mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 08:28:13 +00:00
1fd02f6605
Various spelling mistakes in comments. Detected with the help of Coccinelle. Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr> Reviewed-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220430185654.5855-1-Julia.Lawall@inria.fr
1941 lines
50 KiB
C
1941 lines
50 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright IBM Corporation 2001, 2005, 2006
|
|
* Copyright Dave Engebretsen & Todd Inglett 2001
|
|
* Copyright Linas Vepstas 2005, 2006
|
|
* Copyright 2001-2012 IBM Corporation.
|
|
*
|
|
* Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/eeh.h>
|
|
#include <asm/eeh_event.h>
|
|
#include <asm/io.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
|
|
/** Overview:
|
|
* EEH, or "Enhanced Error Handling" is a PCI bridge technology for
|
|
* dealing with PCI bus errors that can't be dealt with within the
|
|
* usual PCI framework, except by check-stopping the CPU. Systems
|
|
* that are designed for high-availability/reliability cannot afford
|
|
* to crash due to a "mere" PCI error, thus the need for EEH.
|
|
* An EEH-capable bridge operates by converting a detected error
|
|
* into a "slot freeze", taking the PCI adapter off-line, making
|
|
* the slot behave, from the OS'es point of view, as if the slot
|
|
* were "empty": all reads return 0xff's and all writes are silently
|
|
* ignored. EEH slot isolation events can be triggered by parity
|
|
* errors on the address or data busses (e.g. during posted writes),
|
|
* which in turn might be caused by low voltage on the bus, dust,
|
|
* vibration, humidity, radioactivity or plain-old failed hardware.
|
|
*
|
|
* Note, however, that one of the leading causes of EEH slot
|
|
* freeze events are buggy device drivers, buggy device microcode,
|
|
* or buggy device hardware. This is because any attempt by the
|
|
* device to bus-master data to a memory address that is not
|
|
* assigned to the device will trigger a slot freeze. (The idea
|
|
* is to prevent devices-gone-wild from corrupting system memory).
|
|
* Buggy hardware/drivers will have a miserable time co-existing
|
|
* with EEH.
|
|
*
|
|
* Ideally, a PCI device driver, when suspecting that an isolation
|
|
* event has occurred (e.g. by reading 0xff's), will then ask EEH
|
|
* whether this is the case, and then take appropriate steps to
|
|
* reset the PCI slot, the PCI device, and then resume operations.
|
|
* However, until that day, the checking is done here, with the
|
|
* eeh_check_failure() routine embedded in the MMIO macros. If
|
|
* the slot is found to be isolated, an "EEH Event" is synthesized
|
|
* and sent out for processing.
|
|
*/
|
|
|
|
/* If a device driver keeps reading an MMIO register in an interrupt
|
|
* handler after a slot isolation event, it might be broken.
|
|
* This sets the threshold for how many read attempts we allow
|
|
* before printing an error message.
|
|
*/
|
|
#define EEH_MAX_FAILS 2100000
|
|
|
|
/* Time to wait for a PCI slot to report status, in milliseconds */
|
|
#define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
|
|
|
|
/*
|
|
* EEH probe mode support, which is part of the flags,
|
|
* is to support multiple platforms for EEH. Some platforms
|
|
* like pSeries do PCI emunation based on device tree.
|
|
* However, other platforms like powernv probe PCI devices
|
|
* from hardware. The flag is used to distinguish that.
|
|
* In addition, struct eeh_ops::probe would be invoked for
|
|
* particular OF node or PCI device so that the corresponding
|
|
* PE would be created there.
|
|
*/
|
|
int eeh_subsystem_flags;
|
|
EXPORT_SYMBOL(eeh_subsystem_flags);
|
|
|
|
/*
|
|
* EEH allowed maximal frozen times. If one particular PE's
|
|
* frozen count in last hour exceeds this limit, the PE will
|
|
* be forced to be offline permanently.
|
|
*/
|
|
u32 eeh_max_freezes = 5;
|
|
|
|
/*
|
|
* Controls whether a recovery event should be scheduled when an
|
|
* isolated device is discovered. This is only really useful for
|
|
* debugging problems with the EEH core.
|
|
*/
|
|
bool eeh_debugfs_no_recover;
|
|
|
|
/* Platform dependent EEH operations */
|
|
struct eeh_ops *eeh_ops = NULL;
|
|
|
|
/* Lock to avoid races due to multiple reports of an error */
|
|
DEFINE_RAW_SPINLOCK(confirm_error_lock);
|
|
EXPORT_SYMBOL_GPL(confirm_error_lock);
|
|
|
|
/* Lock to protect passed flags */
|
|
static DEFINE_MUTEX(eeh_dev_mutex);
|
|
|
|
/* Buffer for reporting pci register dumps. Its here in BSS, and
|
|
* not dynamically alloced, so that it ends up in RMO where RTAS
|
|
* can access it.
|
|
*/
|
|
#define EEH_PCI_REGS_LOG_LEN 8192
|
|
static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
|
|
|
|
/*
|
|
* The struct is used to maintain the EEH global statistic
|
|
* information. Besides, the EEH global statistics will be
|
|
* exported to user space through procfs
|
|
*/
|
|
struct eeh_stats {
|
|
u64 no_device; /* PCI device not found */
|
|
u64 no_dn; /* OF node not found */
|
|
u64 no_cfg_addr; /* Config address not found */
|
|
u64 ignored_check; /* EEH check skipped */
|
|
u64 total_mmio_ffs; /* Total EEH checks */
|
|
u64 false_positives; /* Unnecessary EEH checks */
|
|
u64 slot_resets; /* PE reset */
|
|
};
|
|
|
|
static struct eeh_stats eeh_stats;
|
|
|
|
static int __init eeh_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "off"))
|
|
eeh_add_flag(EEH_FORCE_DISABLED);
|
|
else if (!strcmp(str, "early_log"))
|
|
eeh_add_flag(EEH_EARLY_DUMP_LOG);
|
|
|
|
return 1;
|
|
}
|
|
__setup("eeh=", eeh_setup);
|
|
|
|
void eeh_show_enabled(void)
|
|
{
|
|
if (eeh_has_flag(EEH_FORCE_DISABLED))
|
|
pr_info("EEH: Recovery disabled by kernel parameter.\n");
|
|
else if (eeh_has_flag(EEH_ENABLED))
|
|
pr_info("EEH: Capable adapter found: recovery enabled.\n");
|
|
else
|
|
pr_info("EEH: No capable adapters found: recovery disabled.\n");
|
|
}
|
|
|
|
/*
|
|
* This routine captures assorted PCI configuration space data
|
|
* for the indicated PCI device, and puts them into a buffer
|
|
* for RTAS error logging.
|
|
*/
|
|
static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
|
|
{
|
|
u32 cfg;
|
|
int cap, i;
|
|
int n = 0, l = 0;
|
|
char buffer[128];
|
|
|
|
n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
|
|
edev->pe->phb->global_number, edev->bdfn >> 8,
|
|
PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
|
|
pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
|
|
edev->pe->phb->global_number, edev->bdfn >> 8,
|
|
PCI_SLOT(edev->bdfn), PCI_FUNC(edev->bdfn));
|
|
|
|
eeh_ops->read_config(edev, PCI_VENDOR_ID, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
|
|
pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
|
|
|
|
eeh_ops->read_config(edev, PCI_COMMAND, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
|
|
pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
|
|
|
|
/* Gather bridge-specific registers */
|
|
if (edev->mode & EEH_DEV_BRIDGE) {
|
|
eeh_ops->read_config(edev, PCI_SEC_STATUS, 2, &cfg);
|
|
n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
|
|
pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
|
|
|
|
eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &cfg);
|
|
n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
|
|
pr_warn("EEH: Bridge control: %04x\n", cfg);
|
|
}
|
|
|
|
/* Dump out the PCI-X command and status regs */
|
|
cap = edev->pcix_cap;
|
|
if (cap) {
|
|
eeh_ops->read_config(edev, cap, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
|
|
pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
|
|
|
|
eeh_ops->read_config(edev, cap+4, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
|
|
pr_warn("EEH: PCI-X status: %08x\n", cfg);
|
|
}
|
|
|
|
/* If PCI-E capable, dump PCI-E cap 10 */
|
|
cap = edev->pcie_cap;
|
|
if (cap) {
|
|
n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
|
|
pr_warn("EEH: PCI-E capabilities and status follow:\n");
|
|
|
|
for (i=0; i<=8; i++) {
|
|
eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
|
|
|
|
if ((i % 4) == 0) {
|
|
if (i != 0)
|
|
pr_warn("%s\n", buffer);
|
|
|
|
l = scnprintf(buffer, sizeof(buffer),
|
|
"EEH: PCI-E %02x: %08x ",
|
|
4*i, cfg);
|
|
} else {
|
|
l += scnprintf(buffer+l, sizeof(buffer)-l,
|
|
"%08x ", cfg);
|
|
}
|
|
|
|
}
|
|
|
|
pr_warn("%s\n", buffer);
|
|
}
|
|
|
|
/* If AER capable, dump it */
|
|
cap = edev->aer_cap;
|
|
if (cap) {
|
|
n += scnprintf(buf+n, len-n, "pci-e AER:\n");
|
|
pr_warn("EEH: PCI-E AER capability register set follows:\n");
|
|
|
|
for (i=0; i<=13; i++) {
|
|
eeh_ops->read_config(edev, cap+4*i, 4, &cfg);
|
|
n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
|
|
|
|
if ((i % 4) == 0) {
|
|
if (i != 0)
|
|
pr_warn("%s\n", buffer);
|
|
|
|
l = scnprintf(buffer, sizeof(buffer),
|
|
"EEH: PCI-E AER %02x: %08x ",
|
|
4*i, cfg);
|
|
} else {
|
|
l += scnprintf(buffer+l, sizeof(buffer)-l,
|
|
"%08x ", cfg);
|
|
}
|
|
}
|
|
|
|
pr_warn("%s\n", buffer);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
|
|
{
|
|
struct eeh_dev *edev, *tmp;
|
|
size_t *plen = flag;
|
|
|
|
eeh_pe_for_each_dev(pe, edev, tmp)
|
|
*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
|
|
EEH_PCI_REGS_LOG_LEN - *plen);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_slot_error_detail - Generate combined log including driver log and error log
|
|
* @pe: EEH PE
|
|
* @severity: temporary or permanent error log
|
|
*
|
|
* This routine should be called to generate the combined log, which
|
|
* is comprised of driver log and error log. The driver log is figured
|
|
* out from the config space of the corresponding PCI device, while
|
|
* the error log is fetched through platform dependent function call.
|
|
*/
|
|
void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
|
|
{
|
|
size_t loglen = 0;
|
|
|
|
/*
|
|
* When the PHB is fenced or dead, it's pointless to collect
|
|
* the data from PCI config space because it should return
|
|
* 0xFF's. For ER, we still retrieve the data from the PCI
|
|
* config space.
|
|
*
|
|
* For pHyp, we have to enable IO for log retrieval. Otherwise,
|
|
* 0xFF's is always returned from PCI config space.
|
|
*
|
|
* When the @severity is EEH_LOG_PERM, the PE is going to be
|
|
* removed. Prior to that, the drivers for devices included in
|
|
* the PE will be closed. The drivers rely on working IO path
|
|
* to bring the devices to quiet state. Otherwise, PCI traffic
|
|
* from those devices after they are removed is like to cause
|
|
* another unexpected EEH error.
|
|
*/
|
|
if (!(pe->type & EEH_PE_PHB)) {
|
|
if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
|
|
severity == EEH_LOG_PERM)
|
|
eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
|
|
|
|
/*
|
|
* The config space of some PCI devices can't be accessed
|
|
* when their PEs are in frozen state. Otherwise, fenced
|
|
* PHB might be seen. Those PEs are identified with flag
|
|
* EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
|
|
* is set automatically when the PE is put to EEH_PE_ISOLATED.
|
|
*
|
|
* Restoring BARs possibly triggers PCI config access in
|
|
* (OPAL) firmware and then causes fenced PHB. If the
|
|
* PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
|
|
* pointless to restore BARs and dump config space.
|
|
*/
|
|
eeh_ops->configure_bridge(pe);
|
|
if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
|
|
eeh_pe_restore_bars(pe);
|
|
|
|
pci_regs_buf[0] = 0;
|
|
eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
|
|
}
|
|
}
|
|
|
|
eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
|
|
}
|
|
|
|
/**
|
|
* eeh_token_to_phys - Convert EEH address token to phys address
|
|
* @token: I/O token, should be address in the form 0xA....
|
|
*
|
|
* This routine should be called to convert virtual I/O address
|
|
* to physical one.
|
|
*/
|
|
static inline unsigned long eeh_token_to_phys(unsigned long token)
|
|
{
|
|
return ppc_find_vmap_phys(token);
|
|
}
|
|
|
|
/*
|
|
* On PowerNV platform, we might already have fenced PHB there.
|
|
* For that case, it's meaningless to recover frozen PE. Intead,
|
|
* We have to handle fenced PHB firstly.
|
|
*/
|
|
static int eeh_phb_check_failure(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_pe *phb_pe;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
|
|
return -EPERM;
|
|
|
|
/* Find the PHB PE */
|
|
phb_pe = eeh_phb_pe_get(pe->phb);
|
|
if (!phb_pe) {
|
|
pr_warn("%s Can't find PE for PHB#%x\n",
|
|
__func__, pe->phb->global_number);
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* If the PHB has been in problematic state */
|
|
eeh_serialize_lock(&flags);
|
|
if (phb_pe->state & EEH_PE_ISOLATED) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Check PHB state */
|
|
ret = eeh_ops->get_state(phb_pe, NULL);
|
|
if ((ret < 0) ||
|
|
(ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Isolate the PHB and send event */
|
|
eeh_pe_mark_isolated(phb_pe);
|
|
eeh_serialize_unlock(flags);
|
|
|
|
pr_debug("EEH: PHB#%x failure detected, location: %s\n",
|
|
phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
|
|
eeh_send_failure_event(phb_pe);
|
|
return 1;
|
|
out:
|
|
eeh_serialize_unlock(flags);
|
|
return ret;
|
|
}
|
|
|
|
static inline const char *eeh_driver_name(struct pci_dev *pdev)
|
|
{
|
|
if (pdev)
|
|
return dev_driver_string(&pdev->dev);
|
|
|
|
return "<null>";
|
|
}
|
|
|
|
/**
|
|
* eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
|
|
* @edev: eeh device
|
|
*
|
|
* Check for an EEH failure for the given device node. Call this
|
|
* routine if the result of a read was all 0xff's and you want to
|
|
* find out if this is due to an EEH slot freeze. This routine
|
|
* will query firmware for the EEH status.
|
|
*
|
|
* Returns 0 if there has not been an EEH error; otherwise returns
|
|
* a non-zero value and queues up a slot isolation event notification.
|
|
*
|
|
* It is safe to call this routine in an interrupt context.
|
|
*/
|
|
int eeh_dev_check_failure(struct eeh_dev *edev)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
struct device_node *dn;
|
|
struct pci_dev *dev;
|
|
struct eeh_pe *pe, *parent_pe;
|
|
int rc = 0;
|
|
const char *location = NULL;
|
|
|
|
eeh_stats.total_mmio_ffs++;
|
|
|
|
if (!eeh_enabled())
|
|
return 0;
|
|
|
|
if (!edev) {
|
|
eeh_stats.no_dn++;
|
|
return 0;
|
|
}
|
|
dev = eeh_dev_to_pci_dev(edev);
|
|
pe = eeh_dev_to_pe(edev);
|
|
|
|
/* Access to IO BARs might get this far and still not want checking. */
|
|
if (!pe) {
|
|
eeh_stats.ignored_check++;
|
|
eeh_edev_dbg(edev, "Ignored check\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On PowerNV platform, we might already have fenced PHB
|
|
* there and we need take care of that firstly.
|
|
*/
|
|
ret = eeh_phb_check_failure(pe);
|
|
if (ret > 0)
|
|
return ret;
|
|
|
|
/*
|
|
* If the PE isn't owned by us, we shouldn't check the
|
|
* state. Instead, let the owner handle it if the PE has
|
|
* been frozen.
|
|
*/
|
|
if (eeh_pe_passed(pe))
|
|
return 0;
|
|
|
|
/* If we already have a pending isolation event for this
|
|
* slot, we know it's bad already, we don't need to check.
|
|
* Do this checking under a lock; as multiple PCI devices
|
|
* in one slot might report errors simultaneously, and we
|
|
* only want one error recovery routine running.
|
|
*/
|
|
eeh_serialize_lock(&flags);
|
|
rc = 1;
|
|
if (pe->state & EEH_PE_ISOLATED) {
|
|
pe->check_count++;
|
|
if (pe->check_count == EEH_MAX_FAILS) {
|
|
dn = pci_device_to_OF_node(dev);
|
|
if (dn)
|
|
location = of_get_property(dn, "ibm,loc-code",
|
|
NULL);
|
|
eeh_edev_err(edev, "%d reads ignored for recovering device at location=%s driver=%s\n",
|
|
pe->check_count,
|
|
location ? location : "unknown",
|
|
eeh_driver_name(dev));
|
|
eeh_edev_err(edev, "Might be infinite loop in %s driver\n",
|
|
eeh_driver_name(dev));
|
|
dump_stack();
|
|
}
|
|
goto dn_unlock;
|
|
}
|
|
|
|
/*
|
|
* Now test for an EEH failure. This is VERY expensive.
|
|
* Note that the eeh_config_addr may be a parent device
|
|
* in the case of a device behind a bridge, or it may be
|
|
* function zero of a multi-function device.
|
|
* In any case they must share a common PHB.
|
|
*/
|
|
ret = eeh_ops->get_state(pe, NULL);
|
|
|
|
/* Note that config-io to empty slots may fail;
|
|
* they are empty when they don't have children.
|
|
* We will punt with the following conditions: Failure to get
|
|
* PE's state, EEH not support and Permanently unavailable
|
|
* state, PE is in good state.
|
|
*/
|
|
if ((ret < 0) ||
|
|
(ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
|
|
eeh_stats.false_positives++;
|
|
pe->false_positives++;
|
|
rc = 0;
|
|
goto dn_unlock;
|
|
}
|
|
|
|
/*
|
|
* It should be corner case that the parent PE has been
|
|
* put into frozen state as well. We should take care
|
|
* that at first.
|
|
*/
|
|
parent_pe = pe->parent;
|
|
while (parent_pe) {
|
|
/* Hit the ceiling ? */
|
|
if (parent_pe->type & EEH_PE_PHB)
|
|
break;
|
|
|
|
/* Frozen parent PE ? */
|
|
ret = eeh_ops->get_state(parent_pe, NULL);
|
|
if (ret > 0 && !eeh_state_active(ret)) {
|
|
pe = parent_pe;
|
|
pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
|
|
pe->phb->global_number, pe->addr,
|
|
pe->phb->global_number, parent_pe->addr);
|
|
}
|
|
|
|
/* Next parent level */
|
|
parent_pe = parent_pe->parent;
|
|
}
|
|
|
|
eeh_stats.slot_resets++;
|
|
|
|
/* Avoid repeated reports of this failure, including problems
|
|
* with other functions on this device, and functions under
|
|
* bridges.
|
|
*/
|
|
eeh_pe_mark_isolated(pe);
|
|
eeh_serialize_unlock(flags);
|
|
|
|
/* Most EEH events are due to device driver bugs. Having
|
|
* a stack trace will help the device-driver authors figure
|
|
* out what happened. So print that out.
|
|
*/
|
|
pr_debug("EEH: %s: Frozen PHB#%x-PE#%x detected\n",
|
|
__func__, pe->phb->global_number, pe->addr);
|
|
eeh_send_failure_event(pe);
|
|
|
|
return 1;
|
|
|
|
dn_unlock:
|
|
eeh_serialize_unlock(flags);
|
|
return rc;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
|
|
|
|
/**
|
|
* eeh_check_failure - Check if all 1's data is due to EEH slot freeze
|
|
* @token: I/O address
|
|
*
|
|
* Check for an EEH failure at the given I/O address. Call this
|
|
* routine if the result of a read was all 0xff's and you want to
|
|
* find out if this is due to an EEH slot freeze event. This routine
|
|
* will query firmware for the EEH status.
|
|
*
|
|
* Note this routine is safe to call in an interrupt context.
|
|
*/
|
|
int eeh_check_failure(const volatile void __iomem *token)
|
|
{
|
|
unsigned long addr;
|
|
struct eeh_dev *edev;
|
|
|
|
/* Finding the phys addr + pci device; this is pretty quick. */
|
|
addr = eeh_token_to_phys((unsigned long __force) token);
|
|
edev = eeh_addr_cache_get_dev(addr);
|
|
if (!edev) {
|
|
eeh_stats.no_device++;
|
|
return 0;
|
|
}
|
|
|
|
return eeh_dev_check_failure(edev);
|
|
}
|
|
EXPORT_SYMBOL(eeh_check_failure);
|
|
|
|
|
|
/**
|
|
* eeh_pci_enable - Enable MMIO or DMA transfers for this slot
|
|
* @pe: EEH PE
|
|
* @function: EEH option
|
|
*
|
|
* This routine should be called to reenable frozen MMIO or DMA
|
|
* so that it would work correctly again. It's useful while doing
|
|
* recovery or log collection on the indicated device.
|
|
*/
|
|
int eeh_pci_enable(struct eeh_pe *pe, int function)
|
|
{
|
|
int active_flag, rc;
|
|
|
|
/*
|
|
* pHyp doesn't allow to enable IO or DMA on unfrozen PE.
|
|
* Also, it's pointless to enable them on unfrozen PE. So
|
|
* we have to check before enabling IO or DMA.
|
|
*/
|
|
switch (function) {
|
|
case EEH_OPT_THAW_MMIO:
|
|
active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
|
|
break;
|
|
case EEH_OPT_THAW_DMA:
|
|
active_flag = EEH_STATE_DMA_ACTIVE;
|
|
break;
|
|
case EEH_OPT_DISABLE:
|
|
case EEH_OPT_ENABLE:
|
|
case EEH_OPT_FREEZE_PE:
|
|
active_flag = 0;
|
|
break;
|
|
default:
|
|
pr_warn("%s: Invalid function %d\n",
|
|
__func__, function);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Check if IO or DMA has been enabled before
|
|
* enabling them.
|
|
*/
|
|
if (active_flag) {
|
|
rc = eeh_ops->get_state(pe, NULL);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Needn't enable it at all */
|
|
if (rc == EEH_STATE_NOT_SUPPORT)
|
|
return 0;
|
|
|
|
/* It's already enabled */
|
|
if (rc & active_flag)
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Issue the request */
|
|
rc = eeh_ops->set_option(pe, function);
|
|
if (rc)
|
|
pr_warn("%s: Unexpected state change %d on "
|
|
"PHB#%x-PE#%x, err=%d\n",
|
|
__func__, function, pe->phb->global_number,
|
|
pe->addr, rc);
|
|
|
|
/* Check if the request is finished successfully */
|
|
if (active_flag) {
|
|
rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (rc & active_flag)
|
|
return 0;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void eeh_disable_and_save_dev_state(struct eeh_dev *edev,
|
|
void *userdata)
|
|
{
|
|
struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_dev *dev = userdata;
|
|
|
|
/*
|
|
* The caller should have disabled and saved the
|
|
* state for the specified device
|
|
*/
|
|
if (!pdev || pdev == dev)
|
|
return;
|
|
|
|
/* Ensure we have D0 power state */
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
|
|
/* Save device state */
|
|
pci_save_state(pdev);
|
|
|
|
/*
|
|
* Disable device to avoid any DMA traffic and
|
|
* interrupt from the device
|
|
*/
|
|
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
|
|
}
|
|
|
|
static void eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
|
|
{
|
|
struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
|
|
struct pci_dev *dev = userdata;
|
|
|
|
if (!pdev)
|
|
return;
|
|
|
|
/* Apply customization from firmware */
|
|
if (eeh_ops->restore_config)
|
|
eeh_ops->restore_config(edev);
|
|
|
|
/* The caller should restore state for the specified device */
|
|
if (pdev != dev)
|
|
pci_restore_state(pdev);
|
|
}
|
|
|
|
/**
|
|
* pcibios_set_pcie_reset_state - Set PCI-E reset state
|
|
* @dev: pci device struct
|
|
* @state: reset state to enter
|
|
*
|
|
* Return value:
|
|
* 0 if success
|
|
*/
|
|
int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
|
|
{
|
|
struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
|
|
struct eeh_pe *pe = eeh_dev_to_pe(edev);
|
|
|
|
if (!pe) {
|
|
pr_err("%s: No PE found on PCI device %s\n",
|
|
__func__, pci_name(dev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (state) {
|
|
case pcie_deassert_reset:
|
|
eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
|
|
eeh_unfreeze_pe(pe);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
|
|
eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
|
|
break;
|
|
case pcie_hot_reset:
|
|
eeh_pe_mark_isolated(pe);
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
eeh_ops->reset(pe, EEH_RESET_HOT);
|
|
break;
|
|
case pcie_warm_reset:
|
|
eeh_pe_mark_isolated(pe);
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
|
|
if (!(pe->type & EEH_PE_VF))
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
|
|
break;
|
|
default:
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_set_dev_freset - Check the required reset for the indicated device
|
|
* @edev: EEH device
|
|
* @flag: return value
|
|
*
|
|
* Each device might have its preferred reset type: fundamental or
|
|
* hot reset. The routine is used to collected the information for
|
|
* the indicated device and its children so that the bunch of the
|
|
* devices could be reset properly.
|
|
*/
|
|
static void eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
|
|
{
|
|
struct pci_dev *dev;
|
|
unsigned int *freset = (unsigned int *)flag;
|
|
|
|
dev = eeh_dev_to_pci_dev(edev);
|
|
if (dev)
|
|
*freset |= dev->needs_freset;
|
|
}
|
|
|
|
static void eeh_pe_refreeze_passed(struct eeh_pe *root)
|
|
{
|
|
struct eeh_pe *pe;
|
|
int state;
|
|
|
|
eeh_for_each_pe(root, pe) {
|
|
if (eeh_pe_passed(pe)) {
|
|
state = eeh_ops->get_state(pe, NULL);
|
|
if (state &
|
|
(EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
|
|
pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
|
|
pe->phb->global_number, pe->addr);
|
|
eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_reset_full - Complete a full reset process on the indicated PE
|
|
* @pe: EEH PE
|
|
* @include_passed: include passed-through devices?
|
|
*
|
|
* This function executes a full reset procedure on a PE, including setting
|
|
* the appropriate flags, performing a fundamental or hot reset, and then
|
|
* deactivating the reset status. It is designed to be used within the EEH
|
|
* subsystem, as opposed to eeh_pe_reset which is exported to drivers and
|
|
* only performs a single operation at a time.
|
|
*
|
|
* This function will attempt to reset a PE three times before failing.
|
|
*/
|
|
int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
|
|
{
|
|
int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
|
|
int type = EEH_RESET_HOT;
|
|
unsigned int freset = 0;
|
|
int i, state = 0, ret;
|
|
|
|
/*
|
|
* Determine the type of reset to perform - hot or fundamental.
|
|
* Hot reset is the default operation, unless any device under the
|
|
* PE requires a fundamental reset.
|
|
*/
|
|
eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
|
|
|
|
if (freset)
|
|
type = EEH_RESET_FUNDAMENTAL;
|
|
|
|
/* Mark the PE as in reset state and block config space accesses */
|
|
eeh_pe_state_mark(pe, reset_state);
|
|
|
|
/* Make three attempts at resetting the bus */
|
|
for (i = 0; i < 3; i++) {
|
|
ret = eeh_pe_reset(pe, type, include_passed);
|
|
if (!ret)
|
|
ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
|
|
include_passed);
|
|
if (ret) {
|
|
ret = -EIO;
|
|
pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
|
|
state, pe->phb->global_number, pe->addr, i + 1);
|
|
continue;
|
|
}
|
|
if (i)
|
|
pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
|
|
pe->phb->global_number, pe->addr, i + 1);
|
|
|
|
/* Wait until the PE is in a functioning state */
|
|
state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
|
|
if (state < 0) {
|
|
pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
|
|
pe->phb->global_number, pe->addr);
|
|
ret = -ENOTRECOVERABLE;
|
|
break;
|
|
}
|
|
if (eeh_state_active(state))
|
|
break;
|
|
else
|
|
pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
|
|
pe->phb->global_number, pe->addr, state, i + 1);
|
|
}
|
|
|
|
/* Resetting the PE may have unfrozen child PEs. If those PEs have been
|
|
* (potentially) passed through to a guest, re-freeze them:
|
|
*/
|
|
if (!include_passed)
|
|
eeh_pe_refreeze_passed(pe);
|
|
|
|
eeh_pe_state_clear(pe, reset_state, true);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* eeh_save_bars - Save device bars
|
|
* @edev: PCI device associated EEH device
|
|
*
|
|
* Save the values of the device bars. Unlike the restore
|
|
* routine, this routine is *not* recursive. This is because
|
|
* PCI devices are added individually; but, for the restore,
|
|
* an entire slot is reset at a time.
|
|
*/
|
|
void eeh_save_bars(struct eeh_dev *edev)
|
|
{
|
|
int i;
|
|
|
|
if (!edev)
|
|
return;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
eeh_ops->read_config(edev, i * 4, 4, &edev->config_space[i]);
|
|
|
|
/*
|
|
* For PCI bridges including root port, we need enable bus
|
|
* master explicitly. Otherwise, it can't fetch IODA table
|
|
* entries correctly. So we cache the bit in advance so that
|
|
* we can restore it after reset, either PHB range or PE range.
|
|
*/
|
|
if (edev->mode & EEH_DEV_BRIDGE)
|
|
edev->config_space[1] |= PCI_COMMAND_MASTER;
|
|
}
|
|
|
|
static int eeh_reboot_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *unused)
|
|
{
|
|
eeh_clear_flag(EEH_ENABLED);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block eeh_reboot_nb = {
|
|
.notifier_call = eeh_reboot_notifier,
|
|
};
|
|
|
|
static int eeh_device_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct device *dev = data;
|
|
|
|
switch (action) {
|
|
/*
|
|
* Note: It's not possible to perform EEH device addition (i.e.
|
|
* {pseries,pnv}_pcibios_bus_add_device()) here because it depends on
|
|
* the device's resources, which have not yet been set up.
|
|
*/
|
|
case BUS_NOTIFY_DEL_DEVICE:
|
|
eeh_remove_device(to_pci_dev(dev));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block eeh_device_nb = {
|
|
.notifier_call = eeh_device_notifier,
|
|
};
|
|
|
|
/**
|
|
* eeh_init - System wide EEH initialization
|
|
* @ops: struct to trace EEH operation callback functions
|
|
*
|
|
* It's the platform's job to call this from an arch_initcall().
|
|
*/
|
|
int eeh_init(struct eeh_ops *ops)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
int ret = 0;
|
|
|
|
/* the platform should only initialise EEH once */
|
|
if (WARN_ON(eeh_ops))
|
|
return -EEXIST;
|
|
if (WARN_ON(!ops))
|
|
return -ENOENT;
|
|
eeh_ops = ops;
|
|
|
|
/* Register reboot notifier */
|
|
ret = register_reboot_notifier(&eeh_reboot_nb);
|
|
if (ret) {
|
|
pr_warn("%s: Failed to register reboot notifier (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = bus_register_notifier(&pci_bus_type, &eeh_device_nb);
|
|
if (ret) {
|
|
pr_warn("%s: Failed to register bus notifier (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize PHB PEs */
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
|
|
eeh_phb_pe_create(hose);
|
|
|
|
eeh_addr_cache_init();
|
|
|
|
/* Initialize EEH event */
|
|
return eeh_event_init();
|
|
}
|
|
|
|
/**
|
|
* eeh_probe_device() - Perform EEH initialization for the indicated pci device
|
|
* @dev: pci device for which to set up EEH
|
|
*
|
|
* This routine must be used to complete EEH initialization for PCI
|
|
* devices that were added after system boot (e.g. hotplug, dlpar).
|
|
*/
|
|
void eeh_probe_device(struct pci_dev *dev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
|
|
pr_debug("EEH: Adding device %s\n", pci_name(dev));
|
|
|
|
/*
|
|
* pci_dev_to_eeh_dev() can only work if eeh_probe_dev() was
|
|
* already called for this device.
|
|
*/
|
|
if (WARN_ON_ONCE(pci_dev_to_eeh_dev(dev))) {
|
|
pci_dbg(dev, "Already bound to an eeh_dev!\n");
|
|
return;
|
|
}
|
|
|
|
edev = eeh_ops->probe(dev);
|
|
if (!edev) {
|
|
pr_debug("EEH: Adding device failed\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* FIXME: We rely on pcibios_release_device() to remove the
|
|
* existing EEH state. The release function is only called if
|
|
* the pci_dev's refcount drops to zero so if something is
|
|
* keeping a ref to a device (e.g. a filesystem) we need to
|
|
* remove the old EEH state.
|
|
*
|
|
* FIXME: HEY MA, LOOK AT ME, NO LOCKING!
|
|
*/
|
|
if (edev->pdev && edev->pdev != dev) {
|
|
eeh_pe_tree_remove(edev);
|
|
eeh_addr_cache_rmv_dev(edev->pdev);
|
|
eeh_sysfs_remove_device(edev->pdev);
|
|
|
|
/*
|
|
* We definitely should have the PCI device removed
|
|
* though it wasn't correctly. So we needn't call
|
|
* into error handler afterwards.
|
|
*/
|
|
edev->mode |= EEH_DEV_NO_HANDLER;
|
|
}
|
|
|
|
/* bind the pdev and the edev together */
|
|
edev->pdev = dev;
|
|
dev->dev.archdata.edev = edev;
|
|
eeh_addr_cache_insert_dev(dev);
|
|
eeh_sysfs_add_device(dev);
|
|
}
|
|
|
|
/**
|
|
* eeh_remove_device - Undo EEH setup for the indicated pci device
|
|
* @dev: pci device to be removed
|
|
*
|
|
* This routine should be called when a device is removed from
|
|
* a running system (e.g. by hotplug or dlpar). It unregisters
|
|
* the PCI device from the EEH subsystem. I/O errors affecting
|
|
* this device will no longer be detected after this call; thus,
|
|
* i/o errors affecting this slot may leave this device unusable.
|
|
*/
|
|
void eeh_remove_device(struct pci_dev *dev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
|
|
if (!dev || !eeh_enabled())
|
|
return;
|
|
edev = pci_dev_to_eeh_dev(dev);
|
|
|
|
/* Unregister the device with the EEH/PCI address search system */
|
|
dev_dbg(&dev->dev, "EEH: Removing device\n");
|
|
|
|
if (!edev || !edev->pdev || !edev->pe) {
|
|
dev_dbg(&dev->dev, "EEH: Device not referenced!\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* During the hotplug for EEH error recovery, we need the EEH
|
|
* device attached to the parent PE in order for BAR restore
|
|
* a bit later. So we keep it for BAR restore and remove it
|
|
* from the parent PE during the BAR resotre.
|
|
*/
|
|
edev->pdev = NULL;
|
|
|
|
/*
|
|
* eeh_sysfs_remove_device() uses pci_dev_to_eeh_dev() so we need to
|
|
* remove the sysfs files before clearing dev.archdata.edev
|
|
*/
|
|
if (edev->mode & EEH_DEV_SYSFS)
|
|
eeh_sysfs_remove_device(dev);
|
|
|
|
/*
|
|
* We're removing from the PCI subsystem, that means
|
|
* the PCI device driver can't support EEH or not
|
|
* well. So we rely on hotplug completely to do recovery
|
|
* for the specific PCI device.
|
|
*/
|
|
edev->mode |= EEH_DEV_NO_HANDLER;
|
|
|
|
eeh_addr_cache_rmv_dev(dev);
|
|
|
|
/*
|
|
* The flag "in_error" is used to trace EEH devices for VFs
|
|
* in error state or not. It's set in eeh_report_error(). If
|
|
* it's not set, eeh_report_{reset,resume}() won't be called
|
|
* for the VF EEH device.
|
|
*/
|
|
edev->in_error = false;
|
|
dev->dev.archdata.edev = NULL;
|
|
if (!(edev->pe->state & EEH_PE_KEEP))
|
|
eeh_pe_tree_remove(edev);
|
|
else
|
|
edev->mode |= EEH_DEV_DISCONNECTED;
|
|
}
|
|
|
|
int eeh_unfreeze_pe(struct eeh_pe *pe)
|
|
{
|
|
int ret;
|
|
|
|
ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
|
|
__func__, ret, pe->phb->global_number, pe->addr);
|
|
return ret;
|
|
}
|
|
|
|
ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
|
|
__func__, ret, pe->phb->global_number, pe->addr);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static struct pci_device_id eeh_reset_ids[] = {
|
|
{ PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
|
|
{ PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
|
|
{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
|
|
{ 0 }
|
|
};
|
|
|
|
static int eeh_pe_change_owner(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
struct pci_device_id *id;
|
|
int ret;
|
|
|
|
/* Check PE state */
|
|
ret = eeh_ops->get_state(pe, NULL);
|
|
if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
|
|
return 0;
|
|
|
|
/* Unfrozen PE, nothing to do */
|
|
if (eeh_state_active(ret))
|
|
return 0;
|
|
|
|
/* Frozen PE, check if it needs PE level reset */
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
|
|
if (id->vendor != PCI_ANY_ID &&
|
|
id->vendor != pdev->vendor)
|
|
continue;
|
|
if (id->device != PCI_ANY_ID &&
|
|
id->device != pdev->device)
|
|
continue;
|
|
if (id->subvendor != PCI_ANY_ID &&
|
|
id->subvendor != pdev->subsystem_vendor)
|
|
continue;
|
|
if (id->subdevice != PCI_ANY_ID &&
|
|
id->subdevice != pdev->subsystem_device)
|
|
continue;
|
|
|
|
return eeh_pe_reset_and_recover(pe);
|
|
}
|
|
}
|
|
|
|
ret = eeh_unfreeze_pe(pe);
|
|
if (!ret)
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* eeh_dev_open - Increase count of pass through devices for PE
|
|
* @pdev: PCI device
|
|
*
|
|
* Increase count of passed through devices for the indicated
|
|
* PE. In the result, the EEH errors detected on the PE won't be
|
|
* reported. The PE owner will be responsible for detection
|
|
* and recovery.
|
|
*/
|
|
int eeh_dev_open(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
int ret = -ENODEV;
|
|
|
|
mutex_lock(&eeh_dev_mutex);
|
|
|
|
/* No PCI device ? */
|
|
if (!pdev)
|
|
goto out;
|
|
|
|
/* No EEH device or PE ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe)
|
|
goto out;
|
|
|
|
/*
|
|
* The PE might have been put into frozen state, but we
|
|
* didn't detect that yet. The passed through PCI devices
|
|
* in frozen PE won't work properly. Clear the frozen state
|
|
* in advance.
|
|
*/
|
|
ret = eeh_pe_change_owner(edev->pe);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Increase PE's pass through count */
|
|
atomic_inc(&edev->pe->pass_dev_cnt);
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
|
|
return 0;
|
|
out:
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_dev_open);
|
|
|
|
/**
|
|
* eeh_dev_release - Decrease count of pass through devices for PE
|
|
* @pdev: PCI device
|
|
*
|
|
* Decrease count of pass through devices for the indicated PE. If
|
|
* there is no passed through device in PE, the EEH errors detected
|
|
* on the PE will be reported and handled as usual.
|
|
*/
|
|
void eeh_dev_release(struct pci_dev *pdev)
|
|
{
|
|
struct eeh_dev *edev;
|
|
|
|
mutex_lock(&eeh_dev_mutex);
|
|
|
|
/* No PCI device ? */
|
|
if (!pdev)
|
|
goto out;
|
|
|
|
/* No EEH device ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
|
|
goto out;
|
|
|
|
/* Decrease PE's pass through count */
|
|
WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
|
|
eeh_pe_change_owner(edev->pe);
|
|
out:
|
|
mutex_unlock(&eeh_dev_mutex);
|
|
}
|
|
EXPORT_SYMBOL(eeh_dev_release);
|
|
|
|
#ifdef CONFIG_IOMMU_API
|
|
|
|
static int dev_has_iommu_table(struct device *dev, void *data)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pci_dev **ppdev = data;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (device_iommu_mapped(dev)) {
|
|
*ppdev = pdev;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
|
|
* @group: IOMMU group
|
|
*
|
|
* The routine is called to convert IOMMU group to EEH PE.
|
|
*/
|
|
struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct eeh_dev *edev;
|
|
int ret;
|
|
|
|
/* No IOMMU group ? */
|
|
if (!group)
|
|
return NULL;
|
|
|
|
ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
|
|
if (!ret || !pdev)
|
|
return NULL;
|
|
|
|
/* No EEH device or PE ? */
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev || !edev->pe)
|
|
return NULL;
|
|
|
|
return edev->pe;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
|
|
|
|
#endif /* CONFIG_IOMMU_API */
|
|
|
|
/**
|
|
* eeh_pe_set_option - Set options for the indicated PE
|
|
* @pe: EEH PE
|
|
* @option: requested option
|
|
*
|
|
* The routine is called to enable or disable EEH functionality
|
|
* on the indicated PE, to enable IO or DMA for the frozen PE.
|
|
*/
|
|
int eeh_pe_set_option(struct eeh_pe *pe, int option)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* EEH functionality could possibly be disabled, just
|
|
* return error for the case. And the EEH functionality
|
|
* isn't expected to be disabled on one specific PE.
|
|
*/
|
|
switch (option) {
|
|
case EEH_OPT_ENABLE:
|
|
if (eeh_enabled()) {
|
|
ret = eeh_pe_change_owner(pe);
|
|
break;
|
|
}
|
|
ret = -EIO;
|
|
break;
|
|
case EEH_OPT_DISABLE:
|
|
break;
|
|
case EEH_OPT_THAW_MMIO:
|
|
case EEH_OPT_THAW_DMA:
|
|
case EEH_OPT_FREEZE_PE:
|
|
if (!eeh_ops || !eeh_ops->set_option) {
|
|
ret = -ENOENT;
|
|
break;
|
|
}
|
|
|
|
ret = eeh_pci_enable(pe, option);
|
|
break;
|
|
default:
|
|
pr_debug("%s: Option %d out of range (%d, %d)\n",
|
|
__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_set_option);
|
|
|
|
/**
|
|
* eeh_pe_get_state - Retrieve PE's state
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the PE's state, which includes 3 aspects: enabled
|
|
* DMA, enabled IO and asserted reset.
|
|
*/
|
|
int eeh_pe_get_state(struct eeh_pe *pe)
|
|
{
|
|
int result, ret = 0;
|
|
bool rst_active, dma_en, mmio_en;
|
|
|
|
/* Existing PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
if (!eeh_ops || !eeh_ops->get_state)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* If the parent PE is owned by the host kernel and is undergoing
|
|
* error recovery, we should return the PE state as temporarily
|
|
* unavailable so that the error recovery on the guest is suspended
|
|
* until the recovery completes on the host.
|
|
*/
|
|
if (pe->parent &&
|
|
!(pe->state & EEH_PE_REMOVED) &&
|
|
(pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
|
|
return EEH_PE_STATE_UNAVAIL;
|
|
|
|
result = eeh_ops->get_state(pe, NULL);
|
|
rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
|
|
dma_en = !!(result & EEH_STATE_DMA_ENABLED);
|
|
mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
|
|
|
|
if (rst_active)
|
|
ret = EEH_PE_STATE_RESET;
|
|
else if (dma_en && mmio_en)
|
|
ret = EEH_PE_STATE_NORMAL;
|
|
else if (!dma_en && !mmio_en)
|
|
ret = EEH_PE_STATE_STOPPED_IO_DMA;
|
|
else if (!dma_en && mmio_en)
|
|
ret = EEH_PE_STATE_STOPPED_DMA;
|
|
else
|
|
ret = EEH_PE_STATE_UNAVAIL;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_get_state);
|
|
|
|
static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
|
|
{
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
int ret = 0;
|
|
|
|
eeh_pe_restore_bars(pe);
|
|
|
|
/*
|
|
* Reenable PCI devices as the devices passed
|
|
* through are always enabled before the reset.
|
|
*/
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
ret = pci_reenable_device(pdev);
|
|
if (ret) {
|
|
pr_warn("%s: Failure %d reenabling %s\n",
|
|
__func__, ret, pci_name(pdev));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* The PE is still in frozen state */
|
|
if (include_passed || !eeh_pe_passed(pe)) {
|
|
ret = eeh_unfreeze_pe(pe);
|
|
} else
|
|
pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
|
|
pe->phb->global_number, pe->addr);
|
|
if (!ret)
|
|
eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* eeh_pe_reset - Issue PE reset according to specified type
|
|
* @pe: EEH PE
|
|
* @option: reset type
|
|
* @include_passed: include passed-through devices?
|
|
*
|
|
* The routine is called to reset the specified PE with the
|
|
* indicated type, either fundamental reset or hot reset.
|
|
* PE reset is the most important part for error recovery.
|
|
*/
|
|
int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
|
|
return -ENOENT;
|
|
|
|
switch (option) {
|
|
case EEH_RESET_DEACTIVATE:
|
|
ret = eeh_ops->reset(pe, option);
|
|
eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
|
|
if (ret)
|
|
break;
|
|
|
|
ret = eeh_pe_reenable_devices(pe, include_passed);
|
|
break;
|
|
case EEH_RESET_HOT:
|
|
case EEH_RESET_FUNDAMENTAL:
|
|
/*
|
|
* Proactively freeze the PE to drop all MMIO access
|
|
* during reset, which should be banned as it's always
|
|
* cause recursive EEH error.
|
|
*/
|
|
eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
|
|
|
|
eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
|
|
ret = eeh_ops->reset(pe, option);
|
|
break;
|
|
default:
|
|
pr_debug("%s: Unsupported option %d\n",
|
|
__func__, option);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_reset);
|
|
|
|
/**
|
|
* eeh_pe_configure - Configure PCI bridges after PE reset
|
|
* @pe: EEH PE
|
|
*
|
|
* The routine is called to restore the PCI config space for
|
|
* those PCI devices, especially PCI bridges affected by PE
|
|
* reset issued previously.
|
|
*/
|
|
int eeh_pe_configure(struct eeh_pe *pe)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_configure);
|
|
|
|
/**
|
|
* eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
|
|
* @pe: the indicated PE
|
|
* @type: error type
|
|
* @func: error function
|
|
* @addr: address
|
|
* @mask: address mask
|
|
*
|
|
* The routine is called to inject the specified PCI error, which
|
|
* is determined by @type and @func, to the indicated PE for
|
|
* testing purpose.
|
|
*/
|
|
int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
|
|
unsigned long addr, unsigned long mask)
|
|
{
|
|
/* Invalid PE ? */
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
/* Unsupported operation ? */
|
|
if (!eeh_ops || !eeh_ops->err_inject)
|
|
return -ENOENT;
|
|
|
|
/* Check on PCI error type */
|
|
if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
|
|
return -EINVAL;
|
|
|
|
/* Check on PCI error function */
|
|
if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
|
|
return -EINVAL;
|
|
|
|
return eeh_ops->err_inject(pe, type, func, addr, mask);
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static int proc_eeh_show(struct seq_file *m, void *v)
|
|
{
|
|
if (!eeh_enabled()) {
|
|
seq_printf(m, "EEH Subsystem is globally disabled\n");
|
|
seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
|
|
} else {
|
|
seq_printf(m, "EEH Subsystem is enabled\n");
|
|
seq_printf(m,
|
|
"no device=%llu\n"
|
|
"no device node=%llu\n"
|
|
"no config address=%llu\n"
|
|
"check not wanted=%llu\n"
|
|
"eeh_total_mmio_ffs=%llu\n"
|
|
"eeh_false_positives=%llu\n"
|
|
"eeh_slot_resets=%llu\n",
|
|
eeh_stats.no_device,
|
|
eeh_stats.no_dn,
|
|
eeh_stats.no_cfg_addr,
|
|
eeh_stats.ignored_check,
|
|
eeh_stats.total_mmio_ffs,
|
|
eeh_stats.false_positives,
|
|
eeh_stats.slot_resets);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
|
|
static struct pci_dev *eeh_debug_lookup_pdev(struct file *filp,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
uint32_t domain, bus, dev, fn;
|
|
struct pci_dev *pdev;
|
|
char buf[20];
|
|
int ret;
|
|
|
|
memset(buf, 0, sizeof(buf));
|
|
ret = simple_write_to_buffer(buf, sizeof(buf)-1, ppos, user_buf, count);
|
|
if (!ret)
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
ret = sscanf(buf, "%x:%x:%x.%x", &domain, &bus, &dev, &fn);
|
|
if (ret != 4) {
|
|
pr_err("%s: expected 4 args, got %d\n", __func__, ret);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
pdev = pci_get_domain_bus_and_slot(domain, bus, (dev << 3) | fn);
|
|
if (!pdev)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
return pdev;
|
|
}
|
|
|
|
static int eeh_enable_dbgfs_set(void *data, u64 val)
|
|
{
|
|
if (val)
|
|
eeh_clear_flag(EEH_FORCE_DISABLED);
|
|
else
|
|
eeh_add_flag(EEH_FORCE_DISABLED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int eeh_enable_dbgfs_get(void *data, u64 *val)
|
|
{
|
|
if (eeh_enabled())
|
|
*val = 0x1ul;
|
|
else
|
|
*val = 0x0ul;
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
|
|
eeh_enable_dbgfs_set, "0x%llx\n");
|
|
|
|
static ssize_t eeh_force_recover_write(struct file *filp,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct pci_controller *hose;
|
|
uint32_t phbid, pe_no;
|
|
struct eeh_pe *pe;
|
|
char buf[20];
|
|
int ret;
|
|
|
|
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
|
|
if (!ret)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* When PE is NULL the event is a "special" event. Rather than
|
|
* recovering a specific PE it forces the EEH core to scan for failed
|
|
* PHBs and recovers each. This needs to be done before any device
|
|
* recoveries can occur.
|
|
*/
|
|
if (!strncmp(buf, "hwcheck", 7)) {
|
|
__eeh_send_failure_event(NULL);
|
|
return count;
|
|
}
|
|
|
|
ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
|
|
if (ret != 2)
|
|
return -EINVAL;
|
|
|
|
hose = pci_find_controller_for_domain(phbid);
|
|
if (!hose)
|
|
return -ENODEV;
|
|
|
|
/* Retrieve PE */
|
|
pe = eeh_pe_get(hose, pe_no);
|
|
if (!pe)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* We don't do any state checking here since the detection
|
|
* process is async to the recovery process. The recovery
|
|
* thread *should* not break even if we schedule a recovery
|
|
* from an odd state (e.g. PE removed, or recovery of a
|
|
* non-isolated PE)
|
|
*/
|
|
__eeh_send_failure_event(pe);
|
|
|
|
return ret < 0 ? ret : count;
|
|
}
|
|
|
|
static const struct file_operations eeh_force_recover_fops = {
|
|
.open = simple_open,
|
|
.llseek = no_llseek,
|
|
.write = eeh_force_recover_write,
|
|
};
|
|
|
|
static ssize_t eeh_debugfs_dev_usage(struct file *filp,
|
|
char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
static const char usage[] = "input format: <domain>:<bus>:<dev>.<fn>\n";
|
|
|
|
return simple_read_from_buffer(user_buf, count, ppos,
|
|
usage, sizeof(usage) - 1);
|
|
}
|
|
|
|
static ssize_t eeh_dev_check_write(struct file *filp,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct pci_dev *pdev;
|
|
struct eeh_dev *edev;
|
|
int ret;
|
|
|
|
pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
|
|
if (IS_ERR(pdev))
|
|
return PTR_ERR(pdev);
|
|
|
|
edev = pci_dev_to_eeh_dev(pdev);
|
|
if (!edev) {
|
|
pci_err(pdev, "No eeh_dev for this device!\n");
|
|
pci_dev_put(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = eeh_dev_check_failure(edev);
|
|
pci_info(pdev, "eeh_dev_check_failure(%s) = %d\n",
|
|
pci_name(pdev), ret);
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations eeh_dev_check_fops = {
|
|
.open = simple_open,
|
|
.llseek = no_llseek,
|
|
.write = eeh_dev_check_write,
|
|
.read = eeh_debugfs_dev_usage,
|
|
};
|
|
|
|
static int eeh_debugfs_break_device(struct pci_dev *pdev)
|
|
{
|
|
struct resource *bar = NULL;
|
|
void __iomem *mapped;
|
|
u16 old, bit;
|
|
int i, pos;
|
|
|
|
/* Do we have an MMIO BAR to disable? */
|
|
for (i = 0; i <= PCI_STD_RESOURCE_END; i++) {
|
|
struct resource *r = &pdev->resource[i];
|
|
|
|
if (!r->flags || !r->start)
|
|
continue;
|
|
if (r->flags & IORESOURCE_IO)
|
|
continue;
|
|
if (r->flags & IORESOURCE_UNSET)
|
|
continue;
|
|
|
|
bar = r;
|
|
break;
|
|
}
|
|
|
|
if (!bar) {
|
|
pci_err(pdev, "Unable to find Memory BAR to cause EEH with\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
pci_err(pdev, "Going to break: %pR\n", bar);
|
|
|
|
if (pdev->is_virtfn) {
|
|
#ifndef CONFIG_PCI_IOV
|
|
return -ENXIO;
|
|
#else
|
|
/*
|
|
* VFs don't have a per-function COMMAND register, so the best
|
|
* we can do is clear the Memory Space Enable bit in the PF's
|
|
* SRIOV control reg.
|
|
*
|
|
* Unfortunately, this requires that we have a PF (i.e doesn't
|
|
* work for a passed-through VF) and it has the potential side
|
|
* effect of also causing an EEH on every other VF under the
|
|
* PF. Oh well.
|
|
*/
|
|
pdev = pdev->physfn;
|
|
if (!pdev)
|
|
return -ENXIO; /* passed through VFs have no PF */
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
|
|
pos += PCI_SRIOV_CTRL;
|
|
bit = PCI_SRIOV_CTRL_MSE;
|
|
#endif /* !CONFIG_PCI_IOV */
|
|
} else {
|
|
bit = PCI_COMMAND_MEMORY;
|
|
pos = PCI_COMMAND;
|
|
}
|
|
|
|
/*
|
|
* Process here is:
|
|
*
|
|
* 1. Disable Memory space.
|
|
*
|
|
* 2. Perform an MMIO to the device. This should result in an error
|
|
* (CA / UR) being raised by the device which results in an EEH
|
|
* PE freeze. Using the in_8() accessor skips the eeh detection hook
|
|
* so the freeze hook so the EEH Detection machinery won't be
|
|
* triggered here. This is to match the usual behaviour of EEH
|
|
* where the HW will asynchronously freeze a PE and it's up to
|
|
* the kernel to notice and deal with it.
|
|
*
|
|
* 3. Turn Memory space back on. This is more important for VFs
|
|
* since recovery will probably fail if we don't. For normal
|
|
* the COMMAND register is reset as a part of re-initialising
|
|
* the device.
|
|
*
|
|
* Breaking stuff is the point so who cares if it's racy ;)
|
|
*/
|
|
pci_read_config_word(pdev, pos, &old);
|
|
|
|
mapped = ioremap(bar->start, PAGE_SIZE);
|
|
if (!mapped) {
|
|
pci_err(pdev, "Unable to map MMIO BAR %pR\n", bar);
|
|
return -ENXIO;
|
|
}
|
|
|
|
pci_write_config_word(pdev, pos, old & ~bit);
|
|
in_8(mapped);
|
|
pci_write_config_word(pdev, pos, old);
|
|
|
|
iounmap(mapped);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t eeh_dev_break_write(struct file *filp,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct pci_dev *pdev;
|
|
int ret;
|
|
|
|
pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
|
|
if (IS_ERR(pdev))
|
|
return PTR_ERR(pdev);
|
|
|
|
ret = eeh_debugfs_break_device(pdev);
|
|
pci_dev_put(pdev);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations eeh_dev_break_fops = {
|
|
.open = simple_open,
|
|
.llseek = no_llseek,
|
|
.write = eeh_dev_break_write,
|
|
.read = eeh_debugfs_dev_usage,
|
|
};
|
|
|
|
static ssize_t eeh_dev_can_recover(struct file *filp,
|
|
const char __user *user_buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct pci_driver *drv;
|
|
struct pci_dev *pdev;
|
|
size_t ret;
|
|
|
|
pdev = eeh_debug_lookup_pdev(filp, user_buf, count, ppos);
|
|
if (IS_ERR(pdev))
|
|
return PTR_ERR(pdev);
|
|
|
|
/*
|
|
* In order for error recovery to work the driver needs to implement
|
|
* .error_detected(), so it can quiesce IO to the device, and
|
|
* .slot_reset() so it can re-initialise the device after a reset.
|
|
*
|
|
* Ideally they'd implement .resume() too, but some drivers which
|
|
* we need to support (notably IPR) don't so I guess we can tolerate
|
|
* that.
|
|
*
|
|
* .mmio_enabled() is mostly there as a work-around for devices which
|
|
* take forever to re-init after a hot reset. Implementing that is
|
|
* strictly optional.
|
|
*/
|
|
drv = pci_dev_driver(pdev);
|
|
if (drv &&
|
|
drv->err_handler &&
|
|
drv->err_handler->error_detected &&
|
|
drv->err_handler->slot_reset) {
|
|
ret = count;
|
|
} else {
|
|
ret = -EOPNOTSUPP;
|
|
}
|
|
|
|
pci_dev_put(pdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct file_operations eeh_dev_can_recover_fops = {
|
|
.open = simple_open,
|
|
.llseek = no_llseek,
|
|
.write = eeh_dev_can_recover,
|
|
.read = eeh_debugfs_dev_usage,
|
|
};
|
|
|
|
#endif
|
|
|
|
static int __init eeh_init_proc(void)
|
|
{
|
|
if (machine_is(pseries) || machine_is(powernv)) {
|
|
proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
|
|
#ifdef CONFIG_DEBUG_FS
|
|
debugfs_create_file_unsafe("eeh_enable", 0600,
|
|
arch_debugfs_dir, NULL,
|
|
&eeh_enable_dbgfs_ops);
|
|
debugfs_create_u32("eeh_max_freezes", 0600,
|
|
arch_debugfs_dir, &eeh_max_freezes);
|
|
debugfs_create_bool("eeh_disable_recovery", 0600,
|
|
arch_debugfs_dir,
|
|
&eeh_debugfs_no_recover);
|
|
debugfs_create_file_unsafe("eeh_dev_check", 0600,
|
|
arch_debugfs_dir, NULL,
|
|
&eeh_dev_check_fops);
|
|
debugfs_create_file_unsafe("eeh_dev_break", 0600,
|
|
arch_debugfs_dir, NULL,
|
|
&eeh_dev_break_fops);
|
|
debugfs_create_file_unsafe("eeh_force_recover", 0600,
|
|
arch_debugfs_dir, NULL,
|
|
&eeh_force_recover_fops);
|
|
debugfs_create_file_unsafe("eeh_dev_can_recover", 0600,
|
|
arch_debugfs_dir, NULL,
|
|
&eeh_dev_can_recover_fops);
|
|
eeh_cache_debugfs_init();
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
__initcall(eeh_init_proc);
|