
"%02x/%02x/%02x\n",
skd_name(skdev), skerr->key,
skerr->code, skerr->qual);
}
return sns->action;
}
/* No other match, so nonzero status means error,
* zero status means good
*/
if (cmp_status) {
pr_debug("%s:%s:%d status check: error\n",
skdev->name, __func__, __LINE__);
return SKD_CHECK_STATUS_REPORT_ERROR;
}
pr_debug("%s:%s:%d status check good default\n",
skdev->name, __func__, __LINE__);
return SKD_CHECK_STATUS_REPORT_GOOD;
}
static void skd_resolve_req_exception(struct skd_device *skdev,
struct skd_request_context *skreq)
{
u8 cmp_status = skreq->completion.status;
switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
case SKD_CHECK_STATUS_REPORT_GOOD:
case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
skd_end_request(skdev, skreq, 0);
break;
case SKD_CHECK_STATUS_BUSY_IMMINENT:
skd_log_skreq(skdev, skreq, "retry(busy)");
blk_requeue_request(skdev->queue, skreq->req);
pr_info("(%s) drive BUSY imminent\n", skd_name(skdev));
skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
skdev->timer_countdown = SKD_TIMER_MINUTES(20);
skd_quiesce_dev(skdev);
break;
case SKD_CHECK_STATUS_REQUEUE_REQUEST:
if ((unsigned long) ++skreq->req->special < SKD_MAX_RETRIES) {
skd_log_skreq(skdev, skreq, "retry");
blk_requeue_request(skdev->queue, skreq->req);
break;
}
/* fall through to report error */
case SKD_CHECK_STATUS_REPORT_ERROR:
default:
skd_end_request(skdev, skreq, -EIO);
break;
}
}
/* assume spinlock is already held */
static void skd_release_skreq(struct skd_device *skdev,
struct skd_request_context *skreq)
{
u32 msg_slot;
struct skd_fitmsg_context *skmsg;
u32 timo_slot;
/*
* Reclaim the FIT msg buffer if this is
* the first of the requests it carried to
* be completed. The FIT msg buffer used to
* send this request cannot be reused until
* we are sure the s1120 card has copied
* it to its memory. The FIT msg might have
* contained several requests. As soon as
* any of them are completed we know that
* the entire FIT msg was transferred.
* Only the first completed request will
* match the FIT msg buffer id. The FIT
* msg buffer id is immediately updated.
* When subsequent requests complete the FIT
* msg buffer id won't match, so we know
* quite cheaply that it is already done.
*/
msg_slot = skreq->fitmsg_id & SKD_ID_SLOT_MASK;
SKD_ASSERT(msg_slot < skdev->num_fitmsg_context);
skmsg = &skdev->skmsg_table[msg_slot];
if (skmsg->id == skreq->fitmsg_id) {
SKD_ASSERT(skmsg->state == SKD_MSG_STATE_BUSY);
SKD_ASSERT(skmsg->outstanding > 0);
skmsg->outstanding--;
if (skmsg->outstanding == 0) {
skmsg->state = SKD_MSG_STATE_IDLE;
skmsg->id += SKD_ID_INCR;
skmsg->next = skdev->skmsg_free_list;
skdev->skmsg_free_list = skmsg;
}
}
/*
* Decrease the number of active requests.
* Also decrements the count in the timeout slot.
*/
SKD_ASSERT(skdev->in_flight > 0);
skdev->in_flight -= 1;
timo_slot = skreq->timeout_stamp & SKD_TIMEOUT_SLOT_MASK;
SKD_ASSERT(skdev->timeout_slot[timo_slot] > 0);
skdev->timeout_slot[timo_slot] -= 1;
/*
* Reset backpointer
*/
skreq->req = NULL;
/*
* Reclaim the skd_request_context
*/
skreq->state = SKD_REQ_STATE_IDLE;
skreq->id += SKD_ID_INCR;
skreq->next = skdev->skreq_free_list;
skdev->skreq_free_list = skreq;
}
#define DRIVER_INQ_EVPD_PAGE_CODE 0xDA
static void skd_do_inq_page_00(struct skd_device *skdev,
volatile struct fit_completion_entry_v1 *skcomp,
volatile struct fit_comp_error_info *skerr,
uint8_t *cdb, uint8_t *buf)
{
uint16_t insert_pt, max_bytes, drive_pages, drive_bytes, new_size;
/* Caller requested "supported pages". The driver needs to insert
* its page.
*/
pr_debug("%s:%s:%d skd_do_driver_inquiry: modify supported pages.\n",
skdev->name, __func__, __LINE__);
/* If the device rejected the request because the CDB was
* improperly formed, then just leave.
*/
if (skcomp->status == SAM_STAT_CHECK_CONDITION &&
skerr->key == ILLEGAL_REQUEST && skerr->code == 0x24)
return;
/* Get the amount of space the caller allocated */
max_bytes = (cdb[3] << 8) | cdb[4];
/* Get the number of pages actually returned by the device */
drive_pages = (buf[2] << 8) | buf[3];
drive_bytes = drive_pages + 4;
new_size = drive_pages + 1;
/* Supported pages must be in numerical order, so find where
* the driver page needs to be inserted into the list of
* pages returned by the device.
*/
for (insert_pt = 4; insert_pt < drive_bytes; insert_pt++) {
if (buf[insert_pt] == DRIVER_INQ_EVPD_PAGE_CODE)
return; /* Device using this page code. abort */
else if (buf[insert_pt] > DRIVER_INQ_EVPD_PAGE_CODE)
break;
}
if (insert_pt < max_bytes) {
uint16_t u;
/* Shift everything up one byte to make room. */
for (u = new_size + 3; u > insert_pt; u--)
buf[u] = buf[u - 1];
buf[insert_pt] = DRIVER_INQ_EVPD_PAGE_CODE;
/* SCSI byte order increment of num_returned_bytes by 1 */
skcomp->num_returned_bytes =
be32_to_cpu(skcomp->num_returned_bytes) + 1;
skcomp->num_returned_bytes =
be32_to_cpu(skcomp->num_returned_bytes);
}
/* update page length field to reflect the driver's page too */
buf[2] = (uint8_t)((new_size >> 8) & 0xFF);
buf[3] = (uint8_t)((new_size >> 0) & 0xFF);
}
static void skd_get_link_info(struct pci_dev *pdev, u8 *speed, u8 *width)
{
int pcie_reg;
u16 pci_bus_speed;
u8 pci_lanes;
pcie_reg = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (pcie_reg) {
u16 linksta;
pci_read_config_word(pdev, pcie_reg + PCI_EXP_LNKSTA, &linksta);
pci_bus_speed = linksta & 0xF;
pci_lanes = (linksta & 0x3F0) >> 4;
} else {
*speed = STEC_LINK_UNKNOWN;
*width = 0xFF;
return;
}
switch (pci_bus_speed) {
case 1:
*speed = STEC_LINK_2_5GTS;
break;
case 2:
*speed = STEC_LINK_5GTS;
break;
case 3:
*speed = STEC_LINK_8GTS;
break;
default:
*speed = STEC_LINK_UNKNOWN;
break;
}
if (pci_lanes <= 0x20)
*width = pci_lanes;
else
*width = 0xFF;
}
static void skd_do_inq_page_da(struct skd_device *skdev,
volatile struct fit_completion_entry_v1 *skcomp,
volatile struct fit_comp_error_info *skerr,
uint8_t *cdb, uint8_t *buf)
{
struct pci_dev *pdev = skdev->pdev;
unsigned max_bytes;
struct driver_inquiry_data inq;
u16 val;
pr_debug("%s:%s:%d skd_do_driver_inquiry: return driver page\n",
skdev->name, __func__, __LINE__);
memset(&inq, 0, sizeof(inq));
inq.page_code = DRIVER_INQ_EVPD_PAGE_CODE;
skd_get_link_info(pdev, &inq.pcie_link_speed, &inq.pcie_link_lanes);
inq.pcie_bus_number = cpu_to_be16(pdev->bus->number);
inq.pcie_device_number = PCI_SLOT(pdev->devfn);
inq.pcie_function_number = PCI_FUNC(pdev->devfn);
pci_read_config_word(pdev, PCI_VENDOR_ID, &val);
inq.pcie_vendor_id = cpu_to_be16(val);
pci_read_config_word(pdev, PCI_DEVICE_ID, &val);
inq.pcie_device_id = cpu_to_be16(val);
pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &val);
inq.pcie_subsystem_vendor_id = cpu_to_be16(val);
pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &val);
inq.pcie_subsystem_device_id = cpu_to_be16(val);
/* Driver version, fixed lenth, padded with spaces on the right */
inq.driver_version_length = sizeof(inq.driver_version);
memset(&inq.driver_version, ' ', sizeof(inq.driver_version));
memcpy(inq.driver_version, DRV_VER_COMPL,
min(sizeof(inq.driver_version), strlen(DRV_VER_COMPL)));
inq.page_length = cpu_to_be16((sizeof(inq) - 4));
/* Clear the error set by the device */
skcomp->status = SAM_STAT_GOOD;
memset((void *)skerr, 0, sizeof(*skerr));
/* copy response into output buffer */
max_bytes = (cdb[3] << 8) | cdb[4];
memcpy(buf, &inq, min_t(unsigned, max_bytes, sizeof(inq)));
skcomp->num_returned_bytes =
be32_to_cpu(min_t(uint16_t, max_bytes, sizeof(inq)));
}
static void skd_do_driver_inq(struct skd_device *skdev,
volatile struct fit_completion_entry_v1 *skcomp,
volatile struct fit_comp_error_info *skerr,
uint8_t *cdb, uint8_t *buf)
{
if (!buf)
return;
else if (cdb[0] != INQUIRY)
return; /* Not an INQUIRY */
else if ((cdb[1] & 1) == 0)
return; /* EVPD not set */
else if (cdb[2] == 0)
/* Need to add driver's page to supported pages list */
skd_do_inq_page_00(skdev, skcomp, skerr, cdb, buf);
else if (cdb[2] == DRIVER_INQ_EVPD_PAGE_CODE)
/* Caller requested driver's page */
skd_do_inq_page_da(skdev, skcomp, skerr, cdb, buf);
}
static unsigned char *skd_sg_1st_page_ptr(struct scatterlist *sg)
{
if (!sg)
return NULL;
if (!sg_page(sg))
return NULL;
return sg_virt(sg);
}
static void skd_process_scsi_inq(struct skd_device *skdev,
volatile struct fit_completion_entry_v1
*skcomp,
volatile struct fit_comp_error_info *skerr,
struct skd_special_context *skspcl)
{
uint8_t *buf;
struct fit_msg_hdr *fmh = (struct fit_msg_hdr *)skspcl->msg_buf;
struct skd_scsi_request *scsi_req = (struct skd_scsi_request *)&fmh[1];
dma_sync_sg_for_cpu(skdev->class_dev, skspcl->req.sg, skspcl->req.n_sg,
skspcl->req.sg_data_dir);
buf = skd_sg_1st_page_ptr(skspcl->req.sg);
if (buf)
skd_do_driver_inq(skdev, skcomp, skerr, scsi_req->cdb, buf);
}
static int skd_isr_completion_posted(struct skd_device *skdev,
int limit, int *enqueued)
{
volatile struct fit_completion_entry_v1 *skcmp = NULL;
volatile struct fit_comp_error_info *skerr;
u16 req_id;
u32 req_slot;
struct skd_request_context *skreq;
u16 cmp_cntxt = 0;
u8 cmp_status = 0;
u8 cmp_cycle = 0;
u32 cmp_bytes = 0;
int rc = 0;
int processed = 0;
for (;; ) {
SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
cmp_cycle = skcmp->cycle;
cmp_cntxt = skcmp->tag;
cmp_status = skcmp->status;
cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
skerr = &skdev->skerr_table[skdev->skcomp_ix];
pr_debug("%s:%s:%d "
"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d "
"busy=%d rbytes=0x%x proto=%d\n",
skdev->name, __func__, __LINE__, skdev->skcomp_cycle,
skdev->skcomp_ix, cmp_cycle, cmp_cntxt, cmp_status,
skdev->in_flight, cmp_bytes, skdev->proto_ver);
if (cmp_cycle != skdev->skcomp_cycle) {
pr_debug("%s:%s:%d end of completions\n",
skdev->name, __func__, __LINE__);
break;
}
/*
* Update the completion queue head index and possibly
* the completion cycle count. 8-bit wrap-around.
*/
skdev->skcomp_ix++;
if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
skdev->skcomp_ix = 0;
skdev->skcomp_cycle++;
}
/*
* The command context is a unique 32-bit ID. The low order
* bits help locate the request. The request is usually a
* r/w request (see skd_start() above) or a special request.
*/
req_id = cmp_cntxt;
req_slot = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
/* Is this other than a r/w request? */
if (req_slot >= skdev->num_req_context) {
/*
* This is not a completion for a r/w request.
*/
skd_complete_other(skdev, skcmp, skerr);
continue;
}
skreq = &skdev->skreq_table[req_slot];
/*
* Make sure the request ID for the slot matches.
*/
if (skreq->id != req_id) {
pr_debug("%s:%s:%d mismatch comp_id=0x%x req_id=0x%x\n",
skdev->name, __func__, __LINE__,
req_id, skreq->id);
{
u16 new_id = cmp_cntxt;
pr_err("(%s): Completion mismatch "
"comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
skd_name(skdev), req_id,
skreq->id, new_id);
continue;
}
}
SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
if (skreq->state == SKD_REQ_STATE_ABORTED) {
pr_debug("%s:%s:%d reclaim req %p id=%04x\n",
skdev->name, __func__, __LINE__,
skreq, skreq->id);
/* a previously timed out command can
* now be cleaned up */
skd_release_skreq(skdev, skreq);
continue;
}
skreq->completion = *skcmp;
if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
skreq->err_info = *skerr;
skd_log_check_status(skdev, cmp_status, skerr->key,
skerr->code, skerr->qual,
skerr->fruc);
}
/* Release DMA resources for the request. */
if (skreq->n_sg > 0)
skd_postop_sg_list(skdev, skreq);
if (!skreq->req) {
pr_debug("%s:%s:%d NULL backptr skdreq %p, "
"req=0x%x req_id=0x%x\n",
skdev->name, __func__, __LINE__,
skreq, skreq->id, req_id);
} else {
/*
* Capture the outcome and post it back to the
* native request.
*/
if (likely(cmp_status == SAM_STAT_GOOD))
skd_end_request(skdev, skreq, 0);
else
skd_resolve_req_exception(skdev, skreq);
}
/*
* Release the skreq, its FIT msg (if one), timeout slot,
* and queue depth.
*/
skd_release_skreq(skdev, skreq);
/* skd_isr_comp_limit equal zero means no limit */
if (limit) {
if (++processed >= limit) {
rc = 1;
break;
}
}
}
if ((skdev->state == SKD_DRVR_STATE_PAUSING)
&& (skdev->in_flight) == 0) {
skdev->state = SKD_DRVR_STATE_PAUSED;
wake_up_interruptible(&skdev->waitq);
}
return rc;
}
static void skd_complete_other(struct skd_device *skdev,
volatile struct fit_completion_entry_v1 *skcomp,
volatile struct fit_comp_error_info *skerr)
{
u32 req_id = 0;
u32 req_table;
u32 req_slot;
struct skd_special_context *skspcl;
req_id = skcomp->tag;
req_table = req_id & SKD_ID_TABLE_MASK;
req_slot = req_id & SKD_ID_SLOT_MASK;
pr_debug("%s:%s:%d table=0x%x id=0x%x slot=%d\n",
skdev->name, __func__, __LINE__,
req_table, req_id, req_slot);
/*
* Based on the request id, determine how to dispatch this completion.
* This swich/case is finding the good cases and forwarding the
* completion entry. Errors are reported below the switch.
*/
switch (req_table) {
case SKD_ID_RW_REQUEST:
/*
* The caller, skd_completion_posted_isr() above,
* handles r/w requests. The only way we get here
* is if the req_slot is out of bounds.
*/
break;
case SKD_ID_SPECIAL_REQUEST:
/*
* Make sure the req_slot is in bounds and that the id
* matches.
*/
if (req_slot < skdev->n_special) {
skspcl = &skdev->skspcl_table[req_slot];
if (skspcl->req.id == req_id &&
skspcl->req.state == SKD_REQ_STATE_BUSY) {
skd_complete_special(skdev,
skcomp, skerr, skspcl);
return;
}
}
break;
case SKD_ID_INTERNAL:
if (req_slot == 0) {
skspcl = &skdev->internal_skspcl;
if (skspcl->req.id == req_id &&
skspcl->req.state == SKD_REQ_STATE_BUSY) {
skd_complete_internal(skdev,
skcomp, skerr, skspcl);
return;
}
}
break;
case SKD_ID_FIT_MSG:
/*
* These id's should never appear in a completion record.
*/
break;
default:
/*
* These id's should never appear anywhere;
*/
break;
}
/*
* If we get here it is a bad or stale id.
*/
}
static void skd_complete_special(struct skd_device *skdev,
volatile struct fit_completion_entry_v1
*skcomp,
volatile struct fit_comp_error_info *skerr,
struct skd_special_context *skspcl)
{
pr_debug("%s:%s:%d completing special request %p\n",
skdev->name, __func__, __LINE__, skspcl);
if (skspcl->orphaned) {
/* Discard orphaned request */
/* ?: Can this release directly or does it need
* to use a worker? */
pr_debug("%s:%s:%d release orphaned %p\n",
skdev->name, __func__, __LINE__, skspcl);
skd_release_special(skdev, skspcl);
return;
}
skd_process_scsi_inq(skdev, skcomp, skerr, skspcl);
skspcl->req.state = SKD_REQ_STATE_COMPLETED;
skspcl->req.completion = *skcomp;
skspcl->req.err_info = *skerr;
skd_log_check_status(skdev, skspcl->req.completion.status, skerr->key,
skerr->code, skerr->qual, skerr->fruc);
wake_up_interruptible(&skdev->waitq);
}
/* assume spinlock is already held */
static void skd_release_special(struct skd_device *skdev,
struct skd_special_context *skspcl)
{
int i, was_depleted;
for (i = 0; i < skspcl->req.n_sg; i++) {
struct page *page = sg_page(&skspcl->req.sg[i]);
__free_page(page);
}
was_depleted = (skdev->skspcl_free_list == NULL);
skspcl->req.state = SKD_REQ_STATE_IDLE;
skspcl->req.id += SKD_ID_INCR;
skspcl->req.next =
(struct skd_request_context *)skdev->skspcl_free_list;
skdev->skspcl_free_list = (struct skd_special_context *)skspcl;
if (was_depleted) {
pr_debug("%s:%s:%d skspcl was depleted\n",
skdev->name, __func__, __LINE__);
/* Free list was depleted. Their might be waiters. */
wake_up_interruptible(&skdev->waitq);
}
}
static void skd_reset_skcomp(struct skd_device *skdev)
{
u32 nbytes;
struct fit_completion_entry_v1 *skcomp;
nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
memset(skdev->skcomp_table, 0, nbytes);
skdev->skcomp_ix = 0;
skdev->skcomp_cycle = 1;
}
/*
*****************************************************************************
* INTERRUPTS
*****************************************************************************
*/
static void skd_completion_worker(struct work_struct *work)
{
struct skd_device *skdev =
container_of(work, struct skd_device, completion_worker);
unsigned long flags;
int flush_enqueued = 0;
spin_lock_irqsave(&skdev->lock, flags);
/*
* pass in limit=0, which means no limit..
* process everything in compq
*/
skd_isr_completion_posted(skdev, 0, &flush_enqueued);
skd_request_fn(skdev->queue);
spin_unlock_irqrestore(&skdev->lock, flags);
}
static void skd_isr_msg_from_dev(struct skd_device *skdev);
irqreturn_t
static skd_isr(int irq, void *ptr)
{
struct skd_device *skdev;
u32 intstat;
u32 ack;
int rc = 0;
int deferred = 0;
int flush_enqueued = 0;
skdev = (struct skd_device *)ptr;
spin_lock(&skdev->lock);
for (;; ) {
intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
ack = FIT_INT_DEF_MASK;
ack &= intstat;
pr_debug("%s:%s:%d intstat=0x%x ack=0x%x\n",
skdev->name, __func__, __LINE__, intstat, ack);
/* As long as there is an int pending on device, keep
* running loop. When none, get out, but if we've never
* done any processing, call completion handler?
*/
if (ack == 0) {
/* No interrupts on device, but run the completion
* processor anyway?
*/
if (rc == 0)
if (likely (skdev->state
== SKD_DRVR_STATE_ONLINE))
deferred = 1;
break;
}
rc = IRQ_HANDLED;
SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
(skdev->state != SKD_DRVR_STATE_STOPPING))) {
if (intstat & FIT_ISH_COMPLETION_POSTED) {
/*
* If we have already deferred completion
* processing, don't bother running it again
*/
if (deferred == 0)
deferred =
skd_isr_completion_posted(skdev,
skd_isr_comp_limit, &flush_enqueued);
}
if (intstat & FIT_ISH_FW_STATE_CHANGE) {
skd_isr_fwstate(skdev);
if (skdev->state == SKD_DRVR_STATE_FAULT ||
skdev->state ==
SKD_DRVR_STATE_DISAPPEARED) {
spin_unlock(&skdev->lock);
return rc;
}
}
if (intstat & FIT_ISH_MSG_FROM_DEV)
skd_isr_msg_from_dev(skdev);
}
}
if (unlikely(flush_enqueued))
skd_request_fn(skdev->queue);
if (deferred)
schedule_work(&skdev->completion_worker);
else if (!flush_enqueued)
skd_request_fn(skdev->queue);
spin_unlock(&skdev->lock);
return rc;
}
static void skd_drive_fault(struct skd_device *skdev)
{
skdev->state = SKD_DRVR_STATE_FAULT;
pr_err("(%s): Drive FAULT\n", skd_name(skdev));
}
static void skd_drive_disappeared(struct skd_device *skdev)
{
skdev->state = SKD_DRVR_STATE_DISAPPEARED;
pr_err("(%s): Drive DISAPPEARED\n", skd_name(skdev));
}
static void skd_isr_fwstate(struct skd_device *skdev)
{
u32 sense;
u32 state;
u32 mtd;
int prev_driver_state = skdev->state;
sense = SKD_READL(skdev, FIT_STATUS);
state = sense & FIT_SR_DRIVE_STATE_MASK;
pr_err("(%s): s1120 state %s(%d)=>%s(%d)\n",
skd_name(skdev),
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
skd_drive_state_to_str(state), state);
skdev->drive_state = state;
switch (skdev->drive_state) {
case FIT_SR_DRIVE_INIT:
if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
skd_disable_interrupts(skdev);
break;
}
if (skdev->state == SKD_DRVR_STATE_RESTARTING)
skd_recover_requests(skdev, 0);
if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
skdev->timer_countdown = SKD_STARTING_TIMO;
skdev->state = SKD_DRVR_STATE_STARTING;
skd_soft_reset(skdev);
break;
}
mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_SR_DRIVE_ONLINE:
skdev->cur_max_queue_depth = skd_max_queue_depth;
if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
skdev->queue_low_water_mark =
skdev->cur_max_queue_depth * 2 / 3 + 1;
if (skdev->queue_low_water_mark < 1)
skdev->queue_low_water_mark = 1;
pr_info(
"(%s): Queue depth limit=%d dev=%d lowat=%d\n",
skd_name(skdev),
skdev->cur_max_queue_depth,
skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
skd_refresh_device_data(skdev);
break;
case FIT_SR_DRIVE_BUSY:
skdev->state = SKD_DRVR_STATE_BUSY;
skdev->timer_countdown = SKD_BUSY_TIMO;
skd_quiesce_dev(skdev);
break;
case FIT_SR_DRIVE_BUSY_SANITIZE:
/* set timer for 3 seconds, we'll abort any unfinished
* commands after that expires
*/
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
skdev->timer_countdown = SKD_TIMER_SECONDS(3);
blk_start_queue(skdev->queue);
break;
case FIT_SR_DRIVE_BUSY_ERASE:
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
skdev->timer_countdown = SKD_BUSY_TIMO;
break;
case FIT_SR_DRIVE_OFFLINE:
skdev->state = SKD_DRVR_STATE_IDLE;
break;
case FIT_SR_DRIVE_SOFT_RESET:
switch (skdev->state) {
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
/* Expected by a caller of skd_soft_reset() */
break;
default:
skdev->state = SKD_DRVR_STATE_RESTARTING;
break;
}
break;
case FIT_SR_DRIVE_FW_BOOTING:
pr_debug("%s:%s:%d ISR FIT_SR_DRIVE_FW_BOOTING %s\n",
skdev->name, __func__, __LINE__, skdev->name);
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
break;
case FIT_SR_DRIVE_DEGRADED:
case FIT_SR_PCIE_LINK_DOWN:
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
break;
case FIT_SR_DRIVE_FAULT:
skd_drive_fault(skdev);
skd_recover_requests(skdev, 0);
blk_start_queue(skdev->queue);
break;
/* PCIe bus returned all Fs? */
case 0xFF:
pr_info("(%s): state=0x%x sense=0x%x\n",
skd_name(skdev), state, sense);
skd_drive_disappeared(skdev);
skd_recover_requests(skdev, 0);
blk_start_queue(skdev->queue);
break;
default:
/*
* Uknown FW State. Wait for a state we recognize.
*/
break;
}
pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
skd_name(skdev),
skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
skd_skdev_state_to_str(skdev->state), skdev->state);
}
static void skd_recover_requests(struct skd_device *skdev, int requeue)
{
int i;
for (i = 0; i < skdev->num_req_context; i++) {
struct skd_request_context *skreq = &skdev->skreq_table[i];
if (skreq->state == SKD_REQ_STATE_BUSY) {
skd_log_skreq(skdev, skreq, "recover");
SKD_ASSERT((skreq->id & SKD_ID_INCR) != 0);
SKD_ASSERT(skreq->req != NULL);
/* Release DMA resources for the request. */
if (skreq->n_sg > 0)
skd_postop_sg_list(skdev, skreq);
if (requeue &&
(unsigned long) ++skreq->req->special <
SKD_MAX_RETRIES)
blk_requeue_request(skdev->queue, skreq->req);
else
skd_end_request(skdev, skreq, -EIO);
skreq->req = NULL;
skreq->state = SKD_REQ_STATE_IDLE;
skreq->id += SKD_ID_INCR;
}
if (i > 0)
skreq[-1].next = skreq;
skreq->next = NULL;
}
skdev->skreq_free_list = skdev->skreq_table;
for (i = 0; i < skdev->num_fitmsg_context; i++) {
struct skd_fitmsg_context *skmsg = &skdev->skmsg_table[i];
if (skmsg->state == SKD_MSG_STATE_BUSY) {
skd_log_skmsg(skdev, skmsg, "salvaged");
SKD_ASSERT((skmsg->id & SKD_ID_INCR) != 0);
skmsg->state = SKD_MSG_STATE_IDLE;
skmsg->id += SKD_ID_INCR;
}
if (i > 0)
skmsg[-1].next = skmsg;
skmsg->next = NULL;
}
skdev->skmsg_free_list = skdev->skmsg_table;
for (i = 0; i < skdev->n_special; i++) {
struct skd_special_context *skspcl = &skdev->skspcl_table[i];
/* If orphaned, reclaim it because it has already been reported
* to the process as an error (it was just waiting for
* a completion that didn't come, and now it will never come)
* If busy, change to a state that will cause it to error
* out in the wait routine and let it do the normal
* reporting and reclaiming
*/
if (skspcl->req.state == SKD_REQ_STATE_BUSY) {
if (skspcl->orphaned) {
pr_debug("%s:%s:%d orphaned %p\n",
skdev->name, __func__, __LINE__,
skspcl);
skd_release_special(skdev, skspcl);
} else {
pr_debug("%s:%s:%d not orphaned %p\n",
skdev->name, __func__, __LINE__,
skspcl);
skspcl->req.state = SKD_REQ_STATE_ABORTED;
}
}
}
skdev->skspcl_free_list = skdev->skspcl_table;
for (i = 0; i < SKD_N_TIMEOUT_SLOT; i++)
skdev->timeout_slot[i] = 0;
skdev->in_flight = 0;
}
static void skd_isr_msg_from_dev(struct skd_device *skdev)
{
u32 mfd;
u32 mtd;
u32 data;
mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
pr_debug("%s:%s:%d mfd=0x%x last_mtd=0x%x\n",
skdev->name, __func__, __LINE__, mfd, skdev->last_mtd);
/* ignore any mtd that is an ack for something we didn't send */
if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
return;
switch (FIT_MXD_TYPE(mfd)) {
case FIT_MTD_FITFW_INIT:
skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
pr_err("(%s): protocol mismatch\n",
skdev->name);
pr_err("(%s): got=%d support=%d\n",
skdev->name, skdev->proto_ver,
FIT_PROTOCOL_VERSION_1);
pr_err("(%s): please upgrade driver\n",
skdev->name);
skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
skd_soft_reset(skdev);
break;
}
mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_GET_CMDQ_DEPTH:
skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
SKD_N_COMPLETION_ENTRY);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_SET_COMPQ_DEPTH:
SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_SET_COMPQ_ADDR:
skd_reset_skcomp(skdev);
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_HOST_ID:
skdev->connect_time_stamp = get_seconds();
data = skdev->connect_time_stamp & 0xFFFF;
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
skdev->drive_jiffies = FIT_MXD_DATA(mfd);
data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
break;
case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
skdev->last_mtd = mtd;
pr_err("(%s): Time sync driver=0x%x device=0x%x\n",
skd_name(skdev),
skdev->connect_time_stamp, skdev->drive_jiffies);
break;
case FIT_MTD_ARM_QUEUE:
skdev->last_mtd = 0;
/*
* State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
*/
break;
default:
break;
}
}
static void skd_disable_interrupts(struct skd_device *skdev)
{
u32 sense;
sense = SKD_READL(skdev, FIT_CONTROL);
sense &= ~FIT_CR_ENABLE_INTERRUPTS;
SKD_WRITEL(skdev, sense, FIT_CONTROL);
pr_debug("%s:%s:%d sense 0x%x\n",
skdev->name, __func__, __LINE__, sense);
/* Note that the 1s is written. A 1-bit means
* disable, a 0 means enable.
*/
SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
}
static void skd_enable_interrupts(struct skd_device *skdev)
{
u32 val;
/* unmask interrupts first */
val = FIT_ISH_FW_STATE_CHANGE +
FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
/* Note that the compliment of mask is written. A 1-bit means
* disable, a 0 means enable. */
SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
pr_debug("%s:%s:%d interrupt mask=0x%x\n",
skdev->name, __func__, __LINE__, ~val);
val = SKD_READL(skdev, FIT_CONTROL);
val |= FIT_CR_ENABLE_INTERRUPTS;
pr_debug("%s:%s:%d control=0x%x\n",
skdev->name, __func__, __LINE__, val);
SKD_WRITEL(skdev, val, FIT_CONTROL);
}
/*
*****************************************************************************
* START, STOP, RESTART, QUIESCE, UNQUIESCE
*****************************************************************************
*/
static void skd_soft_reset(struct skd_device *skdev)
{
u32 val;
val = SKD_READL(skdev, FIT_CONTROL);
val |= (FIT_CR_SOFT_RESET);
pr_debug("%s:%s:%d control=0x%x\n",
skdev->name, __func__, __LINE__, val);
SKD_WRITEL(skdev, val, FIT_CONTROL);
}
static void skd_start_device(struct skd_device *skdev)
{
unsigned long flags;
u32 sense;
u32 state;
spin_lock_irqsave(&skdev->lock, flags);
/* ack all ghost interrupts */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
sense = SKD_READL(skdev, FIT_STATUS);
pr_debug("%s:%s:%d initial status=0x%x\n",
skdev->name, __func__, __LINE__, sense);
state = sense & FIT_SR_DRIVE_STATE_MASK;
skdev->drive_state = state;
skdev->last_mtd = 0;
skdev->state = SKD_DRVR_STATE_STARTING;
skdev->timer_countdown = SKD_STARTING_TIMO;
skd_enable_interrupts(skdev);
switch (skdev->drive_state) {
case FIT_SR_DRIVE_OFFLINE:
pr_err("(%s): Drive offline...\n", skd_name(skdev));
break;
case FIT_SR_DRIVE_FW_BOOTING:
pr_debug("%s:%s:%d FIT_SR_DRIVE_FW_BOOTING %s\n",
skdev->name, __func__, __LINE__, skdev->name);
skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
break;
case FIT_SR_DRIVE_BUSY_SANITIZE:
pr_info("(%s): Start: BUSY_SANITIZE\n",
skd_name(skdev));
skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_BUSY_ERASE:
pr_info("(%s): Start: BUSY_ERASE\n", skd_name(skdev));
skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_INIT:
case FIT_SR_DRIVE_ONLINE:
skd_soft_reset(skdev);
break;
case FIT_SR_DRIVE_BUSY:
pr_err("(%s): Drive Busy...\n", skd_name(skdev));
skdev->state = SKD_DRVR_STATE_BUSY;
skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
break;
case FIT_SR_DRIVE_SOFT_RESET:
pr_err("(%s) drive soft reset in prog\n",
skd_name(skdev));
break;
case FIT_SR_DRIVE_FAULT:
/* Fault state is bad...soft reset won't do it...
* Hard reset, maybe, but does it work on device?
* For now, just fault so the system doesn't hang.
*/
skd_drive_fault(skdev);
/*start the queue so we can respond with error to requests */
pr_debug("%s:%s:%d starting %s queue\n",
skdev->name, __func__, __LINE__, skdev->name);
blk_start_queue(skdev->queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
case 0xFF:
/* Most likely the device isn't there or isn't responding
* to the BAR1 addresses. */
skd_drive_disappeared(skdev);
/*start the queue so we can respond with error to requests */
pr_debug("%s:%s:%d starting %s queue to error-out reqs\n",
skdev->name, __func__, __LINE__, skdev->name);
blk_start_queue(skdev->queue);
skdev->gendisk_on = -1;
wake_up_interruptible(&skdev->waitq);
break;
default:
pr_err("(%s) Start: unknown state %x\n",
skd_name(skdev), skdev->drive_state);
break;
}
state = SKD_READL(skdev, FIT_CONTROL);
pr_debug("%s:%s:%d FIT Control Status=0x%x\n",
skdev->name, __func__, __LINE__, state);
state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
pr_debug("%s:%s:%d Intr Status=0x%x\n",
skdev->name, __func__, __LINE__, state);
state = SKD_READL(skdev, FIT_INT_MASK_HOST);
pr_debug("%s:%s:%d Intr Mask=0x%x\n",
skdev->name, __func__, __LINE__, state);
state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
pr_debug("%s:%s:%d Msg from Dev=0x%x\n",
skdev->name, __func__, __LINE__, state);
state = SKD_READL(skdev, FIT_HW_VERSION);
pr_debug("%s:%s:%d HW version=0x%x\n",
skdev->name, __func__, __LINE__, state);
spin_unlock_irqrestore(&skdev->lock, flags);
}
static void skd_stop_device(struct skd_device *skdev)
{
unsigned long flags;
struct skd_special_context *skspcl = &skdev->internal_skspcl;
u32 dev_state;
int i;
spin_lock_irqsave(&skdev->lock, flags);
if (skdev->state != SKD_DRVR_STATE_ONLINE) {
pr_err("(%s): skd_stop_device not online no sync\n",
skd_name(skdev));
goto stop_out;
}
if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
pr_err("(%s): skd_stop_device no special\n",
skd_name(skdev));
goto stop_out;
}
skdev->state = SKD_DRVR_STATE_SYNCING;
skdev->sync_done = 0;
skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
spin_unlock_irqrestore(&skdev->lock, flags);
wait_event_interruptible_timeout(skdev->waitq,
(skdev->sync_done), (10 * HZ));
spin_lock_irqsave(&skdev->lock, flags);
switch (skdev->sync_done) {
case 0:
pr_err("(%s): skd_stop_device no sync\n",
skd_name(skdev));
break;
case 1:
pr_err("(%s): skd_stop_device sync done\n",
skd_name(skdev));
break;
default:
pr_err("(%s): skd_stop_device sync error\n",
skd_name(skdev));
}
stop_out:
skdev->state = SKD_DRVR_STATE_STOPPING;
spin_unlock_irqrestore(&skdev->lock, flags);
skd_kill_timer(skdev);
spin_lock_irqsave(&skdev->lock, flags);
skd_disable_interrupts(skdev);
/* ensure all ints on device are cleared */
/* soft reset the device to unload with a clean slate */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
spin_unlock_irqrestore(&skdev->lock, flags);
/* poll every 100ms, 1 second timeout */
for (i = 0; i < 10; i++) {
dev_state =
SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
if (dev_state == FIT_SR_DRIVE_INIT)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(100));
}
if (dev_state != FIT_SR_DRIVE_INIT)
pr_err("(%s): skd_stop_device state error 0x%02x\n",
skd_name(skdev), dev_state);
}
/* assume spinlock is held */
static void skd_restart_device(struct skd_device *skdev)
{
u32 state;
/* ack all ghost interrupts */
SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
state = SKD_READL(skdev, FIT_STATUS);
pr_debug("%s:%s:%d drive status=0x%x\n",
skdev->name, __func__, __LINE__, state);
state &= FIT_SR_DRIVE_STATE_MASK;
skdev->drive_state = state;
skdev->last_mtd = 0;
skdev->state = SKD_DRVR_STATE_RESTARTING;
skdev->timer_countdown = SKD_RESTARTING_TIMO;
skd_soft_reset(skdev);
}
/* assume spinlock is held */
static int skd_quiesce_dev(struct skd_device *skdev)
{
int rc = 0;
switch (skdev->state) {
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
pr_debug("%s:%s:%d stopping %s queue\n",
skdev->name, __func__, __LINE__, skdev->name);
blk_stop_queue(skdev->queue);
break;
case SKD_DRVR_STATE_ONLINE:
case SKD_DRVR_STATE_STOPPING:
case SKD_DRVR_STATE_SYNCING:
case SKD_DRVR_STATE_PAUSING:
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_RESUMING:
default:
rc = -EINVAL;
pr_debug("%s:%s:%d state [%d] not implemented\n",
skdev->name, __func__, __LINE__, skdev->state);
}
return rc;
}
/* assume spinlock is held */
static int skd_unquiesce_dev(struct skd_device *skdev)
{
int prev_driver_state = skdev->state;
skd_log_skdev(skdev, "unquiesce");
if (skdev->state == SKD_DRVR_STATE_ONLINE) {
pr_debug("%s:%s:%d **** device already ONLINE\n",
skdev->name, __func__, __LINE__);
return 0;
}
if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
/*
* If there has been an state change to other than
* ONLINE, we will rely on controller state change
* to come back online and restart the queue.
* The BUSY state means that driver is ready to
* continue normal processing but waiting for controller
* to become available.
*/
skdev->state = SKD_DRVR_STATE_BUSY;
pr_debug("%s:%s:%d drive BUSY state\n",
skdev->name, __func__, __LINE__);
return 0;
}
/*
* Drive has just come online, driver is either in startup,
* paused performing a task, or bust waiting for hardware.
*/
switch (skdev->state) {
case SKD_DRVR_STATE_PAUSED:
case SKD_DRVR_STATE_BUSY:
case SKD_DRVR_STATE_BUSY_IMMINENT:
case SKD_DRVR_STATE_BUSY_ERASE:
case SKD_DRVR_STATE_STARTING:
case SKD_DRVR_STATE_RESTARTING:
case SKD_DRVR_STATE_FAULT:
case SKD_DRVR_STATE_IDLE:
case SKD_DRVR_STATE_LOAD:
skdev->state = SKD_DRVR_STATE_ONLINE;
pr_err("(%s): Driver state %s(%d)=>%s(%d)\n",
skd_name(skdev),
skd_skdev_state_to_str(prev_driver_state),
prev_driver_state, skd_skdev_state_to_str(skdev->state),
skdev->state);
pr_debug("%s:%s:%d **** device ONLINE...starting block queue\n",
skdev->name, __func__, __LINE__);
pr_debug("%s:%s:%d starting %s queue\n",
skdev->name, __func__, __LINE__, skdev->name);
pr_info("(%s): STEC s1120 ONLINE\n", skd_name(skdev));
blk_start_queue(skdev->queue);
skdev->gendisk_on = 1;
wake_up_interruptible(&skdev->waitq);
break;
case SKD_DRVR_STATE_DISAPPEARED:
default:
pr_debug("%s:%s:%d **** driver state %d, not implemented \n",
skdev->name, __func__, __LINE__,
skdev->state);
return -EBUSY;
}
return 0;
}
/*
*****************************************************************************
* PCIe MSI/MSI-X INTERRUPT HANDLERS
*****************************************************************************
*/
static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d MSIX = 0x%x\n",
skdev->name, __func__, __LINE__,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
pr_err("(%s): MSIX reserved irq %d = 0x%x\n", skd_name(skdev),
irq, SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d MSIX = 0x%x\n",
skdev->name, __func__, __LINE__,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
skd_isr_fwstate(skdev);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
int flush_enqueued = 0;
int deferred;
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d MSIX = 0x%x\n",
skdev->name, __func__, __LINE__,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
&flush_enqueued);
if (flush_enqueued)
skd_request_fn(skdev->queue);
if (deferred)
schedule_work(&skdev->completion_worker);
else if (!flush_enqueued)
skd_request_fn(skdev->queue);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d MSIX = 0x%x\n",
skdev->name, __func__, __LINE__,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
skd_isr_msg_from_dev(skdev);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
{
struct skd_device *skdev = skd_host_data;
unsigned long flags;
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d MSIX = 0x%x\n",
skdev->name, __func__, __LINE__,
SKD_READL(skdev, FIT_INT_STATUS_HOST));
SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
spin_unlock_irqrestore(&skdev->lock, flags);
return IRQ_HANDLED;
}
/*
*****************************************************************************
* PCIe MSI/MSI-X SETUP
*****************************************************************************
*/
struct skd_msix_entry {
int have_irq;
u32 vector;
u32 entry;
struct skd_device *rsp;
char isr_name[30];
};
struct skd_init_msix_entry {
const char *name;
irq_handler_t handler;
};
#define SKD_MAX_MSIX_COUNT 13
#define SKD_MIN_MSIX_COUNT 7
#define SKD_BASE_MSIX_IRQ 4
static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
{ "(DMA 0)", skd_reserved_isr },
{ "(DMA 1)", skd_reserved_isr },
{ "(DMA 2)", skd_reserved_isr },
{ "(DMA 3)", skd_reserved_isr },
{ "(State Change)", skd_statec_isr },
{ "(COMPL_Q)", skd_comp_q },
{ "(MSG)", skd_msg_isr },
{ "(Reserved)", skd_reserved_isr },
{ "(Reserved)", skd_reserved_isr },
{ "(Queue Full 0)", skd_qfull_isr },
{ "(Queue Full 1)", skd_qfull_isr },
{ "(Queue Full 2)", skd_qfull_isr },
{ "(Queue Full 3)", skd_qfull_isr },
};
static void skd_release_msix(struct skd_device *skdev)
{
struct skd_msix_entry *qentry;
int i;
if (skdev->msix_entries) {
for (i = 0; i < skdev->msix_count; i++) {
qentry = &skdev->msix_entries[i];
skdev = qentry->rsp;
if (qentry->have_irq)
devm_free_irq(&skdev->pdev->dev,
qentry->vector, qentry->rsp);
}
kfree(skdev->msix_entries);
}
if (skdev->msix_count)
pci_disable_msix(skdev->pdev);
skdev->msix_count = 0;
skdev->msix_entries = NULL;
}
static int skd_acquire_msix(struct skd_device *skdev)
{
int i, rc;
struct pci_dev *pdev = skdev->pdev;
struct msix_entry *entries;
struct skd_msix_entry *qentry;
entries = kzalloc(sizeof(struct msix_entry) * SKD_MAX_MSIX_COUNT,
GFP_KERNEL);
if (!entries)
return -ENOMEM;
for (i = 0; i < SKD_MAX_MSIX_COUNT; i++)
entries[i].entry = i;
rc = pci_enable_msix_range(pdev, entries,
SKD_MIN_MSIX_COUNT, SKD_MAX_MSIX_COUNT);
if (rc < 0) {
pr_err("(%s): failed to enable MSI-X %d\n",
skd_name(skdev), rc);
goto msix_out;
}
skdev->msix_count = rc;
skdev->msix_entries = kzalloc(sizeof(struct skd_msix_entry) *
skdev->msix_count, GFP_KERNEL);
if (!skdev->msix_entries) {
rc = -ENOMEM;
pr_err("(%s): msix table allocation error\n",
skd_name(skdev));
goto msix_out;
}
for (i = 0; i < skdev->msix_count; i++) {
qentry = &skdev->msix_entries[i];
qentry->vector = entries[i].vector;
qentry->entry = entries[i].entry;
qentry->rsp = NULL;
qentry->have_irq = 0;
pr_debug("%s:%s:%d %s: <%s> msix (%d) vec %d, entry %x\n",
skdev->name, __func__, __LINE__,
pci_name(pdev), skdev->name,
i, qentry->vector, qentry->entry);
}
/* Enable MSI-X vectors for the base queue */
for (i = 0; i < skdev->msix_count; i++) {
qentry = &skdev->msix_entries[i];
snprintf(qentry->isr_name, sizeof(qentry->isr_name),
"%s%d-msix %s", DRV_NAME, skdev->devno,
msix_entries[i].name);
rc = devm_request_irq(&skdev->pdev->dev, qentry->vector,
msix_entries[i].handler, 0,
qentry->isr_name, skdev);
if (rc) {
pr_err("(%s): Unable to register(%d) MSI-X "
"handler %d: %s\n",
skd_name(skdev), rc, i, qentry->isr_name);
goto msix_out;
} else {
qentry->have_irq = 1;
qentry->rsp = skdev;
}
}
pr_debug("%s:%s:%d %s: <%s> msix %d irq(s) enabled\n",
skdev->name, __func__, __LINE__,
pci_name(pdev), skdev->name, skdev->msix_count);
return 0;
msix_out:
if (entries)
kfree(entries);
skd_release_msix(skdev);
return rc;
}
static int skd_acquire_irq(struct skd_device *skdev)
{
int rc;
struct pci_dev *pdev;
pdev = skdev->pdev;
skdev->msix_count = 0;
RETRY_IRQ_TYPE:
switch (skdev->irq_type) {
case SKD_IRQ_MSIX:
rc = skd_acquire_msix(skdev);
if (!rc)
pr_info("(%s): MSI-X %d irqs enabled\n",
skd_name(skdev), skdev->msix_count);
else {
pr_err(
"(%s): failed to enable MSI-X, re-trying with MSI %d\n",
skd_name(skdev), rc);
skdev->irq_type = SKD_IRQ_MSI;
goto RETRY_IRQ_TYPE;
}
break;
case SKD_IRQ_MSI:
snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d-msi",
DRV_NAME, skdev->devno);
rc = pci_enable_msi_range(pdev, 1, 1);
if (rc > 0) {
rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr, 0,
skdev->isr_name, skdev);
if (rc) {
pci_disable_msi(pdev);
pr_err(
"(%s): failed to allocate the MSI interrupt %d\n",
skd_name(skdev), rc);
goto RETRY_IRQ_LEGACY;
}
pr_info("(%s): MSI irq %d enabled\n",
skd_name(skdev), pdev->irq);
} else {
RETRY_IRQ_LEGACY:
pr_err(
"(%s): failed to enable MSI, re-trying with LEGACY %d\n",
skd_name(skdev), rc);
skdev->irq_type = SKD_IRQ_LEGACY;
goto RETRY_IRQ_TYPE;
}
break;
case SKD_IRQ_LEGACY:
snprintf(skdev->isr_name, sizeof(skdev->isr_name),
"%s%d-legacy", DRV_NAME, skdev->devno);
rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
IRQF_SHARED, skdev->isr_name, skdev);
if (!rc)
pr_info("(%s): LEGACY irq %d enabled\n",
skd_name(skdev), pdev->irq);
else
pr_err("(%s): request LEGACY irq error %d\n",
skd_name(skdev), rc);
break;
default:
pr_info("(%s): irq_type %d invalid, re-set to %d\n",
skd_name(skdev), skdev->irq_type, SKD_IRQ_DEFAULT);
skdev->irq_type = SKD_IRQ_LEGACY;
goto RETRY_IRQ_TYPE;
}
return rc;
}
static void skd_release_irq(struct skd_device *skdev)
{
switch (skdev->irq_type) {
case SKD_IRQ_MSIX:
skd_release_msix(skdev);
break;
case SKD_IRQ_MSI:
devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
pci_disable_msi(skdev->pdev);
break;
case SKD_IRQ_LEGACY:
devm_free_irq(&skdev->pdev->dev, skdev->pdev->irq, skdev);
break;
default:
pr_err("(%s): wrong irq type %d!",
skd_name(skdev), skdev->irq_type);
break;
}
}
/*
*****************************************************************************
* CONSTRUCT
*****************************************************************************
*/
static int skd_cons_skcomp(struct skd_device *skdev)
{
int rc = 0;
struct fit_completion_entry_v1 *skcomp;
u32 nbytes;
nbytes = sizeof(*skcomp) * SKD_N_COMPLETION_ENTRY;
nbytes += sizeof(struct fit_comp_error_info) * SKD_N_COMPLETION_ENTRY;
pr_debug("%s:%s:%d comp pci_alloc, total bytes %d entries %d\n",
skdev->name, __func__, __LINE__,
nbytes, SKD_N_COMPLETION_ENTRY);
skcomp = pci_alloc_consistent(skdev->pdev, nbytes,
&skdev->cq_dma_address);
if (skcomp == NULL) {
rc = -ENOMEM;
goto err_out;
}
memset(skcomp, 0, nbytes);
skdev->skcomp_table = skcomp;
skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
sizeof(*skcomp) *
SKD_N_COMPLETION_ENTRY);
err_out:
return rc;
}
static int skd_cons_skmsg(struct skd_device *skdev)
{
int rc = 0;
u32 i;
pr_debug("%s:%s:%d skmsg_table kzalloc, struct %lu, count %u total %lu\n",
skdev->name, __func__, __LINE__,
sizeof(struct skd_fitmsg_context),
skdev->num_fitmsg_context,
sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
skdev->skmsg_table = kzalloc(sizeof(struct skd_fitmsg_context)
*skdev->num_fitmsg_context, GFP_KERNEL);
if (skdev->skmsg_table == NULL) {
rc = -ENOMEM;
goto err_out;
}
for (i = 0; i < skdev->num_fitmsg_context; i++) {
struct skd_fitmsg_context *skmsg;
skmsg = &skdev->skmsg_table[i];
skmsg->id = i + SKD_ID_FIT_MSG;
skmsg->state = SKD_MSG_STATE_IDLE;
skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
SKD_N_FITMSG_BYTES + 64,
&skmsg->mb_dma_address);
if (skmsg->msg_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
skmsg->offset = (u32)((u64)skmsg->msg_buf &
(~FIT_QCMD_BASE_ADDRESS_MASK));
skmsg->msg_buf += ~FIT_QCMD_BASE_ADDRESS_MASK;
skmsg->msg_buf = (u8 *)((u64)skmsg->msg_buf &
FIT_QCMD_BASE_ADDRESS_MASK);
skmsg->mb_dma_address += ~FIT_QCMD_BASE_ADDRESS_MASK;
skmsg->mb_dma_address &= FIT_QCMD_BASE_ADDRESS_MASK;
memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
skmsg->next = &skmsg[1];
}
/* Free list is in order starting with the 0th entry. */
skdev->skmsg_table[i - 1].next = NULL;
skdev->skmsg_free_list = skdev->skmsg_table;
err_out:
return rc;
}
static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
u32 n_sg,
dma_addr_t *ret_dma_addr)
{
struct fit_sg_descriptor *sg_list;
u32 nbytes;
nbytes = sizeof(*sg_list) * n_sg;
sg_list = pci_alloc_consistent(skdev->pdev, nbytes, ret_dma_addr);
if (sg_list != NULL) {
uint64_t dma_address = *ret_dma_addr;
u32 i;
memset(sg_list, 0, nbytes);
for (i = 0; i < n_sg - 1; i++) {
uint64_t ndp_off;
ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
sg_list[i].next_desc_ptr = dma_address + ndp_off;
}
sg_list[i].next_desc_ptr = 0LL;
}
return sg_list;
}
static int skd_cons_skreq(struct skd_device *skdev)
{
int rc = 0;
u32 i;
pr_debug("%s:%s:%d skreq_table kzalloc, struct %lu, count %u total %lu\n",
skdev->name, __func__, __LINE__,
sizeof(struct skd_request_context),
skdev->num_req_context,
sizeof(struct skd_request_context) * skdev->num_req_context);
skdev->skreq_table = kzalloc(sizeof(struct skd_request_context)
* skdev->num_req_context, GFP_KERNEL);
if (skdev->skreq_table == NULL) {
rc = -ENOMEM;
goto err_out;
}
pr_debug("%s:%s:%d alloc sg_table sg_per_req %u scatlist %lu total %lu\n",
skdev->name, __func__, __LINE__,
skdev->sgs_per_request, sizeof(struct scatterlist),
skdev->sgs_per_request * sizeof(struct scatterlist));
for (i = 0; i < skdev->num_req_context; i++) {
struct skd_request_context *skreq;
skreq = &skdev->skreq_table[i];
skreq->id = i + SKD_ID_RW_REQUEST;
skreq->state = SKD_REQ_STATE_IDLE;
skreq->sg = kzalloc(sizeof(struct scatterlist) *
skdev->sgs_per_request, GFP_KERNEL);
if (skreq->sg == NULL) {
rc = -ENOMEM;
goto err_out;
}
sg_init_table(skreq->sg, skdev->sgs_per_request);
skreq->sksg_list = skd_cons_sg_list(skdev,
skdev->sgs_per_request,
&skreq->sksg_dma_address);
if (skreq->sksg_list == NULL) {
rc = -ENOMEM;
goto err_out;
}
skreq->next = &skreq[1];
}
/* Free list is in order starting with the 0th entry. */
skdev->skreq_table[i - 1].next = NULL;
skdev->skreq_free_list = skdev->skreq_table;
err_out:
return rc;
}
static int skd_cons_skspcl(struct skd_device *skdev)
{
int rc = 0;
u32 i, nbytes;
pr_debug("%s:%s:%d skspcl_table kzalloc, struct %lu, count %u total %lu\n",
skdev->name, __func__, __LINE__,
sizeof(struct skd_special_context),
skdev->n_special,
sizeof(struct skd_special_context) * skdev->n_special);
skdev->skspcl_table = kzalloc(sizeof(struct skd_special_context)
* skdev->n_special, GFP_KERNEL);
if (skdev->skspcl_table == NULL) {
rc = -ENOMEM;
goto err_out;
}
for (i = 0; i < skdev->n_special; i++) {
struct skd_special_context *skspcl;
skspcl = &skdev->skspcl_table[i];
skspcl->req.id = i + SKD_ID_SPECIAL_REQUEST;
skspcl->req.state = SKD_REQ_STATE_IDLE;
skspcl->req.next = &skspcl[1].req;
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
&skspcl->mb_dma_address);
if (skspcl->msg_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
memset(skspcl->msg_buf, 0, nbytes);
skspcl->req.sg = kzalloc(sizeof(struct scatterlist) *
SKD_N_SG_PER_SPECIAL, GFP_KERNEL);
if (skspcl->req.sg == NULL) {
rc = -ENOMEM;
goto err_out;
}
skspcl->req.sksg_list = skd_cons_sg_list(skdev,
SKD_N_SG_PER_SPECIAL,
&skspcl->req.
sksg_dma_address);
if (skspcl->req.sksg_list == NULL) {
rc = -ENOMEM;
goto err_out;
}
}
/* Free list is in order starting with the 0th entry. */
skdev->skspcl_table[i - 1].req.next = NULL;
skdev->skspcl_free_list = skdev->skspcl_table;
return rc;
err_out:
return rc;
}
static int skd_cons_sksb(struct skd_device *skdev)
{
int rc = 0;
struct skd_special_context *skspcl;
u32 nbytes;
skspcl = &skdev->internal_skspcl;
skspcl->req.id = 0 + SKD_ID_INTERNAL;
skspcl->req.state = SKD_REQ_STATE_IDLE;
nbytes = SKD_N_INTERNAL_BYTES;
skspcl->data_buf = pci_alloc_consistent(skdev->pdev, nbytes,
&skspcl->db_dma_address);
if (skspcl->data_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
memset(skspcl->data_buf, 0, nbytes);
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
skspcl->msg_buf = pci_alloc_consistent(skdev->pdev, nbytes,
&skspcl->mb_dma_address);
if (skspcl->msg_buf == NULL) {
rc = -ENOMEM;
goto err_out;
}
memset(skspcl->msg_buf, 0, nbytes);
skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
&skspcl->req.sksg_dma_address);
if (skspcl->req.sksg_list == NULL) {
rc = -ENOMEM;
goto err_out;
}
if (!skd_format_internal_skspcl(skdev)) {
rc = -EINVAL;
goto err_out;
}
err_out:
return rc;
}
static int skd_cons_disk(struct skd_device *skdev)
{
int rc = 0;
struct gendisk *disk;
struct request_queue *q;
unsigned long flags;
disk = alloc_disk(SKD_MINORS_PER_DEVICE);
if (!disk) {
rc = -ENOMEM;
goto err_out;
}
skdev->disk = disk;
sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
disk->major = skdev->major;
disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
disk->fops = &skd_blockdev_ops;
disk->private_data = skdev;
q = blk_init_queue(skd_request_fn, &skdev->lock);
if (!q) {
rc = -ENOMEM;
goto err_out;
}
skdev->queue = q;
disk->queue = q;
q->queuedata = skdev;
blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
blk_queue_max_segments(q, skdev->sgs_per_request);
blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
/* set sysfs ptimal_io_size to 8K */
blk_queue_io_opt(q, 8192);
/* DISCARD Flag initialization. */
q->limits.discard_granularity = 8192;
q->limits.discard_alignment = 0;
q->limits.max_discard_sectors = UINT_MAX >> 9;
q->limits.discard_zeroes_data = 1;
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
spin_lock_irqsave(&skdev->lock, flags);
pr_debug("%s:%s:%d stopping %s queue\n",
skdev->name, __func__, __LINE__, skdev->name);
blk_stop_queue(skdev->queue);
spin_unlock_irqrestore(&skdev->lock, flags);
err_out:
return rc;
}
#define SKD_N_DEV_TABLE 16u
static u32 skd_next_devno;
static struct skd_device *skd_construct(struct pci_dev *pdev)
{
struct skd_device *skdev;
int blk_major = skd_major;
int rc;
skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
if (!skdev) {
pr_err(PFX "(%s): memory alloc failure\n",
pci_name(pdev));
return NULL;
}
skdev->state = SKD_DRVR_STATE_LOAD;
skdev->pdev = pdev;
skdev->devno = skd_next_devno++;
skdev->major = blk_major;
skdev->irq_type = skd_isr_type;
sprintf(skdev->name, DRV_NAME "%d", skdev->devno);
skdev->dev_max_queue_depth = 0;
skdev->num_req_context = skd_max_queue_depth;
skdev->num_fitmsg_context = skd_max_queue_depth;
skdev->n_special = skd_max_pass_thru;
skdev->cur_max_queue_depth = 1;
skdev->queue_low_water_mark = 1;
skdev->proto_ver = 99;
skdev->sgs_per_request = skd_sgs_per_request;
skdev->dbg_level = skd_dbg_level;
atomic_set(&skdev->device_count, 0);
spin_lock_init(&skdev->lock);
INIT_WORK(&skdev->completion_worker, skd_completion_worker);
pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
rc = skd_cons_skcomp(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
rc = skd_cons_skmsg(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
rc = skd_cons_skreq(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
rc = skd_cons_skspcl(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
rc = skd_cons_sksb(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
rc = skd_cons_disk(skdev);
if (rc < 0)
goto err_out;
pr_debug("%s:%s:%d VICTORY\n", skdev->name, __func__, __LINE__);
return skdev;
err_out:
pr_debug("%s:%s:%d construct failed\n",
skdev->name, __func__, __LINE__);
skd_destruct(skdev);
return NULL;
}
/*
*****************************************************************************
* DESTRUCT (FREE)
*****************************************************************************
*/
static void skd_free_skcomp(struct skd_device *skdev)
{
if (skdev->skcomp_table != NULL) {
u32 nbytes;
nbytes = sizeof(skdev->skcomp_table[0]) *
SKD_N_COMPLETION_ENTRY;
pci_free_consistent(skdev->pdev, nbytes,
skdev->skcomp_table, skdev->cq_dma_address);
}
skdev->skcomp_table = NULL;
skdev->cq_dma_address = 0;
}
static void skd_free_skmsg(struct skd_device *skdev)
{
u32 i;
if (skdev->skmsg_table == NULL)
return;
for (i = 0; i < skdev->num_fitmsg_context; i++) {
struct skd_fitmsg_context *skmsg;
skmsg = &skdev->skmsg_table[i];
if (skmsg->msg_buf != NULL) {
skmsg->msg_buf += skmsg->offset;
skmsg->mb_dma_address += skmsg->offset;
pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
skmsg->msg_buf,
skmsg->mb_dma_address);
}
skmsg->msg_buf = NULL;
skmsg->mb_dma_address = 0;
}
kfree(skdev->skmsg_table);
skdev->skmsg_table = NULL;
}
static void skd_free_sg_list(struct skd_device *skdev,
struct fit_sg_descriptor *sg_list,
u32 n_sg, dma_addr_t dma_addr)
{
if (sg_list != NULL) {
u32 nbytes;
nbytes = sizeof(*sg_list) * n_sg;
pci_free_consistent(skdev->pdev, nbytes, sg_list, dma_addr);
}
}
static void skd_free_skreq(struct skd_device *skdev)
{
u32 i;
if (skdev->skreq_table == NULL)
return;
for (i = 0; i < skdev->num_req_context; i++) {
struct skd_request_context *skreq;
skreq = &skdev->skreq_table[i];
skd_free_sg_list(skdev, skreq->sksg_list,
skdev->sgs_per_request,
skreq->sksg_dma_address);
skreq->sksg_list = NULL;
skreq->sksg_dma_address = 0;
kfree(skreq->sg);
}
kfree(skdev->skreq_table);
skdev->skreq_table = NULL;
}
static void skd_free_skspcl(struct skd_device *skdev)
{
u32 i;
u32 nbytes;
if (skdev->skspcl_table == NULL)
return;
for (i = 0; i < skdev->n_special; i++) {
struct skd_special_context *skspcl;
skspcl = &skdev->skspcl_table[i];
if (skspcl->msg_buf != NULL) {
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
pci_free_consistent(skdev->pdev, nbytes,
skspcl->msg_buf,
skspcl->mb_dma_address);
}
skspcl->msg_buf = NULL;
skspcl->mb_dma_address = 0;
skd_free_sg_list(skdev, skspcl->req.sksg_list,
SKD_N_SG_PER_SPECIAL,
skspcl->req.sksg_dma_address);
skspcl->req.sksg_list = NULL;
skspcl->req.sksg_dma_address = 0;
kfree(skspcl->req.sg);
}
kfree(skdev->skspcl_table);
skdev->skspcl_table = NULL;
}
static void skd_free_sksb(struct skd_device *skdev)
{
struct skd_special_context *skspcl;
u32 nbytes;
skspcl = &skdev->internal_skspcl;
if (skspcl->data_buf != NULL) {
nbytes = SKD_N_INTERNAL_BYTES;
pci_free_consistent(skdev->pdev, nbytes,
skspcl->data_buf, skspcl->db_dma_address);
}
skspcl->data_buf = NULL;
skspcl->db_dma_address = 0;
if (skspcl->msg_buf != NULL) {
nbytes = SKD_N_SPECIAL_FITMSG_BYTES;
pci_free_consistent(skdev->pdev, nbytes,
skspcl->msg_buf, skspcl->mb_dma_address);
}
skspcl->msg_buf = NULL;
skspcl->mb_dma_address = 0;
skd_free_sg_list(skdev, skspcl->req.sksg_list, 1,
skspcl->req.sksg_dma_address);
skspcl->req.sksg_list = NULL;
skspcl->req.sksg_dma_address = 0;
}
static void skd_free_disk(struct skd_device *skdev)
{
struct gendisk *disk = skdev->disk;
if (disk != NULL) {
struct request_queue *q = disk->queue;
if (disk->flags & GENHD_FL_UP)
del_gendisk(disk);
if (q)
blk_cleanup_queue(q);
put_disk(disk);
}
skdev->disk = NULL;
}
static void skd_destruct(struct skd_device *skdev)
{
if (skdev == NULL)
return;
pr_debug("%s:%s:%d disk\n", skdev->name, __func__, __LINE__);
skd_free_disk(skdev);
pr_debug("%s:%s:%d sksb\n", skdev->name, __func__, __LINE__);
skd_free_sksb(skdev);
pr_debug("%s:%s:%d skspcl\n", skdev->name, __func__, __LINE__);
skd_free_skspcl(skdev);
pr_debug("%s:%s:%d skreq\n", skdev->name, __func__, __LINE__);
skd_free_skreq(skdev);
pr_debug("%s:%s:%d skmsg\n", skdev->name, __func__, __LINE__);
skd_free_skmsg(skdev);
pr_debug("%s:%s:%d skcomp\n", skdev->name, __func__, __LINE__);
skd_free_skcomp(skdev);
pr_debug("%s:%s:%d skdev\n", skdev->name, __func__, __LINE__);
kfree(skdev);
}
/*
*****************************************************************************
* BLOCK DEVICE (BDEV) GLUE
*****************************************************************************
*/
static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct skd_device *skdev;
u64 capacity;
skdev = bdev->bd_disk->private_data;
pr_debug("%s:%s:%d %s: CMD[%s] getgeo device\n",
skdev->name, __func__, __LINE__,
bdev->bd_disk->disk_name, current->comm);
if (skdev->read_cap_is_valid) {
capacity = get_capacity(skdev->disk);
geo->heads = 64;
geo->sectors = 255;
geo->cylinders = (capacity) / (255 * 64);
return 0;
}
return -EIO;
}
static int skd_bdev_attach(struct skd_device *skdev)
{
pr_debug("%s:%s:%d add_disk\n", skdev->name, __func__, __LINE__);
add_disk(skdev->disk);
return 0;
}
static const struct block_device_operations skd_blockdev_ops = {
.owner = THIS_MODULE,
.ioctl = skd_bdev_ioctl,
.getgeo = skd_bdev_getgeo,
};
/*
*****************************************************************************
* PCIe DRIVER GLUE
*****************************************************************************
*/
static DEFINE_PCI_DEVICE_TABLE(skd_pci_tbl) = {
{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
{ 0 } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
static char *skd_pci_info(struct skd_device *skdev, char *str)
{
int pcie_reg;
strcpy(str, "PCIe (");
pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
if (pcie_reg) {
char lwstr[6];
uint16_t pcie_lstat, lspeed, lwidth;
pcie_reg += 0x12;
pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
lspeed = pcie_lstat & (0xF);
lwidth = (pcie_lstat & 0x3F0) >> 4;
if (lspeed == 1)
strcat(str, "2.5GT/s ");
else if (lspeed == 2)
strcat(str, "5.0GT/s ");
else
strcat(str, "<unknown> ");
snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
strcat(str, lwstr);
}
return str;
}
static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int i;
int rc = 0;
char pci_str[32];
struct skd_device *skdev;
pr_info("STEC s1120 Driver(%s) version %s-b%s\n",
DRV_NAME, DRV_VERSION, DRV_BUILD_ID);
pr_info("(skd?:??:[%s]): vendor=%04X device=%04x\n",
pci_name(pdev), pdev->vendor, pdev->device);
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!rc) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
pr_err("(%s): consistent DMA mask error %d\n",
pci_name(pdev), rc);
}
} else {
(rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)));
if (rc) {
pr_err("(%s): DMA mask error %d\n",
pci_name(pdev), rc);
goto err_out_regions;
}
}
if (!skd_major) {
rc = register_blkdev(0, DRV_NAME);
if (rc < 0)
goto err_out_regions;
BUG_ON(!rc);
skd_major = rc;
}
skdev = skd_construct(pdev);
if (skdev == NULL) {
rc = -ENOMEM;
goto err_out_regions;
}
skd_pci_info(skdev, pci_str);
pr_info("(%s): %s 64bit\n", skd_name(skdev), pci_str);
pci_set_master(pdev);
rc = pci_enable_pcie_error_reporting(pdev);
if (rc) {
pr_err(
"(%s): bad enable of PCIe error reporting rc=%d\n",
skd_name(skdev), rc);
skdev->pcie_error_reporting_is_enabled = 0;
} else
skdev->pcie_error_reporting_is_enabled = 1;
pci_set_drvdata(pdev, skdev);
skdev->disk->driverfs_dev = &pdev->dev;
for (i = 0; i < SKD_MAX_BARS; i++) {
skdev->mem_phys[i] = pci_resource_start(pdev, i);
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
skdev->mem_size[i]);
if (!skdev->mem_map[i]) {
pr_err("(%s): Unable to map adapter memory!\n",
skd_name(skdev));
rc = -ENODEV;
goto err_out_iounmap;
}
pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
skdev->name, __func__, __LINE__,
skdev->mem_map[i],
(uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
}
rc = skd_acquire_irq(skdev);
if (rc) {
pr_err("(%s): interrupt resource error %d\n",
skd_name(skdev), rc);
goto err_out_iounmap;
}
rc = skd_start_timer(skdev);
if (rc)
goto err_out_timer;
init_waitqueue_head(&skdev->waitq);
skd_start_device(skdev);
rc = wait_event_interruptible_timeout(skdev->waitq,
(skdev->gendisk_on),
(SKD_START_WAIT_SECONDS * HZ));
if (skdev->gendisk_on > 0) {
/* device came on-line after reset */
skd_bdev_attach(skdev);
rc = 0;
} else {
/* we timed out, something is wrong with the device,
don't add the disk structure */
pr_err(
"(%s): error: waiting for s1120 timed out %d!\n",
skd_name(skdev), rc);
/* in case of no error; we timeout with ENXIO */
if (!rc)
rc = -ENXIO;
goto err_out_timer;
}
#ifdef SKD_VMK_POLL_HANDLER
if (skdev->irq_type == SKD_IRQ_MSIX) {
/* MSIX completion handler is being used for coredump */
vmklnx_scsi_register_poll_handler(skdev->scsi_host,
skdev->msix_entries[5].vector,
skd_comp_q, skdev);
} else {
vmklnx_scsi_register_poll_handler(skdev->scsi_host,
skdev->pdev->irq, skd_isr,
skdev);
}
#endif /* SKD_VMK_POLL_HANDLER */
return rc;
err_out_timer:
skd_stop_device(skdev);
skd_release_irq(skdev);
err_out_iounmap:
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
skd_destruct(skdev);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return rc;
}
static void skd_pci_remove(struct pci_dev *pdev)
{
int i;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
pr_err("%s: no device data for PCI\n", pci_name(pdev));
return;
}
skd_stop_device(skdev);
skd_release_irq(skdev);
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap((u32 *)skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
skd_destruct(skdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
return;
}
static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
pr_err("%s: no device data for PCI\n", pci_name(pdev));
return -EIO;
}
skd_stop_device(skdev);
skd_release_irq(skdev);
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap((u32 *)skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
pci_release_regions(pdev);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int skd_pci_resume(struct pci_dev *pdev)
{
int i;
int rc = 0;
struct skd_device *skdev;
skdev = pci_get_drvdata(pdev);
if (!skdev) {
pr_err("%s: no device data for PCI\n", pci_name(pdev));
return -1;
}
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
rc = pci_enable_device(pdev);
if (rc)
return rc;
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out;
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (!rc) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
pr_err("(%s): consistent DMA mask error %d\n",
pci_name(pdev), rc);
}
} else {
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc) {
pr_err("(%s): DMA mask error %d\n",
pci_name(pdev), rc);
goto err_out_regions;
}
}
pci_set_master(pdev);
rc = pci_enable_pcie_error_reporting(pdev);
if (rc) {
pr_err("(%s): bad enable of PCIe error reporting rc=%d\n",
skdev->name, rc);
skdev->pcie_error_reporting_is_enabled = 0;
} else
skdev->pcie_error_reporting_is_enabled = 1;
for (i = 0; i < SKD_MAX_BARS; i++) {
skdev->mem_phys[i] = pci_resource_start(pdev, i);
skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
skdev->mem_size[i]);
if (!skdev->mem_map[i]) {
pr_err("(%s): Unable to map adapter memory!\n",
skd_name(skdev));
rc = -ENODEV;
goto err_out_iounmap;
}
pr_debug("%s:%s:%d mem_map=%p, phyd=%016llx, size=%d\n",
skdev->name, __func__, __LINE__,
skdev->mem_map[i],
(uint64_t)skdev->mem_phys[i], skdev->mem_size[i]);
}
rc = skd_acquire_irq(skdev);
if (rc) {
pr_err("(%s): interrupt resource error %d\n",
pci_name(pdev), rc);
goto err_out_iounmap;
}
rc = skd_start_timer(skdev);
if (rc)
goto err_out_timer;
init_waitqueue_head(&skdev->waitq);
skd_start_device(skdev);
return rc;
err_out_timer:
skd_stop_device(skdev);
skd_release_irq(skdev);
err_out_iounmap:
for (i = 0; i < SKD_MAX_BARS; i++)
if (skdev->mem_map[i])
iounmap(skdev->mem_map[i]);
if (skdev->pcie_error_reporting_is_enabled)
pci_disable_pcie_error_reporting(pdev);
err_out_regions:
pci_release_regions(pdev);
err_out:
pci_disable_device(pdev);
return rc;
}
static void skd_pci_shutdown(struct pci_dev *pdev)
{
struct skd_device *skdev;
pr_err("skd_pci_shutdown called\n");
skdev = pci_get_drvdata(pdev);
if (!skdev) {
pr_err("%s: no device data for PCI\n", pci_name(pdev));
return;
}
pr_err("%s: calling stop\n", skd_name(skdev));
skd_stop_device(skdev);
}
static struct pci_driver skd_driver = {
.name = DRV_NAME,
.id_table = skd_pci_tbl,
.probe = skd_pci_probe,
.remove = skd_pci_remove,
.suspend = skd_pci_suspend,
.resume = skd_pci_resume,
.shutdown = skd_pci_shutdown,
};
/*
*****************************************************************************
* LOGGING SUPPORT
*****************************************************************************
*/
static const char *skd_name(struct skd_device *skdev)
{
memset(skdev->id_str, 0, sizeof(skdev->id_str));
if (skdev->inquiry_is_valid)
snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:%s:[%s]",
skdev->name, skdev->inq_serial_num,
pci_name(skdev->pdev));
else
snprintf(skdev->id_str, sizeof(skdev->id_str), "%s:??:[%s]",
skdev->name, pci_name(skdev->pdev));
return skdev->id_str;
}
const char *skd_drive_state_to_str(int state)
{
switch (state) {
case FIT_SR_DRIVE_OFFLINE:
return "OFFLINE";
case FIT_SR_DRIVE_INIT:
return "INIT";
case FIT_SR_DRIVE_ONLINE:
return "ONLINE";
case FIT_SR_DRIVE_BUSY:
return "BUSY";
case FIT_SR_DRIVE_FAULT:
return "FAULT";
case FIT_SR_DRIVE_DEGRADED:
return "DEGRADED";
case FIT_SR_PCIE_LINK_DOWN:
return "INK_DOWN";
case FIT_SR_DRIVE_SOFT_RESET:
return "SOFT_RESET";
case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
return "NEED_FW";
case FIT_SR_DRIVE_INIT_FAULT:
return "INIT_FAULT";
case FIT_SR_DRIVE_BUSY_SANITIZE:
return "BUSY_SANITIZE";
case FIT_SR_DRIVE_BUSY_ERASE:
return "BUSY_ERASE";
case FIT_SR_DRIVE_FW_BOOTING:
return "FW_BOOTING";
default:
return "???";
}
}
const char *skd_skdev_state_to_str(enum skd_drvr_state state)
{
switch (state) {
case SKD_DRVR_STATE_LOAD:
return "LOAD";
case SKD_DRVR_STATE_IDLE:
return "IDLE";
case SKD_DRVR_STATE_BUSY:
return "BUSY";
case SKD_DRVR_STATE_STARTING:
return "STARTING";
case SKD_DRVR_STATE_ONLINE:
return "ONLINE";
case SKD_DRVR_STATE_PAUSING:
return "PAUSING";
case SKD_DRVR_STATE_PAUSED:
return "PAUSED";
case SKD_DRVR_STATE_DRAINING_TIMEOUT:
return "DRAINING_TIMEOUT";
case SKD_DRVR_STATE_RESTARTING:
return "RESTARTING";
case SKD_DRVR_STATE_RESUMING:
return "RESUMING";
case SKD_DRVR_STATE_STOPPING:
return "STOPPING";
case SKD_DRVR_STATE_SYNCING:
return "SYNCING";
case SKD_DRVR_STATE_FAULT:
return "FAULT";
case SKD_DRVR_STATE_DISAPPEARED:
return "DISAPPEARED";
case SKD_DRVR_STATE_BUSY_ERASE:
return "BUSY_ERASE";
case SKD_DRVR_STATE_BUSY_SANITIZE:
return "BUSY_SANITIZE";
case SKD_DRVR_STATE_BUSY_IMMINENT:
return "BUSY_IMMINENT";
case SKD_DRVR_STATE_WAIT_BOOT:
return "WAIT_BOOT";
default:
return "???";
}
}
static const char *skd_skmsg_state_to_str(enum skd_fit_msg_state state)
{
switch (state) {
case SKD_MSG_STATE_IDLE:
return "IDLE";
case SKD_MSG_STATE_BUSY:
return "BUSY";
default:
return "???";
}
}
static const char *skd_skreq_state_to_str(enum skd_req_state state)
{
switch (state) {
case SKD_REQ_STATE_IDLE:
return "IDLE";
case SKD_REQ_STATE_SETUP:
return "SETUP";
case SKD_REQ_STATE_BUSY:
return "BUSY";
case SKD_REQ_STATE_COMPLETED:
return "COMPLETED";
case SKD_REQ_STATE_TIMEOUT:
return "TIMEOUT";
case SKD_REQ_STATE_ABORTED:
return "ABORTED";
default:
return "???";
}
}
static void skd_log_skdev(struct skd_device *skdev, const char *event)
{
pr_debug("%s:%s:%d (%s) skdev=%p event='%s'\n",
skdev->name, __func__, __LINE__, skdev->name, skdev, event);
pr_debug("%s:%s:%d drive_state=%s(%d) driver_state=%s(%d)\n",
skdev->name, __func__, __LINE__,
skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
skd_skdev_state_to_str(skdev->state), skdev->state);
pr_debug("%s:%s:%d busy=%d limit=%d dev=%d lowat=%d\n",
skdev->name, __func__, __LINE__,
skdev->in_flight, skdev->cur_max_queue_depth,
skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
pr_debug("%s:%s:%d timestamp=0x%x cycle=%d cycle_ix=%d\n",
skdev->name, __func__, __LINE__,
skdev->timeout_stamp, skdev->skcomp_cycle, skdev->skcomp_ix);
}
static void skd_log_skmsg(struct skd_device *skdev,
struct skd_fitmsg_context *skmsg, const char *event)
{
pr_debug("%s:%s:%d (%s) skmsg=%p event='%s'\n",
skdev->name, __func__, __LINE__, skdev->name, skmsg, event);
pr_debug("%s:%s:%d state=%s(%d) id=0x%04x length=%d\n",
skdev->name, __func__, __LINE__,
skd_skmsg_state_to_str(skmsg->state), skmsg->state,
skmsg->id, skmsg->length);
}
static void skd_log_skreq(struct skd_device *skdev,
struct skd_request_context *skreq, const char *event)
{
pr_debug("%s:%s:%d (%s) skreq=%p event='%s'\n",
skdev->name, __func__, __LINE__, skdev->name, skreq, event);
pr_debug("%s:%s:%d state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
skdev->name, __func__, __LINE__,
skd_skreq_state_to_str(skreq->state), skreq->state,
skreq->id, skreq->fitmsg_id);
pr_debug("%s:%s:%d timo=0x%x sg_dir=%d n_sg=%d\n",
skdev->name, __func__, __LINE__,
skreq->timeout_stamp, skreq->sg_data_dir, skreq->n_sg);
if (skreq->req != NULL) {
struct request *req = skreq->req;
u32 lba = (u32)blk_rq_pos(req);
u32 count = blk_rq_sectors(req);
pr_debug("%s:%s:%d "
"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n",
skdev->name, __func__, __LINE__,
req, lba, lba, count, count,
(int)rq_data_dir(req));
} else
pr_debug("%s:%s:%d req=NULL\n",
skdev->name, __func__, __LINE__);
}
/*
*****************************************************************************
* MODULE GLUE
*****************************************************************************
*/
static int __init skd_init(void)
{
pr_info(PFX " v%s-b%s loaded\n", DRV_VERSION, DRV_BUILD_ID);
switch (skd_isr_type) {
case SKD_IRQ_LEGACY:
case SKD_IRQ_MSI:
case SKD_IRQ_MSIX:
break;
default:
pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
skd_isr_type, SKD_IRQ_DEFAULT);
skd_isr_type = SKD_IRQ_DEFAULT;
}
if (skd_max_queue_depth < 1 ||
skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
}
if (skd_max_req_per_msg < 1 || skd_max_req_per_msg > 14) {
pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
}
if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
}
if (skd_dbg_level < 0 || skd_dbg_level > 2) {
pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
skd_dbg_level, 0);
skd_dbg_level = 0;
}
if (skd_isr_comp_limit < 0) {
pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
skd_isr_comp_limit, 0);
skd_isr_comp_limit = 0;
}
if (skd_max_pass_thru < 1 || skd_max_pass_thru > 50) {
pr_err(PFX "skd_max_pass_thru %d invalid, re-set to %d\n",
skd_max_pass_thru, SKD_N_SPECIAL_CONTEXT);
skd_max_pass_thru = SKD_N_SPECIAL_CONTEXT;
}
return pci_register_driver(&skd_driver);
}
static void __exit skd_exit(void)
{
pr_info(PFX " v%s-b%s unloading\n", DRV_VERSION, DRV_BUILD_ID);
pci_unregister_driver(&skd_driver);
if (skd_major)
unregister_blkdev(skd_major, DRV_NAME);
}
module_init(skd_init);
module_exit(skd_exit);