linux-stable/kernel/bpf/sockmap.c
John Fastabend 3c0cff34e9 bpf: sockmap, map_release does not hold refcnt for pinned maps
[ Upstream commit ba6b8de423 ]

Relying on map_release hook to decrement the reference counts when a
map is removed only works if the map is not being pinned. In the
pinned case the ref is decremented immediately and the BPF programs
released. After this BPF programs may not be in-use which is not
what the user would expect.

This patch moves the release logic into bpf_map_put_uref() and brings
sockmap in-line with how a similar case is handled in prog array maps.

Fixes: 3d9e952697 ("bpf: sockmap, fix leaking maps with attached but not detached progs")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-11-04 14:52:44 +01:00

917 lines
24 KiB
C

/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
/* A BPF sock_map is used to store sock objects. This is primarly used
* for doing socket redirect with BPF helper routines.
*
* A sock map may have BPF programs attached to it, currently a program
* used to parse packets and a program to provide a verdict and redirect
* decision on the packet are supported. Any programs attached to a sock
* map are inherited by sock objects when they are added to the map. If
* no BPF programs are attached the sock object may only be used for sock
* redirect.
*
* A sock object may be in multiple maps, but can only inherit a single
* parse or verdict program. If adding a sock object to a map would result
* in having multiple parsing programs the update will return an EBUSY error.
*
* For reference this program is similar to devmap used in XDP context
* reviewing these together may be useful. For an example please review
* ./samples/bpf/sockmap/.
*/
#include <linux/bpf.h>
#include <net/sock.h>
#include <linux/filter.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
#include <linux/list.h>
#include <net/strparser.h>
#include <net/tcp.h>
struct bpf_stab {
struct bpf_map map;
struct sock **sock_map;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
};
enum smap_psock_state {
SMAP_TX_RUNNING,
};
struct smap_psock_map_entry {
struct list_head list;
struct sock **entry;
};
struct smap_psock {
struct rcu_head rcu;
/* refcnt is used inside sk_callback_lock */
u32 refcnt;
/* datapath variables */
struct sk_buff_head rxqueue;
bool strp_enabled;
/* datapath error path cache across tx work invocations */
int save_rem;
int save_off;
struct sk_buff *save_skb;
struct strparser strp;
struct bpf_prog *bpf_parse;
struct bpf_prog *bpf_verdict;
struct list_head maps;
/* Back reference used when sock callback trigger sockmap operations */
struct sock *sock;
unsigned long state;
struct work_struct tx_work;
struct work_struct gc_work;
void (*save_data_ready)(struct sock *sk);
void (*save_write_space)(struct sock *sk);
void (*save_state_change)(struct sock *sk);
};
static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
{
return rcu_dereference_sk_user_data(sk);
}
/* compute the linear packet data range [data, data_end) for skb when
* sk_skb type programs are in use.
*/
static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
{
TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
}
enum __sk_action {
__SK_DROP = 0,
__SK_PASS,
__SK_REDIRECT,
};
static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
{
struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
int rc;
if (unlikely(!prog))
return __SK_DROP;
skb_orphan(skb);
/* We need to ensure that BPF metadata for maps is also cleared
* when we orphan the skb so that we don't have the possibility
* to reference a stale map.
*/
TCP_SKB_CB(skb)->bpf.map = NULL;
skb->sk = psock->sock;
bpf_compute_data_end_sk_skb(skb);
preempt_disable();
rc = (*prog->bpf_func)(skb, prog->insnsi);
preempt_enable();
skb->sk = NULL;
/* Moving return codes from UAPI namespace into internal namespace */
return rc == SK_PASS ?
(TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
__SK_DROP;
}
static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
{
struct sock *sk;
int rc;
rc = smap_verdict_func(psock, skb);
switch (rc) {
case __SK_REDIRECT:
sk = do_sk_redirect_map(skb);
if (likely(sk)) {
struct smap_psock *peer = smap_psock_sk(sk);
if (likely(peer &&
test_bit(SMAP_TX_RUNNING, &peer->state) &&
!sock_flag(sk, SOCK_DEAD) &&
sock_writeable(sk))) {
skb_set_owner_w(skb, sk);
skb_queue_tail(&peer->rxqueue, skb);
schedule_work(&peer->tx_work);
break;
}
}
/* Fall through and free skb otherwise */
case __SK_DROP:
default:
kfree_skb(skb);
}
}
static void smap_report_sk_error(struct smap_psock *psock, int err)
{
struct sock *sk = psock->sock;
sk->sk_err = err;
sk->sk_error_report(sk);
}
static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
/* Called with lock_sock(sk) held */
static void smap_state_change(struct sock *sk)
{
struct smap_psock_map_entry *e, *tmp;
struct smap_psock *psock;
struct socket_wq *wq;
struct sock *osk;
rcu_read_lock();
/* Allowing transitions into an established syn_recv states allows
* for early binding sockets to a smap object before the connection
* is established.
*/
switch (sk->sk_state) {
case TCP_SYN_SENT:
case TCP_SYN_RECV:
case TCP_ESTABLISHED:
break;
case TCP_CLOSE_WAIT:
case TCP_CLOSING:
case TCP_LAST_ACK:
case TCP_FIN_WAIT1:
case TCP_FIN_WAIT2:
case TCP_LISTEN:
break;
case TCP_CLOSE:
/* Only release if the map entry is in fact the sock in
* question. There is a case where the operator deletes
* the sock from the map, but the TCP sock is closed before
* the psock is detached. Use cmpxchg to verify correct
* sock is removed.
*/
psock = smap_psock_sk(sk);
if (unlikely(!psock))
break;
write_lock_bh(&sk->sk_callback_lock);
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
osk = cmpxchg(e->entry, sk, NULL);
if (osk == sk) {
list_del(&e->list);
smap_release_sock(psock, sk);
}
}
write_unlock_bh(&sk->sk_callback_lock);
break;
default:
psock = smap_psock_sk(sk);
if (unlikely(!psock))
break;
smap_report_sk_error(psock, EPIPE);
break;
}
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_all(&wq->wait);
rcu_read_unlock();
}
static void smap_read_sock_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
smap_do_verdict(psock, skb);
rcu_read_unlock();
}
/* Called with lock held on socket */
static void smap_data_ready(struct sock *sk)
{
struct smap_psock *psock;
rcu_read_lock();
psock = smap_psock_sk(sk);
if (likely(psock)) {
write_lock_bh(&sk->sk_callback_lock);
strp_data_ready(&psock->strp);
write_unlock_bh(&sk->sk_callback_lock);
}
rcu_read_unlock();
}
static void smap_tx_work(struct work_struct *w)
{
struct smap_psock *psock;
struct sk_buff *skb;
int rem, off, n;
psock = container_of(w, struct smap_psock, tx_work);
/* lock sock to avoid losing sk_socket at some point during loop */
lock_sock(psock->sock);
if (psock->save_skb) {
skb = psock->save_skb;
rem = psock->save_rem;
off = psock->save_off;
psock->save_skb = NULL;
goto start;
}
while ((skb = skb_dequeue(&psock->rxqueue))) {
rem = skb->len;
off = 0;
start:
do {
if (likely(psock->sock->sk_socket))
n = skb_send_sock_locked(psock->sock,
skb, off, rem);
else
n = -EINVAL;
if (n <= 0) {
if (n == -EAGAIN) {
/* Retry when space is available */
psock->save_skb = skb;
psock->save_rem = rem;
psock->save_off = off;
goto out;
}
/* Hard errors break pipe and stop xmit */
smap_report_sk_error(psock, n ? -n : EPIPE);
clear_bit(SMAP_TX_RUNNING, &psock->state);
kfree_skb(skb);
goto out;
}
rem -= n;
off += n;
} while (rem);
kfree_skb(skb);
}
out:
release_sock(psock->sock);
}
static void smap_write_space(struct sock *sk)
{
struct smap_psock *psock;
void (*write_space)(struct sock *sk);
rcu_read_lock();
psock = smap_psock_sk(sk);
if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
schedule_work(&psock->tx_work);
write_space = psock->save_write_space;
rcu_read_unlock();
write_space(sk);
}
static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
{
if (!psock->strp_enabled)
return;
sk->sk_data_ready = psock->save_data_ready;
sk->sk_write_space = psock->save_write_space;
sk->sk_state_change = psock->save_state_change;
psock->save_data_ready = NULL;
psock->save_write_space = NULL;
psock->save_state_change = NULL;
strp_stop(&psock->strp);
psock->strp_enabled = false;
}
static void smap_destroy_psock(struct rcu_head *rcu)
{
struct smap_psock *psock = container_of(rcu,
struct smap_psock, rcu);
/* Now that a grace period has passed there is no longer
* any reference to this sock in the sockmap so we can
* destroy the psock, strparser, and bpf programs. But,
* because we use workqueue sync operations we can not
* do it in rcu context
*/
schedule_work(&psock->gc_work);
}
static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
{
psock->refcnt--;
if (psock->refcnt)
return;
smap_stop_sock(psock, sock);
clear_bit(SMAP_TX_RUNNING, &psock->state);
rcu_assign_sk_user_data(sock, NULL);
call_rcu_sched(&psock->rcu, smap_destroy_psock);
}
static int smap_parse_func_strparser(struct strparser *strp,
struct sk_buff *skb)
{
struct smap_psock *psock;
struct bpf_prog *prog;
int rc;
rcu_read_lock();
psock = container_of(strp, struct smap_psock, strp);
prog = READ_ONCE(psock->bpf_parse);
if (unlikely(!prog)) {
rcu_read_unlock();
return skb->len;
}
/* Attach socket for bpf program to use if needed we can do this
* because strparser clones the skb before handing it to a upper
* layer, meaning skb_orphan has been called. We NULL sk on the
* way out to ensure we don't trigger a BUG_ON in skb/sk operations
* later and because we are not charging the memory of this skb to
* any socket yet.
*/
skb->sk = psock->sock;
bpf_compute_data_end_sk_skb(skb);
rc = (*prog->bpf_func)(skb, prog->insnsi);
skb->sk = NULL;
rcu_read_unlock();
return rc;
}
static int smap_read_sock_done(struct strparser *strp, int err)
{
return err;
}
static int smap_init_sock(struct smap_psock *psock,
struct sock *sk)
{
static const struct strp_callbacks cb = {
.rcv_msg = smap_read_sock_strparser,
.parse_msg = smap_parse_func_strparser,
.read_sock_done = smap_read_sock_done,
};
return strp_init(&psock->strp, sk, &cb);
}
static void smap_init_progs(struct smap_psock *psock,
struct bpf_stab *stab,
struct bpf_prog *verdict,
struct bpf_prog *parse)
{
struct bpf_prog *orig_parse, *orig_verdict;
orig_parse = xchg(&psock->bpf_parse, parse);
orig_verdict = xchg(&psock->bpf_verdict, verdict);
if (orig_verdict)
bpf_prog_put(orig_verdict);
if (orig_parse)
bpf_prog_put(orig_parse);
}
static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
{
if (sk->sk_data_ready == smap_data_ready)
return;
psock->save_data_ready = sk->sk_data_ready;
psock->save_write_space = sk->sk_write_space;
psock->save_state_change = sk->sk_state_change;
sk->sk_data_ready = smap_data_ready;
sk->sk_write_space = smap_write_space;
sk->sk_state_change = smap_state_change;
psock->strp_enabled = true;
}
static void sock_map_remove_complete(struct bpf_stab *stab)
{
bpf_map_area_free(stab->sock_map);
kfree(stab);
}
static void smap_gc_work(struct work_struct *w)
{
struct smap_psock_map_entry *e, *tmp;
struct smap_psock *psock;
psock = container_of(w, struct smap_psock, gc_work);
/* no callback lock needed because we already detached sockmap ops */
if (psock->strp_enabled)
strp_done(&psock->strp);
cancel_work_sync(&psock->tx_work);
__skb_queue_purge(&psock->rxqueue);
/* At this point all strparser and xmit work must be complete */
if (psock->bpf_parse)
bpf_prog_put(psock->bpf_parse);
if (psock->bpf_verdict)
bpf_prog_put(psock->bpf_verdict);
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
list_del(&e->list);
kfree(e);
}
sock_put(psock->sock);
kfree(psock);
}
static struct smap_psock *smap_init_psock(struct sock *sock,
struct bpf_stab *stab)
{
struct smap_psock *psock;
psock = kzalloc_node(sizeof(struct smap_psock),
GFP_ATOMIC | __GFP_NOWARN,
stab->map.numa_node);
if (!psock)
return ERR_PTR(-ENOMEM);
psock->sock = sock;
skb_queue_head_init(&psock->rxqueue);
INIT_WORK(&psock->tx_work, smap_tx_work);
INIT_WORK(&psock->gc_work, smap_gc_work);
INIT_LIST_HEAD(&psock->maps);
psock->refcnt = 1;
rcu_assign_sk_user_data(sock, psock);
sock_hold(sock);
return psock;
}
static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
{
struct bpf_stab *stab;
int err = -EINVAL;
u64 cost;
if (!capable(CAP_NET_ADMIN))
return ERR_PTR(-EPERM);
/* check sanity of attributes */
if (attr->max_entries == 0 || attr->key_size != 4 ||
attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
return ERR_PTR(-EINVAL);
if (attr->value_size > KMALLOC_MAX_SIZE)
return ERR_PTR(-E2BIG);
stab = kzalloc(sizeof(*stab), GFP_USER);
if (!stab)
return ERR_PTR(-ENOMEM);
/* mandatory map attributes */
stab->map.map_type = attr->map_type;
stab->map.key_size = attr->key_size;
stab->map.value_size = attr->value_size;
stab->map.max_entries = attr->max_entries;
stab->map.map_flags = attr->map_flags;
stab->map.numa_node = bpf_map_attr_numa_node(attr);
/* make sure page count doesn't overflow */
cost = (u64) stab->map.max_entries * sizeof(struct sock *);
if (cost >= U32_MAX - PAGE_SIZE)
goto free_stab;
stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
/* if map size is larger than memlock limit, reject it early */
err = bpf_map_precharge_memlock(stab->map.pages);
if (err)
goto free_stab;
err = -ENOMEM;
stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
sizeof(struct sock *),
stab->map.numa_node);
if (!stab->sock_map)
goto free_stab;
return &stab->map;
free_stab:
kfree(stab);
return ERR_PTR(err);
}
static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
{
struct smap_psock_map_entry *e, *tmp;
list_for_each_entry_safe(e, tmp, &psock->maps, list) {
if (e->entry == entry) {
list_del(&e->list);
break;
}
}
}
static void sock_map_free(struct bpf_map *map)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
int i;
synchronize_rcu();
/* At this point no update, lookup or delete operations can happen.
* However, be aware we can still get a socket state event updates,
* and data ready callabacks that reference the psock from sk_user_data
* Also psock worker threads are still in-flight. So smap_release_sock
* will only free the psock after cancel_sync on the worker threads
* and a grace period expire to ensure psock is really safe to remove.
*/
rcu_read_lock();
for (i = 0; i < stab->map.max_entries; i++) {
struct smap_psock *psock;
struct sock *sock;
sock = xchg(&stab->sock_map[i], NULL);
if (!sock)
continue;
write_lock_bh(&sock->sk_callback_lock);
psock = smap_psock_sk(sock);
/* This check handles a racing sock event that can get the
* sk_callback_lock before this case but after xchg happens
* causing the refcnt to hit zero and sock user data (psock)
* to be null and queued for garbage collection.
*/
if (likely(psock)) {
smap_list_remove(psock, &stab->sock_map[i]);
smap_release_sock(psock, sock);
}
write_unlock_bh(&sock->sk_callback_lock);
}
rcu_read_unlock();
sock_map_remove_complete(stab);
}
static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
u32 i = key ? *(u32 *)key : U32_MAX;
u32 *next = (u32 *)next_key;
if (i >= stab->map.max_entries) {
*next = 0;
return 0;
}
if (i == stab->map.max_entries - 1)
return -ENOENT;
*next = i + 1;
return 0;
}
struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
if (key >= map->max_entries)
return NULL;
return READ_ONCE(stab->sock_map[key]);
}
static int sock_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct smap_psock *psock;
int k = *(u32 *)key;
struct sock *sock;
if (k >= map->max_entries)
return -EINVAL;
sock = xchg(&stab->sock_map[k], NULL);
if (!sock)
return -EINVAL;
write_lock_bh(&sock->sk_callback_lock);
psock = smap_psock_sk(sock);
if (!psock)
goto out;
if (psock->bpf_parse)
smap_stop_sock(psock, sock);
smap_list_remove(psock, &stab->sock_map[k]);
smap_release_sock(psock, sock);
out:
write_unlock_bh(&sock->sk_callback_lock);
return 0;
}
/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
* done inside rcu critical sections. This ensures on updates that the psock
* will not be released via smap_release_sock() until concurrent updates/deletes
* complete. All operations operate on sock_map using cmpxchg and xchg
* operations to ensure we do not get stale references. Any reads into the
* map must be done with READ_ONCE() because of this.
*
* A psock is destroyed via call_rcu and after any worker threads are cancelled
* and syncd so we are certain all references from the update/lookup/delete
* operations as well as references in the data path are no longer in use.
*
* Psocks may exist in multiple maps, but only a single set of parse/verdict
* programs may be inherited from the maps it belongs to. A reference count
* is kept with the total number of references to the psock from all maps. The
* psock will not be released until this reaches zero. The psock and sock
* user data data use the sk_callback_lock to protect critical data structures
* from concurrent access. This allows us to avoid two updates from modifying
* the user data in sock and the lock is required anyways for modifying
* callbacks, we simply increase its scope slightly.
*
* Rules to follow,
* - psock must always be read inside RCU critical section
* - sk_user_data must only be modified inside sk_callback_lock and read
* inside RCU critical section.
* - psock->maps list must only be read & modified inside sk_callback_lock
* - sock_map must use READ_ONCE and (cmp)xchg operations
* - BPF verdict/parse programs must use READ_ONCE and xchg operations
*/
static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
struct bpf_map *map,
void *key, u64 flags)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct smap_psock_map_entry *e = NULL;
struct bpf_prog *verdict, *parse;
struct sock *osock, *sock;
struct smap_psock *psock;
u32 i = *(u32 *)key;
int err;
if (unlikely(flags > BPF_EXIST))
return -EINVAL;
if (unlikely(i >= stab->map.max_entries))
return -E2BIG;
sock = READ_ONCE(stab->sock_map[i]);
if (flags == BPF_EXIST && !sock)
return -ENOENT;
else if (flags == BPF_NOEXIST && sock)
return -EEXIST;
sock = skops->sk;
/* 1. If sock map has BPF programs those will be inherited by the
* sock being added. If the sock is already attached to BPF programs
* this results in an error.
*/
verdict = READ_ONCE(stab->bpf_verdict);
parse = READ_ONCE(stab->bpf_parse);
if (parse && verdict) {
/* bpf prog refcnt may be zero if a concurrent attach operation
* removes the program after the above READ_ONCE() but before
* we increment the refcnt. If this is the case abort with an
* error.
*/
verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
if (IS_ERR(verdict))
return PTR_ERR(verdict);
parse = bpf_prog_inc_not_zero(stab->bpf_parse);
if (IS_ERR(parse)) {
bpf_prog_put(verdict);
return PTR_ERR(parse);
}
}
write_lock_bh(&sock->sk_callback_lock);
psock = smap_psock_sk(sock);
/* 2. Do not allow inheriting programs if psock exists and has
* already inherited programs. This would create confusion on
* which parser/verdict program is running. If no psock exists
* create one. Inside sk_callback_lock to ensure concurrent create
* doesn't update user data.
*/
if (psock) {
if (READ_ONCE(psock->bpf_parse) && parse) {
err = -EBUSY;
goto out_progs;
}
psock->refcnt++;
} else {
psock = smap_init_psock(sock, stab);
if (IS_ERR(psock)) {
err = PTR_ERR(psock);
goto out_progs;
}
set_bit(SMAP_TX_RUNNING, &psock->state);
}
e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
if (!e) {
err = -ENOMEM;
goto out_progs;
}
e->entry = &stab->sock_map[i];
/* 3. At this point we have a reference to a valid psock that is
* running. Attach any BPF programs needed.
*/
if (parse && verdict && !psock->strp_enabled) {
err = smap_init_sock(psock, sock);
if (err)
goto out_free;
smap_init_progs(psock, stab, verdict, parse);
smap_start_sock(psock, sock);
}
/* 4. Place psock in sockmap for use and stop any programs on
* the old sock assuming its not the same sock we are replacing
* it with. Because we can only have a single set of programs if
* old_sock has a strp we can stop it.
*/
list_add_tail(&e->list, &psock->maps);
write_unlock_bh(&sock->sk_callback_lock);
osock = xchg(&stab->sock_map[i], sock);
if (osock) {
struct smap_psock *opsock = smap_psock_sk(osock);
write_lock_bh(&osock->sk_callback_lock);
if (osock != sock && parse)
smap_stop_sock(opsock, osock);
smap_list_remove(opsock, &stab->sock_map[i]);
smap_release_sock(opsock, osock);
write_unlock_bh(&osock->sk_callback_lock);
}
return 0;
out_free:
smap_release_sock(psock, sock);
out_progs:
if (verdict)
bpf_prog_put(verdict);
if (parse)
bpf_prog_put(parse);
write_unlock_bh(&sock->sk_callback_lock);
kfree(e);
return err;
}
int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct bpf_prog *orig;
if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
return -EINVAL;
switch (type) {
case BPF_SK_SKB_STREAM_PARSER:
orig = xchg(&stab->bpf_parse, prog);
break;
case BPF_SK_SKB_STREAM_VERDICT:
orig = xchg(&stab->bpf_verdict, prog);
break;
default:
return -EOPNOTSUPP;
}
if (orig)
bpf_prog_put(orig);
return 0;
}
static void *sock_map_lookup(struct bpf_map *map, void *key)
{
return NULL;
}
static int sock_map_update_elem(struct bpf_map *map,
void *key, void *value, u64 flags)
{
struct bpf_sock_ops_kern skops;
u32 fd = *(u32 *)value;
struct socket *socket;
int err;
socket = sockfd_lookup(fd, &err);
if (!socket)
return err;
skops.sk = socket->sk;
if (!skops.sk) {
fput(socket->file);
return -EINVAL;
}
if (skops.sk->sk_type != SOCK_STREAM ||
skops.sk->sk_protocol != IPPROTO_TCP) {
fput(socket->file);
return -EOPNOTSUPP;
}
err = sock_map_ctx_update_elem(&skops, map, key, flags);
fput(socket->file);
return err;
}
static void sock_map_release(struct bpf_map *map)
{
struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
struct bpf_prog *orig;
orig = xchg(&stab->bpf_parse, NULL);
if (orig)
bpf_prog_put(orig);
orig = xchg(&stab->bpf_verdict, NULL);
if (orig)
bpf_prog_put(orig);
}
const struct bpf_map_ops sock_map_ops = {
.map_alloc = sock_map_alloc,
.map_free = sock_map_free,
.map_lookup_elem = sock_map_lookup,
.map_get_next_key = sock_map_get_next_key,
.map_update_elem = sock_map_update_elem,
.map_delete_elem = sock_map_delete_elem,
.map_release_uref = sock_map_release,
};
BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
struct bpf_map *, map, void *, key, u64, flags)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
}
const struct bpf_func_proto bpf_sock_map_update_proto = {
.func = bpf_sock_map_update,
.gpl_only = false,
.pkt_access = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_PTR_TO_MAP_KEY,
.arg4_type = ARG_ANYTHING,
};