linux-stable/arch/powerpc/lib/qspinlock.c
Nicholas Piggin be742c573f powerpc/qspinlock: add ability to prod new queue head CPU
After the head of the queue acquires the lock, it releases the
next waiter in the queue to become the new head. Add an option
to prod the new head if its vCPU was preempted. This may only
have an effect if queue waiters are yielding.

Disable this option by default for now, i.e., no logical change.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221126095932.1234527-12-npiggin@gmail.com
2022-12-02 17:48:50 +11:00

633 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/bug.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/percpu.h>
#include <linux/smp.h>
#include <asm/qspinlock.h>
#include <asm/paravirt.h>
#define MAX_NODES 4
struct qnode {
struct qnode *next;
struct qspinlock *lock;
int cpu;
int yield_cpu;
u8 locked; /* 1 if lock acquired */
};
struct qnodes {
int count;
struct qnode nodes[MAX_NODES];
};
/* Tuning parameters */
static int steal_spins __read_mostly = (1 << 5);
static bool maybe_stealers __read_mostly = true;
static int head_spins __read_mostly = (1 << 8);
static bool pv_yield_owner __read_mostly = true;
static bool pv_yield_allow_steal __read_mostly = false;
static bool pv_yield_prev __read_mostly = true;
static bool pv_yield_propagate_owner __read_mostly = true;
static bool pv_prod_head __read_mostly = false;
static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);
static __always_inline int get_steal_spins(bool paravirt)
{
return steal_spins;
}
static __always_inline int get_head_spins(bool paravirt)
{
return head_spins;
}
static inline u32 encode_tail_cpu(int cpu)
{
return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
}
static inline int decode_tail_cpu(u32 val)
{
return (val >> _Q_TAIL_CPU_OFFSET) - 1;
}
static inline int get_owner_cpu(u32 val)
{
return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET;
}
/*
* Try to acquire the lock if it was not already locked. If the tail matches
* mytail then clear it, otherwise leave it unchnaged. Return previous value.
*
* This is used by the head of the queue to acquire the lock and clean up
* its tail if it was the last one queued.
*/
static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail)
{
u32 newval = queued_spin_encode_locked_val();
u32 prev, tmp;
asm volatile(
"1: lwarx %0,0,%2,%7 # trylock_clean_tail \n"
/* This test is necessary if there could be stealers */
" andi. %1,%0,%5 \n"
" bne 3f \n"
/* Test whether the lock tail == mytail */
" and %1,%0,%6 \n"
" cmpw 0,%1,%3 \n"
/* Merge the new locked value */
" or %1,%1,%4 \n"
" bne 2f \n"
/* If the lock tail matched, then clear it, otherwise leave it. */
" andc %1,%1,%6 \n"
"2: stwcx. %1,0,%2 \n"
" bne- 1b \n"
"\t" PPC_ACQUIRE_BARRIER " \n"
"3: \n"
: "=&r" (prev), "=&r" (tmp)
: "r" (&lock->val), "r"(tail), "r" (newval),
"i" (_Q_LOCKED_VAL),
"r" (_Q_TAIL_CPU_MASK),
"i" (IS_ENABLED(CONFIG_PPC64))
: "cr0", "memory");
return prev;
}
/*
* Publish our tail, replacing previous tail. Return previous value.
*
* This provides a release barrier for publishing node, this pairs with the
* acquire barrier in get_tail_qnode() when the next CPU finds this tail
* value.
*/
static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail)
{
u32 prev, tmp;
asm volatile(
"\t" PPC_RELEASE_BARRIER " \n"
"1: lwarx %0,0,%2 # publish_tail_cpu \n"
" andc %1,%0,%4 \n"
" or %1,%1,%3 \n"
" stwcx. %1,0,%2 \n"
" bne- 1b \n"
: "=&r" (prev), "=&r"(tmp)
: "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK)
: "cr0", "memory");
return prev;
}
static __always_inline u32 set_mustq(struct qspinlock *lock)
{
u32 prev;
asm volatile(
"1: lwarx %0,0,%1 # set_mustq \n"
" or %0,%0,%2 \n"
" stwcx. %0,0,%1 \n"
" bne- 1b \n"
: "=&r" (prev)
: "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
: "cr0", "memory");
return prev;
}
static __always_inline u32 clear_mustq(struct qspinlock *lock)
{
u32 prev;
asm volatile(
"1: lwarx %0,0,%1 # clear_mustq \n"
" andc %0,%0,%2 \n"
" stwcx. %0,0,%1 \n"
" bne- 1b \n"
: "=&r" (prev)
: "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
: "cr0", "memory");
return prev;
}
static struct qnode *get_tail_qnode(struct qspinlock *lock, u32 val)
{
int cpu = decode_tail_cpu(val);
struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
int idx;
/*
* After publishing the new tail and finding a previous tail in the
* previous val (which is the control dependency), this barrier
* orders the release barrier in publish_tail_cpu performed by the
* last CPU, with subsequently looking at its qnode structures
* after the barrier.
*/
smp_acquire__after_ctrl_dep();
for (idx = 0; idx < MAX_NODES; idx++) {
struct qnode *qnode = &qnodesp->nodes[idx];
if (qnode->lock == lock)
return qnode;
}
BUG();
}
static __always_inline void __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq)
{
int owner;
u32 yield_count;
BUG_ON(!(val & _Q_LOCKED_VAL));
if (!paravirt)
goto relax;
if (!pv_yield_owner)
goto relax;
owner = get_owner_cpu(val);
yield_count = yield_count_of(owner);
if ((yield_count & 1) == 0)
goto relax; /* owner vcpu is running */
/*
* Read the lock word after sampling the yield count. On the other side
* there may a wmb because the yield count update is done by the
* hypervisor preemption and the value update by the OS, however this
* ordering might reduce the chance of out of order accesses and
* improve the heuristic.
*/
smp_rmb();
if (READ_ONCE(lock->val) == val) {
if (mustq)
clear_mustq(lock);
yield_to_preempted(owner, yield_count);
if (mustq)
set_mustq(lock);
/* Don't relax if we yielded. Maybe we should? */
return;
}
relax:
cpu_relax();
}
static __always_inline void yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
{
__yield_to_locked_owner(lock, val, paravirt, false);
}
static __always_inline void yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
{
bool mustq = false;
if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal)
mustq = true;
__yield_to_locked_owner(lock, val, paravirt, mustq);
}
static __always_inline void propagate_yield_cpu(struct qnode *node, u32 val, int *set_yield_cpu, bool paravirt)
{
struct qnode *next;
int owner;
if (!paravirt)
return;
if (!pv_yield_propagate_owner)
return;
owner = get_owner_cpu(val);
if (*set_yield_cpu == owner)
return;
next = READ_ONCE(node->next);
if (!next)
return;
if (vcpu_is_preempted(owner)) {
next->yield_cpu = owner;
*set_yield_cpu = owner;
} else if (*set_yield_cpu != -1) {
next->yield_cpu = owner;
*set_yield_cpu = owner;
}
}
static __always_inline void yield_to_prev(struct qspinlock *lock, struct qnode *node, u32 val, bool paravirt)
{
int prev_cpu = decode_tail_cpu(val);
u32 yield_count;
int yield_cpu;
if (!paravirt)
goto relax;
if (!pv_yield_propagate_owner)
goto yield_prev;
yield_cpu = READ_ONCE(node->yield_cpu);
if (yield_cpu == -1) {
/* Propagate back the -1 CPU */
if (node->next && node->next->yield_cpu != -1)
node->next->yield_cpu = yield_cpu;
goto yield_prev;
}
yield_count = yield_count_of(yield_cpu);
if ((yield_count & 1) == 0)
goto yield_prev; /* owner vcpu is running */
smp_rmb();
if (yield_cpu == node->yield_cpu) {
if (node->next && node->next->yield_cpu != yield_cpu)
node->next->yield_cpu = yield_cpu;
yield_to_preempted(yield_cpu, yield_count);
return;
}
yield_prev:
if (!pv_yield_prev)
goto relax;
yield_count = yield_count_of(prev_cpu);
if ((yield_count & 1) == 0)
goto relax; /* owner vcpu is running */
smp_rmb(); /* See __yield_to_locked_owner comment */
if (!node->locked) {
yield_to_preempted(prev_cpu, yield_count);
return;
}
relax:
cpu_relax();
}
static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt)
{
int iters = 0;
if (!steal_spins)
return false;
/* Attempt to steal the lock */
do {
u32 val = READ_ONCE(lock->val);
if (val & _Q_MUST_Q_VAL)
break;
if (unlikely(!(val & _Q_LOCKED_VAL))) {
if (__queued_spin_trylock_steal(lock))
return true;
} else {
yield_to_locked_owner(lock, val, paravirt);
}
iters++;
} while (iters < get_steal_spins(paravirt));
return false;
}
static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt)
{
struct qnodes *qnodesp;
struct qnode *next, *node;
u32 val, old, tail;
bool mustq = false;
int idx;
int set_yield_cpu = -1;
int iters = 0;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
qnodesp = this_cpu_ptr(&qnodes);
if (unlikely(qnodesp->count >= MAX_NODES)) {
while (!queued_spin_trylock(lock))
cpu_relax();
return;
}
idx = qnodesp->count++;
/*
* Ensure that we increment the head node->count before initialising
* the actual node. If the compiler is kind enough to reorder these
* stores, then an IRQ could overwrite our assignments.
*/
barrier();
node = &qnodesp->nodes[idx];
node->next = NULL;
node->lock = lock;
node->cpu = smp_processor_id();
node->yield_cpu = -1;
node->locked = 0;
tail = encode_tail_cpu(node->cpu);
old = publish_tail_cpu(lock, tail);
/*
* If there was a previous node; link it and wait until reaching the
* head of the waitqueue.
*/
if (old & _Q_TAIL_CPU_MASK) {
struct qnode *prev = get_tail_qnode(lock, old);
/* Link @node into the waitqueue. */
WRITE_ONCE(prev->next, node);
/* Wait for mcs node lock to be released */
while (!node->locked)
yield_to_prev(lock, node, old, paravirt);
/* Clear out stale propagated yield_cpu */
if (paravirt && pv_yield_propagate_owner && node->yield_cpu != -1)
node->yield_cpu = -1;
smp_rmb(); /* acquire barrier for the mcs lock */
}
again:
/* We're at the head of the waitqueue, wait for the lock. */
for (;;) {
val = READ_ONCE(lock->val);
if (!(val & _Q_LOCKED_VAL))
break;
propagate_yield_cpu(node, val, &set_yield_cpu, paravirt);
yield_head_to_locked_owner(lock, val, paravirt);
if (!maybe_stealers)
continue;
iters++;
if (!mustq && iters >= get_head_spins(paravirt)) {
mustq = true;
set_mustq(lock);
val |= _Q_MUST_Q_VAL;
}
}
/* If we're the last queued, must clean up the tail. */
old = trylock_clean_tail(lock, tail);
if (unlikely(old & _Q_LOCKED_VAL)) {
BUG_ON(!maybe_stealers);
goto again; /* Can only be true if maybe_stealers. */
}
if ((old & _Q_TAIL_CPU_MASK) == tail)
goto release; /* We were the tail, no next. */
/* There is a next, must wait for node->next != NULL (MCS protocol) */
while (!(next = READ_ONCE(node->next)))
cpu_relax();
/*
* Unlock the next mcs waiter node. Release barrier is not required
* here because the acquirer is only accessing the lock word, and
* the acquire barrier we took the lock with orders that update vs
* this store to locked. The corresponding barrier is the smp_rmb()
* acquire barrier for mcs lock, above.
*/
if (paravirt && pv_prod_head) {
int next_cpu = next->cpu;
WRITE_ONCE(next->locked, 1);
if (vcpu_is_preempted(next_cpu))
prod_cpu(next_cpu);
} else {
WRITE_ONCE(next->locked, 1);
}
release:
qnodesp->count--; /* release the node */
}
void queued_spin_lock_slowpath(struct qspinlock *lock)
{
/*
* This looks funny, but it induces the compiler to inline both
* sides of the branch rather than share code as when the condition
* is passed as the paravirt argument to the functions.
*/
if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) {
if (try_to_steal_lock(lock, true))
return;
queued_spin_lock_mcs_queue(lock, true);
} else {
if (try_to_steal_lock(lock, false))
return;
queued_spin_lock_mcs_queue(lock, false);
}
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);
#ifdef CONFIG_PARAVIRT_SPINLOCKS
void pv_spinlocks_init(void)
{
}
#endif
#include <linux/debugfs.h>
static int steal_spins_set(void *data, u64 val)
{
static DEFINE_MUTEX(lock);
/*
* The lock slow path has a !maybe_stealers case that can assume
* the head of queue will not see concurrent waiters. That waiter
* is unsafe in the presence of stealers, so must keep them away
* from one another.
*/
mutex_lock(&lock);
if (val && !steal_spins) {
maybe_stealers = true;
/* wait for queue head waiter to go away */
synchronize_rcu();
steal_spins = val;
} else if (!val && steal_spins) {
steal_spins = val;
/* wait for all possible stealers to go away */
synchronize_rcu();
maybe_stealers = false;
} else {
steal_spins = val;
}
mutex_unlock(&lock);
return 0;
}
static int steal_spins_get(void *data, u64 *val)
{
*val = steal_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n");
static int head_spins_set(void *data, u64 val)
{
head_spins = val;
return 0;
}
static int head_spins_get(void *data, u64 *val)
{
*val = head_spins;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n");
static int pv_yield_owner_set(void *data, u64 val)
{
pv_yield_owner = !!val;
return 0;
}
static int pv_yield_owner_get(void *data, u64 *val)
{
*val = pv_yield_owner;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n");
static int pv_yield_allow_steal_set(void *data, u64 val)
{
pv_yield_allow_steal = !!val;
return 0;
}
static int pv_yield_allow_steal_get(void *data, u64 *val)
{
*val = pv_yield_allow_steal;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n");
static int pv_yield_prev_set(void *data, u64 val)
{
pv_yield_prev = !!val;
return 0;
}
static int pv_yield_prev_get(void *data, u64 *val)
{
*val = pv_yield_prev;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n");
static int pv_yield_propagate_owner_set(void *data, u64 val)
{
pv_yield_propagate_owner = !!val;
return 0;
}
static int pv_yield_propagate_owner_get(void *data, u64 *val)
{
*val = pv_yield_propagate_owner;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_propagate_owner, pv_yield_propagate_owner_get, pv_yield_propagate_owner_set, "%llu\n");
static int pv_prod_head_set(void *data, u64 val)
{
pv_prod_head = !!val;
return 0;
}
static int pv_prod_head_get(void *data, u64 *val)
{
*val = pv_prod_head;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n");
static __init int spinlock_debugfs_init(void)
{
debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins);
debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins);
if (is_shared_processor()) {
debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner);
debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal);
debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev);
debugfs_create_file("qspl_pv_yield_propagate_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_propagate_owner);
debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head);
}
return 0;
}
device_initcall(spinlock_debugfs_init);