linux-stable/drivers/net/ethernet/freescale/gianfar.c
David S. Miller e2160156bf Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
All merge conflicts were simple overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-02 16:54:00 -05:00

3792 lines
98 KiB
C

/* drivers/net/ethernet/freescale/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
* Copyright 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DEBUG
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <linux/net_tstamp.h>
#include <asm/io.h>
#ifdef CONFIG_PPC
#include <asm/reg.h>
#include <asm/mpc85xx.h>
#endif
#include <asm/irq.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include "gianfar.h"
#define TX_TIMEOUT (5*HZ)
const char gfar_driver_version[] = "2.0";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_reset_task(struct work_struct *work);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
int alloc_cnt);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static noinline void gfar_update_link_state(struct gfar_private *priv);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct platform_device *ofdev);
static int gfar_remove(struct platform_device *ofdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
static int gfar_poll_rx(struct napi_struct *napi, int budget);
static int gfar_poll_tx(struct napi_struct *napi, int budget);
static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
static void gfar_halt_nodisable(struct gfar_private *priv);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num,
const u8 *addr);
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
dma_addr_t buf)
{
u32 lstatus;
bdp->bufPtr = cpu_to_be32(buf);
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
lstatus |= BD_LFLAG(RXBD_WRAP);
gfar_wmb();
bdp->lstatus = cpu_to_be32(lstatus);
}
static void gfar_init_bds(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
struct txbd8 *txbdp;
u32 __iomem *rfbptr;
int i, j;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
/* Initialize some variables in our dev structure */
tx_queue->num_txbdfree = tx_queue->tx_ring_size;
tx_queue->dirty_tx = tx_queue->tx_bd_base;
tx_queue->cur_tx = tx_queue->tx_bd_base;
tx_queue->skb_curtx = 0;
tx_queue->skb_dirtytx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = tx_queue->tx_bd_base;
for (j = 0; j < tx_queue->tx_ring_size; j++) {
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
TXBD_WRAP);
}
rfbptr = &regs->rfbptr0;
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->next_to_clean = 0;
rx_queue->next_to_use = 0;
rx_queue->next_to_alloc = 0;
/* make sure next_to_clean != next_to_use after this
* by leaving at least 1 unused descriptor
*/
gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
rx_queue->rfbptr = rfbptr;
rfbptr += 2;
}
}
static int gfar_alloc_skb_resources(struct net_device *ndev)
{
void *vaddr;
dma_addr_t addr;
int i, j;
struct gfar_private *priv = netdev_priv(ndev);
struct device *dev = priv->dev;
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
priv->total_tx_ring_size = 0;
for (i = 0; i < priv->num_tx_queues; i++)
priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
priv->total_rx_ring_size = 0;
for (i = 0; i < priv->num_rx_queues; i++)
priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
/* Allocate memory for the buffer descriptors */
vaddr = dma_alloc_coherent(dev,
(priv->total_tx_ring_size *
sizeof(struct txbd8)) +
(priv->total_rx_ring_size *
sizeof(struct rxbd8)),
&addr, GFP_KERNEL);
if (!vaddr)
return -ENOMEM;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_bd_base = vaddr;
tx_queue->tx_bd_dma_base = addr;
tx_queue->dev = ndev;
/* enet DMA only understands physical addresses */
addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
}
/* Start the rx descriptor ring where the tx ring leaves off */
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_bd_base = vaddr;
rx_queue->rx_bd_dma_base = addr;
rx_queue->ndev = ndev;
rx_queue->dev = dev;
addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
}
/* Setup the skbuff rings */
for (i = 0; i < priv->num_tx_queues; i++) {
tx_queue = priv->tx_queue[i];
tx_queue->tx_skbuff =
kmalloc_array(tx_queue->tx_ring_size,
sizeof(*tx_queue->tx_skbuff),
GFP_KERNEL);
if (!tx_queue->tx_skbuff)
goto cleanup;
for (j = 0; j < tx_queue->tx_ring_size; j++)
tx_queue->tx_skbuff[j] = NULL;
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
sizeof(*rx_queue->rx_buff),
GFP_KERNEL);
if (!rx_queue->rx_buff)
goto cleanup;
}
gfar_init_bds(ndev);
return 0;
cleanup:
free_skb_resources(priv);
return -ENOMEM;
}
static void gfar_init_tx_rx_base(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
int i;
baddr = &regs->tbase0;
for (i = 0; i < priv->num_tx_queues; i++) {
gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
baddr += 2;
}
baddr = &regs->rbase0;
for (i = 0; i < priv->num_rx_queues; i++) {
gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
baddr += 2;
}
}
static void gfar_init_rqprm(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
int i;
baddr = &regs->rqprm0;
for (i = 0; i < priv->num_rx_queues; i++) {
gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
(DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
baddr++;
}
}
static void gfar_rx_offload_en(struct gfar_private *priv)
{
/* set this when rx hw offload (TOE) functions are being used */
priv->uses_rxfcb = 0;
if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
priv->uses_rxfcb = 1;
if (priv->hwts_rx_en || priv->rx_filer_enable)
priv->uses_rxfcb = 1;
}
static void gfar_mac_rx_config(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 rctrl = 0;
if (priv->rx_filer_enable) {
rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
/* Program the RIR0 reg with the required distribution */
if (priv->poll_mode == GFAR_SQ_POLLING)
gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
else /* GFAR_MQ_POLLING */
gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
}
/* Restore PROMISC mode */
if (priv->ndev->flags & IFF_PROMISC)
rctrl |= RCTRL_PROM;
if (priv->ndev->features & NETIF_F_RXCSUM)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash)
rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Enable HW time stamping if requested from user space */
if (priv->hwts_rx_en)
rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
/* Clear the LFC bit */
gfar_write(&regs->rctrl, rctrl);
/* Init flow control threshold values */
gfar_init_rqprm(priv);
gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
rctrl |= RCTRL_LFC;
/* Init rctrl based on our settings */
gfar_write(&regs->rctrl, rctrl);
}
static void gfar_mac_tx_config(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tctrl = 0;
if (priv->ndev->features & NETIF_F_IP_CSUM)
tctrl |= TCTRL_INIT_CSUM;
if (priv->prio_sched_en)
tctrl |= TCTRL_TXSCHED_PRIO;
else {
tctrl |= TCTRL_TXSCHED_WRRS;
gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
}
if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
tctrl |= TCTRL_VLINS;
gfar_write(&regs->tctrl, tctrl);
}
static void gfar_configure_coalescing(struct gfar_private *priv,
unsigned long tx_mask, unsigned long rx_mask)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 __iomem *baddr;
if (priv->mode == MQ_MG_MODE) {
int i = 0;
baddr = &regs->txic0;
for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
gfar_write(baddr + i, 0);
if (likely(priv->tx_queue[i]->txcoalescing))
gfar_write(baddr + i, priv->tx_queue[i]->txic);
}
baddr = &regs->rxic0;
for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
gfar_write(baddr + i, 0);
if (likely(priv->rx_queue[i]->rxcoalescing))
gfar_write(baddr + i, priv->rx_queue[i]->rxic);
}
} else {
/* Backward compatible case -- even if we enable
* multiple queues, there's only single reg to program
*/
gfar_write(&regs->txic, 0);
if (likely(priv->tx_queue[0]->txcoalescing))
gfar_write(&regs->txic, priv->tx_queue[0]->txic);
gfar_write(&regs->rxic, 0);
if (unlikely(priv->rx_queue[0]->rxcoalescing))
gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
}
}
void gfar_configure_coalescing_all(struct gfar_private *priv)
{
gfar_configure_coalescing(priv, 0xFF, 0xFF);
}
static struct net_device_stats *gfar_get_stats(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
unsigned long tx_packets = 0, tx_bytes = 0;
int i;
for (i = 0; i < priv->num_rx_queues; i++) {
rx_packets += priv->rx_queue[i]->stats.rx_packets;
rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
}
dev->stats.rx_packets = rx_packets;
dev->stats.rx_bytes = rx_bytes;
dev->stats.rx_dropped = rx_dropped;
for (i = 0; i < priv->num_tx_queues; i++) {
tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
tx_packets += priv->tx_queue[i]->stats.tx_packets;
}
dev->stats.tx_bytes = tx_bytes;
dev->stats.tx_packets = tx_packets;
return &dev->stats;
}
static int gfar_set_mac_addr(struct net_device *dev, void *p)
{
eth_mac_addr(dev, p);
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
static const struct net_device_ops gfar_netdev_ops = {
.ndo_open = gfar_enet_open,
.ndo_start_xmit = gfar_start_xmit,
.ndo_stop = gfar_close,
.ndo_change_mtu = gfar_change_mtu,
.ndo_set_features = gfar_set_features,
.ndo_set_rx_mode = gfar_set_multi,
.ndo_tx_timeout = gfar_timeout,
.ndo_do_ioctl = gfar_ioctl,
.ndo_get_stats = gfar_get_stats,
.ndo_set_mac_address = gfar_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = gfar_netpoll,
#endif
};
static void gfar_ints_disable(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
struct gfar __iomem *regs = priv->gfargrp[i].regs;
/* Clear IEVENT */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
}
}
static void gfar_ints_enable(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
struct gfar __iomem *regs = priv->gfargrp[i].regs;
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
}
}
static int gfar_alloc_tx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
GFP_KERNEL);
if (!priv->tx_queue[i])
return -ENOMEM;
priv->tx_queue[i]->tx_skbuff = NULL;
priv->tx_queue[i]->qindex = i;
priv->tx_queue[i]->dev = priv->ndev;
spin_lock_init(&(priv->tx_queue[i]->txlock));
}
return 0;
}
static int gfar_alloc_rx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
GFP_KERNEL);
if (!priv->rx_queue[i])
return -ENOMEM;
priv->rx_queue[i]->qindex = i;
priv->rx_queue[i]->ndev = priv->ndev;
}
return 0;
}
static void gfar_free_tx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_tx_queues; i++)
kfree(priv->tx_queue[i]);
}
static void gfar_free_rx_queues(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_rx_queues; i++)
kfree(priv->rx_queue[i]);
}
static void unmap_group_regs(struct gfar_private *priv)
{
int i;
for (i = 0; i < MAXGROUPS; i++)
if (priv->gfargrp[i].regs)
iounmap(priv->gfargrp[i].regs);
}
static void free_gfar_dev(struct gfar_private *priv)
{
int i, j;
for (i = 0; i < priv->num_grps; i++)
for (j = 0; j < GFAR_NUM_IRQS; j++) {
kfree(priv->gfargrp[i].irqinfo[j]);
priv->gfargrp[i].irqinfo[j] = NULL;
}
free_netdev(priv->ndev);
}
static void disable_napi(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
napi_disable(&priv->gfargrp[i].napi_rx);
napi_disable(&priv->gfargrp[i].napi_tx);
}
}
static void enable_napi(struct gfar_private *priv)
{
int i;
for (i = 0; i < priv->num_grps; i++) {
napi_enable(&priv->gfargrp[i].napi_rx);
napi_enable(&priv->gfargrp[i].napi_tx);
}
}
static int gfar_parse_group(struct device_node *np,
struct gfar_private *priv, const char *model)
{
struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
int i;
for (i = 0; i < GFAR_NUM_IRQS; i++) {
grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
GFP_KERNEL);
if (!grp->irqinfo[i])
return -ENOMEM;
}
grp->regs = of_iomap(np, 0);
if (!grp->regs)
return -ENOMEM;
gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
if (!gfar_irq(grp, TX)->irq ||
!gfar_irq(grp, RX)->irq ||
!gfar_irq(grp, ER)->irq)
return -EINVAL;
}
grp->priv = priv;
spin_lock_init(&grp->grplock);
if (priv->mode == MQ_MG_MODE) {
u32 rxq_mask, txq_mask;
int ret;
grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
if (!ret) {
grp->rx_bit_map = rxq_mask ?
rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
}
ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
if (!ret) {
grp->tx_bit_map = txq_mask ?
txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
}
if (priv->poll_mode == GFAR_SQ_POLLING) {
/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
}
} else {
grp->rx_bit_map = 0xFF;
grp->tx_bit_map = 0xFF;
}
/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
* right to left, so we need to revert the 8 bits to get the q index
*/
grp->rx_bit_map = bitrev8(grp->rx_bit_map);
grp->tx_bit_map = bitrev8(grp->tx_bit_map);
/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
* also assign queues to groups
*/
for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
if (!grp->rx_queue)
grp->rx_queue = priv->rx_queue[i];
grp->num_rx_queues++;
grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
priv->rx_queue[i]->grp = grp;
}
for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
if (!grp->tx_queue)
grp->tx_queue = priv->tx_queue[i];
grp->num_tx_queues++;
grp->tstat |= (TSTAT_CLEAR_THALT >> i);
priv->tqueue |= (TQUEUE_EN0 >> i);
priv->tx_queue[i]->grp = grp;
}
priv->num_grps++;
return 0;
}
static int gfar_of_group_count(struct device_node *np)
{
struct device_node *child;
int num = 0;
for_each_available_child_of_node(np, child)
if (!of_node_cmp(child->name, "queue-group"))
num++;
return num;
}
static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
{
const char *model;
const char *ctype;
const void *mac_addr;
int err = 0, i;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
struct device_node *np = ofdev->dev.of_node;
struct device_node *child = NULL;
u32 stash_len = 0;
u32 stash_idx = 0;
unsigned int num_tx_qs, num_rx_qs;
unsigned short mode, poll_mode;
if (!np)
return -ENODEV;
if (of_device_is_compatible(np, "fsl,etsec2")) {
mode = MQ_MG_MODE;
poll_mode = GFAR_SQ_POLLING;
} else {
mode = SQ_SG_MODE;
poll_mode = GFAR_SQ_POLLING;
}
if (mode == SQ_SG_MODE) {
num_tx_qs = 1;
num_rx_qs = 1;
} else { /* MQ_MG_MODE */
/* get the actual number of supported groups */
unsigned int num_grps = gfar_of_group_count(np);
if (num_grps == 0 || num_grps > MAXGROUPS) {
dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
num_grps);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
if (poll_mode == GFAR_SQ_POLLING) {
num_tx_qs = num_grps; /* one txq per int group */
num_rx_qs = num_grps; /* one rxq per int group */
} else { /* GFAR_MQ_POLLING */
u32 tx_queues, rx_queues;
int ret;
/* parse the num of HW tx and rx queues */
ret = of_property_read_u32(np, "fsl,num_tx_queues",
&tx_queues);
num_tx_qs = ret ? 1 : tx_queues;
ret = of_property_read_u32(np, "fsl,num_rx_queues",
&rx_queues);
num_rx_qs = ret ? 1 : rx_queues;
}
}
if (num_tx_qs > MAX_TX_QS) {
pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
num_tx_qs, MAX_TX_QS);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
if (num_rx_qs > MAX_RX_QS) {
pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
num_rx_qs, MAX_RX_QS);
pr_err("Cannot do alloc_etherdev, aborting\n");
return -EINVAL;
}
*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
dev = *pdev;
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->mode = mode;
priv->poll_mode = poll_mode;
priv->num_tx_queues = num_tx_qs;
netif_set_real_num_rx_queues(dev, num_rx_qs);
priv->num_rx_queues = num_rx_qs;
err = gfar_alloc_tx_queues(priv);
if (err)
goto tx_alloc_failed;
err = gfar_alloc_rx_queues(priv);
if (err)
goto rx_alloc_failed;
err = of_property_read_string(np, "model", &model);
if (err) {
pr_err("Device model property missing, aborting\n");
goto rx_alloc_failed;
}
/* Init Rx queue filer rule set linked list */
INIT_LIST_HEAD(&priv->rx_list.list);
priv->rx_list.count = 0;
mutex_init(&priv->rx_queue_access);
for (i = 0; i < MAXGROUPS; i++)
priv->gfargrp[i].regs = NULL;
/* Parse and initialize group specific information */
if (priv->mode == MQ_MG_MODE) {
for_each_available_child_of_node(np, child) {
if (of_node_cmp(child->name, "queue-group"))
continue;
err = gfar_parse_group(child, priv, model);
if (err)
goto err_grp_init;
}
} else { /* SQ_SG_MODE */
err = gfar_parse_group(np, priv, model);
if (err)
goto err_grp_init;
}
if (of_property_read_bool(np, "bd-stash")) {
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
priv->bd_stash_en = 1;
}
err = of_property_read_u32(np, "rx-stash-len", &stash_len);
if (err == 0)
priv->rx_stash_size = stash_len;
err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
if (err == 0)
priv->rx_stash_index = stash_idx;
if (stash_len || stash_idx)
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
if (model && !strcasecmp(model, "TSEC"))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
FSL_GIANFAR_DEV_HAS_TIMER |
FSL_GIANFAR_DEV_HAS_RX_FILER;
err = of_property_read_string(np, "phy-connection-type", &ctype);
/* We only care about rgmii-id. The rest are autodetected */
if (err == 0 && !strcmp(ctype, "rgmii-id"))
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
else
priv->interface = PHY_INTERFACE_MODE_MII;
if (of_find_property(np, "fsl,magic-packet", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
if (of_get_property(np, "fsl,wake-on-filer", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
/* In the case of a fixed PHY, the DT node associated
* to the PHY is the Ethernet MAC DT node.
*/
if (!priv->phy_node && of_phy_is_fixed_link(np)) {
err = of_phy_register_fixed_link(np);
if (err)
goto err_grp_init;
priv->phy_node = of_node_get(np);
}
/* Find the TBI PHY. If it's not there, we don't support SGMII */
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
return 0;
err_grp_init:
unmap_group_regs(priv);
rx_alloc_failed:
gfar_free_rx_queues(priv);
tx_alloc_failed:
gfar_free_tx_queues(priv);
free_gfar_dev(priv);
return err;
}
static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config config;
struct gfar_private *priv = netdev_priv(netdev);
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
/* reserved for future extensions */
if (config.flags)
return -EINVAL;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
priv->hwts_tx_en = 0;
break;
case HWTSTAMP_TX_ON:
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
return -ERANGE;
priv->hwts_tx_en = 1;
break;
default:
return -ERANGE;
}
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
if (priv->hwts_rx_en) {
priv->hwts_rx_en = 0;
reset_gfar(netdev);
}
break;
default:
if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
return -ERANGE;
if (!priv->hwts_rx_en) {
priv->hwts_rx_en = 1;
reset_gfar(netdev);
}
config.rx_filter = HWTSTAMP_FILTER_ALL;
break;
}
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
{
struct hwtstamp_config config;
struct gfar_private *priv = netdev_priv(netdev);
config.flags = 0;
config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
config.rx_filter = (priv->hwts_rx_en ?
HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct phy_device *phydev = dev->phydev;
if (!netif_running(dev))
return -EINVAL;
if (cmd == SIOCSHWTSTAMP)
return gfar_hwtstamp_set(dev, rq);
if (cmd == SIOCGHWTSTAMP)
return gfar_hwtstamp_get(dev, rq);
if (!phydev)
return -ENODEV;
return phy_mii_ioctl(phydev, rq, cmd);
}
static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
u32 class)
{
u32 rqfpr = FPR_FILER_MASK;
u32 rqfcr = 0x0;
rqfar--;
rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_NOMATCH;
priv->ftp_rqfpr[rqfar] = rqfpr;
priv->ftp_rqfcr[rqfar] = rqfcr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar--;
rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
rqfpr = class;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
return rqfar;
}
static void gfar_init_filer_table(struct gfar_private *priv)
{
int i = 0x0;
u32 rqfar = MAX_FILER_IDX;
u32 rqfcr = 0x0;
u32 rqfpr = FPR_FILER_MASK;
/* Default rule */
rqfcr = RQFCR_CMP_MATCH;
priv->ftp_rqfcr[rqfar] = rqfcr;
priv->ftp_rqfpr[rqfar] = rqfpr;
gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
/* cur_filer_idx indicated the first non-masked rule */
priv->cur_filer_idx = rqfar;
/* Rest are masked rules */
rqfcr = RQFCR_CMP_NOMATCH;
for (i = 0; i < rqfar; i++) {
priv->ftp_rqfcr[i] = rqfcr;
priv->ftp_rqfpr[i] = rqfpr;
gfar_write_filer(priv, i, rqfcr, rqfpr);
}
}
#ifdef CONFIG_PPC
static void __gfar_detect_errata_83xx(struct gfar_private *priv)
{
unsigned int pvr = mfspr(SPRN_PVR);
unsigned int svr = mfspr(SPRN_SVR);
unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
unsigned int rev = svr & 0xffff;
/* MPC8313 Rev 2.0 and higher; All MPC837x */
if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
priv->errata |= GFAR_ERRATA_74;
/* MPC8313 and MPC837x all rev */
if ((pvr == 0x80850010 && mod == 0x80b0) ||
(pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
priv->errata |= GFAR_ERRATA_76;
/* MPC8313 Rev < 2.0 */
if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
priv->errata |= GFAR_ERRATA_12;
}
static void __gfar_detect_errata_85xx(struct gfar_private *priv)
{
unsigned int svr = mfspr(SPRN_SVR);
if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
priv->errata |= GFAR_ERRATA_12;
/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
}
#endif
static void gfar_detect_errata(struct gfar_private *priv)
{
struct device *dev = &priv->ofdev->dev;
/* no plans to fix */
priv->errata |= GFAR_ERRATA_A002;
#ifdef CONFIG_PPC
if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
__gfar_detect_errata_85xx(priv);
else /* non-mpc85xx parts, i.e. e300 core based */
__gfar_detect_errata_83xx(priv);
#endif
if (priv->errata)
dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
priv->errata);
}
void gfar_mac_reset(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
/* Reset MAC layer */
gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(3);
/* the soft reset bit is not self-resetting, so we need to
* clear it before resuming normal operation
*/
gfar_write(&regs->maccfg1, 0);
udelay(3);
gfar_rx_offload_en(priv);
/* Initialize the max receive frame/buffer lengths */
gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
/* Initialize the Minimum Frame Length Register */
gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
/* Initialize MACCFG2. */
tempval = MACCFG2_INIT_SETTINGS;
/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
* are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
* and by checking RxBD[LG] and discarding larger than MAXFRM.
*/
if (gfar_has_errata(priv, GFAR_ERRATA_74))
tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
gfar_write(&regs->maccfg2, tempval);
/* Clear mac addr hash registers */
gfar_write(&regs->igaddr0, 0);
gfar_write(&regs->igaddr1, 0);
gfar_write(&regs->igaddr2, 0);
gfar_write(&regs->igaddr3, 0);
gfar_write(&regs->igaddr4, 0);
gfar_write(&regs->igaddr5, 0);
gfar_write(&regs->igaddr6, 0);
gfar_write(&regs->igaddr7, 0);
gfar_write(&regs->gaddr0, 0);
gfar_write(&regs->gaddr1, 0);
gfar_write(&regs->gaddr2, 0);
gfar_write(&regs->gaddr3, 0);
gfar_write(&regs->gaddr4, 0);
gfar_write(&regs->gaddr5, 0);
gfar_write(&regs->gaddr6, 0);
gfar_write(&regs->gaddr7, 0);
if (priv->extended_hash)
gfar_clear_exact_match(priv->ndev);
gfar_mac_rx_config(priv);
gfar_mac_tx_config(priv);
gfar_set_mac_address(priv->ndev);
gfar_set_multi(priv->ndev);
/* clear ievent and imask before configuring coalescing */
gfar_ints_disable(priv);
/* Configure the coalescing support */
gfar_configure_coalescing_all(priv);
}
static void gfar_hw_init(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 attrs;
/* Stop the DMA engine now, in case it was running before
* (The firmware could have used it, and left it running).
*/
gfar_halt(priv);
gfar_mac_reset(priv);
/* Zero out the rmon mib registers if it has them */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&regs->rmon.cam1, 0xffffffff);
gfar_write(&regs->rmon.cam2, 0xffffffff);
}
/* Initialize ECNTRL */
gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&regs->attreli, attrs);
/* Start with defaults, and add stashing
* depending on driver parameters
*/
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&regs->attr, attrs);
/* FIFO configs */
gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
/* Program the interrupt steering regs, only for MG devices */
if (priv->num_grps > 1)
gfar_write_isrg(priv);
}
static void gfar_init_addr_hash_table(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &regs->igaddr0;
priv->hash_regs[1] = &regs->igaddr1;
priv->hash_regs[2] = &regs->igaddr2;
priv->hash_regs[3] = &regs->igaddr3;
priv->hash_regs[4] = &regs->igaddr4;
priv->hash_regs[5] = &regs->igaddr5;
priv->hash_regs[6] = &regs->igaddr6;
priv->hash_regs[7] = &regs->igaddr7;
priv->hash_regs[8] = &regs->gaddr0;
priv->hash_regs[9] = &regs->gaddr1;
priv->hash_regs[10] = &regs->gaddr2;
priv->hash_regs[11] = &regs->gaddr3;
priv->hash_regs[12] = &regs->gaddr4;
priv->hash_regs[13] = &regs->gaddr5;
priv->hash_regs[14] = &regs->gaddr6;
priv->hash_regs[15] = &regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &regs->gaddr0;
priv->hash_regs[1] = &regs->gaddr1;
priv->hash_regs[2] = &regs->gaddr2;
priv->hash_regs[3] = &regs->gaddr3;
priv->hash_regs[4] = &regs->gaddr4;
priv->hash_regs[5] = &regs->gaddr5;
priv->hash_regs[6] = &regs->gaddr6;
priv->hash_regs[7] = &regs->gaddr7;
}
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start
*/
static int gfar_probe(struct platform_device *ofdev)
{
struct device_node *np = ofdev->dev.of_node;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
int err = 0, i;
err = gfar_of_init(ofdev, &dev);
if (err)
return err;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->ofdev = ofdev;
priv->dev = &ofdev->dev;
SET_NETDEV_DEV(dev, &ofdev->dev);
INIT_WORK(&priv->reset_task, gfar_reset_task);
platform_set_drvdata(ofdev, priv);
gfar_detect_errata(priv);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
/* Fill in the dev structure */
dev->watchdog_timeo = TX_TIMEOUT;
/* MTU range: 50 - 9586 */
dev->mtu = 1500;
dev->min_mtu = 50;
dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
dev->netdev_ops = &gfar_netdev_ops;
dev->ethtool_ops = &gfar_ethtool_ops;
/* Register for napi ...We are registering NAPI for each grp */
for (i = 0; i < priv->num_grps; i++) {
if (priv->poll_mode == GFAR_SQ_POLLING) {
netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
gfar_poll_tx_sq, 2);
} else {
netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
gfar_poll_rx, GFAR_DEV_WEIGHT);
netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
gfar_poll_tx, 2);
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_RXCSUM;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX;
dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
}
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
gfar_init_addr_hash_table(priv);
/* Insert receive time stamps into padding alignment bytes */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
priv->padding = 8;
if (dev->features & NETIF_F_IP_CSUM ||
priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
dev->needed_headroom = GMAC_FCB_LEN;
/* Initializing some of the rx/tx queue level parameters */
for (i = 0; i < priv->num_tx_queues; i++) {
priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
priv->tx_queue[i]->txic = DEFAULT_TXIC;
}
for (i = 0; i < priv->num_rx_queues; i++) {
priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rx_queue[i]->rxic = DEFAULT_RXIC;
}
/* Always enable rx filer if available */
priv->rx_filer_enable =
(priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
/* use pritority h/w tx queue scheduling for single queue devices */
if (priv->num_tx_queues == 1)
priv->prio_sched_en = 1;
set_bit(GFAR_DOWN, &priv->state);
gfar_hw_init(priv);
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
pr_err("%s: Cannot register net device, aborting\n", dev->name);
goto register_fail;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
priv->wol_supported |= GFAR_WOL_MAGIC;
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
priv->rx_filer_enable)
priv->wol_supported |= GFAR_WOL_FILER_UCAST;
device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
/* fill out IRQ number and name fields */
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_tx");
sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_rx");
sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
dev->name, "_g", '0' + i, "_er");
} else
strcpy(gfar_irq(grp, TX)->name, dev->name);
}
/* Initialize the filer table */
gfar_init_filer_table(priv);
/* Print out the device info */
netdev_info(dev, "mac: %pM\n", dev->dev_addr);
/* Even more device info helps when determining which kernel
* provided which set of benchmarks.
*/
netdev_info(dev, "Running with NAPI enabled\n");
for (i = 0; i < priv->num_rx_queues; i++)
netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
i, priv->rx_queue[i]->rx_ring_size);
for (i = 0; i < priv->num_tx_queues; i++)
netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
i, priv->tx_queue[i]->tx_ring_size);
return 0;
register_fail:
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
unmap_group_regs(priv);
gfar_free_rx_queues(priv);
gfar_free_tx_queues(priv);
of_node_put(priv->phy_node);
of_node_put(priv->tbi_node);
free_gfar_dev(priv);
return err;
}
static int gfar_remove(struct platform_device *ofdev)
{
struct gfar_private *priv = platform_get_drvdata(ofdev);
struct device_node *np = ofdev->dev.of_node;
of_node_put(priv->phy_node);
of_node_put(priv->tbi_node);
unregister_netdev(priv->ndev);
if (of_phy_is_fixed_link(np))
of_phy_deregister_fixed_link(np);
unmap_group_regs(priv);
gfar_free_rx_queues(priv);
gfar_free_tx_queues(priv);
free_gfar_dev(priv);
return 0;
}
#ifdef CONFIG_PM
static void __gfar_filer_disable(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 temp;
temp = gfar_read(&regs->rctrl);
temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
gfar_write(&regs->rctrl, temp);
}
static void __gfar_filer_enable(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 temp;
temp = gfar_read(&regs->rctrl);
temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
gfar_write(&regs->rctrl, temp);
}
/* Filer rules implementing wol capabilities */
static void gfar_filer_config_wol(struct gfar_private *priv)
{
unsigned int i;
u32 rqfcr;
__gfar_filer_disable(priv);
/* clear the filer table, reject any packet by default */
rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
for (i = 0; i <= MAX_FILER_IDX; i++)
gfar_write_filer(priv, i, rqfcr, 0);
i = 0;
if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
/* unicast packet, accept it */
struct net_device *ndev = priv->ndev;
/* get the default rx queue index */
u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
(ndev->dev_addr[1] << 8) |
ndev->dev_addr[2];
rqfcr = (qindex << 10) | RQFCR_AND |
RQFCR_CMP_EXACT | RQFCR_PID_DAH;
gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
dest_mac_addr = (ndev->dev_addr[3] << 16) |
(ndev->dev_addr[4] << 8) |
ndev->dev_addr[5];
rqfcr = (qindex << 10) | RQFCR_GPI |
RQFCR_CMP_EXACT | RQFCR_PID_DAL;
gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
}
__gfar_filer_enable(priv);
}
static void gfar_filer_restore_table(struct gfar_private *priv)
{
u32 rqfcr, rqfpr;
unsigned int i;
__gfar_filer_disable(priv);
for (i = 0; i <= MAX_FILER_IDX; i++) {
rqfcr = priv->ftp_rqfcr[i];
rqfpr = priv->ftp_rqfpr[i];
gfar_write_filer(priv, i, rqfcr, rqfpr);
}
__gfar_filer_enable(priv);
}
/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
static void gfar_start_wol_filer(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
int i = 0;
/* Enable Rx hw queues */
gfar_write(&regs->rqueue, priv->rqueue);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&regs->dmactrl);
tempval &= ~DMACTRL_GRS;
gfar_write(&regs->dmactrl, tempval);
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Clear RHLT, so that the DMA starts polling now */
gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
/* enable the Filer General Purpose Interrupt */
gfar_write(&regs->imask, IMASK_FGPI);
}
/* Enable Rx DMA */
tempval = gfar_read(&regs->maccfg1);
tempval |= MACCFG1_RX_EN;
gfar_write(&regs->maccfg1, tempval);
}
static int gfar_suspend(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
u16 wol = priv->wol_opts;
if (!netif_running(ndev))
return 0;
disable_napi(priv);
netif_tx_lock(ndev);
netif_device_detach(ndev);
netif_tx_unlock(ndev);
gfar_halt(priv);
if (wol & GFAR_WOL_MAGIC) {
/* Enable interrupt on Magic Packet */
gfar_write(&regs->imask, IMASK_MAG);
/* Enable Magic Packet mode */
tempval = gfar_read(&regs->maccfg2);
tempval |= MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
/* re-enable the Rx block */
tempval = gfar_read(&regs->maccfg1);
tempval |= MACCFG1_RX_EN;
gfar_write(&regs->maccfg1, tempval);
} else if (wol & GFAR_WOL_FILER_UCAST) {
gfar_filer_config_wol(priv);
gfar_start_wol_filer(priv);
} else {
phy_stop(ndev->phydev);
}
return 0;
}
static int gfar_resume(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
u16 wol = priv->wol_opts;
if (!netif_running(ndev))
return 0;
if (wol & GFAR_WOL_MAGIC) {
/* Disable Magic Packet mode */
tempval = gfar_read(&regs->maccfg2);
tempval &= ~MACCFG2_MPEN;
gfar_write(&regs->maccfg2, tempval);
} else if (wol & GFAR_WOL_FILER_UCAST) {
/* need to stop rx only, tx is already down */
gfar_halt(priv);
gfar_filer_restore_table(priv);
} else {
phy_start(ndev->phydev);
}
gfar_start(priv);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static int gfar_restore(struct device *dev)
{
struct gfar_private *priv = dev_get_drvdata(dev);
struct net_device *ndev = priv->ndev;
if (!netif_running(ndev)) {
netif_device_attach(ndev);
return 0;
}
gfar_init_bds(ndev);
gfar_mac_reset(priv);
gfar_init_tx_rx_base(priv);
gfar_start(priv);
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
if (ndev->phydev)
phy_start(ndev->phydev);
netif_device_attach(ndev);
enable_napi(priv);
return 0;
}
static struct dev_pm_ops gfar_pm_ops = {
.suspend = gfar_suspend,
.resume = gfar_resume,
.freeze = gfar_suspend,
.thaw = gfar_resume,
.restore = gfar_restore,
};
#define GFAR_PM_OPS (&gfar_pm_ops)
#else
#define GFAR_PM_OPS NULL
#endif
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 ecntrl;
ecntrl = gfar_read(&regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
return PHY_INTERFACE_MODE_RMII;
}
else {
phy_interface_t interface = priv->interface;
/* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
GFAR_SUPPORTED_GBIT : 0;
phy_interface_t interface;
struct phy_device *phydev;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
interface);
if (!phydev) {
dev_err(&dev->dev, "could not attach to PHY\n");
return -ENODEV;
}
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
/* Remove any features not supported by the controller */
phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
phydev->advertising = phydev->supported;
/* Add support for flow control, but don't advertise it by default */
phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
return 0;
}
/* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *tbiphy;
if (!priv->tbi_node) {
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a tbi-handle\n");
return;
}
tbiphy = of_phy_find_device(priv->tbi_node);
if (!tbiphy) {
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
put_device(&tbiphy->mdio.dev);
return;
}
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(tbiphy, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
BMCR_SPEED1000);
put_device(&tbiphy->mdio.dev);
}
static int __gfar_is_rx_idle(struct gfar_private *priv)
{
u32 res;
/* Normaly TSEC should not hang on GRS commands, so we should
* actually wait for IEVENT_GRSC flag.
*/
if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
return 0;
/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
* the same as bits 23-30, the eTSEC Rx is assumed to be idle
* and the Rx can be safely reset.
*/
res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
res &= 0x7f807f80;
if ((res & 0xffff) == (res >> 16))
return 1;
return 0;
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
unsigned int timeout;
int stopped;
gfar_ints_disable(priv);
if (gfar_is_dma_stopped(priv))
return;
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&regs->dmactrl);
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
retry:
timeout = 1000;
while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
cpu_relax();
timeout--;
}
if (!timeout)
stopped = gfar_is_dma_stopped(priv);
if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
!__gfar_is_rx_idle(priv))
goto retry;
}
/* Halt the receive and transmit queues */
void gfar_halt(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
/* Dissable the Rx/Tx hw queues */
gfar_write(&regs->rqueue, 0);
gfar_write(&regs->tqueue, 0);
mdelay(10);
gfar_halt_nodisable(priv);
/* Disable Rx/Tx DMA */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
netif_tx_stop_all_queues(dev);
smp_mb__before_atomic();
set_bit(GFAR_DOWN, &priv->state);
smp_mb__after_atomic();
disable_napi(priv);
/* disable ints and gracefully shut down Rx/Tx DMA */
gfar_halt(priv);
phy_stop(dev->phydev);
free_skb_resources(priv);
}
static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
{
struct txbd8 *txbdp;
struct gfar_private *priv = netdev_priv(tx_queue->dev);
int i, j;
txbdp = tx_queue->tx_bd_base;
for (i = 0; i < tx_queue->tx_ring_size; i++) {
if (!tx_queue->tx_skbuff[i])
continue;
dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
txbdp->lstatus = 0;
for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
j++) {
txbdp++;
dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
be16_to_cpu(txbdp->length),
DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
tx_queue->tx_skbuff[i] = NULL;
}
kfree(tx_queue->tx_skbuff);
tx_queue->tx_skbuff = NULL;
}
static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
{
int i;
struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
if (rx_queue->skb)
dev_kfree_skb(rx_queue->skb);
for (i = 0; i < rx_queue->rx_ring_size; i++) {
struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
if (!rxb->page)
continue;
dma_unmap_page(rx_queue->dev, rxb->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(rxb->page);
rxb->page = NULL;
}
kfree(rx_queue->rx_buff);
rx_queue->rx_buff = NULL;
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff
*/
static void free_skb_resources(struct gfar_private *priv)
{
struct gfar_priv_tx_q *tx_queue = NULL;
struct gfar_priv_rx_q *rx_queue = NULL;
int i;
/* Go through all the buffer descriptors and free their data buffers */
for (i = 0; i < priv->num_tx_queues; i++) {
struct netdev_queue *txq;
tx_queue = priv->tx_queue[i];
txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
if (tx_queue->tx_skbuff)
free_skb_tx_queue(tx_queue);
netdev_tx_reset_queue(txq);
}
for (i = 0; i < priv->num_rx_queues; i++) {
rx_queue = priv->rx_queue[i];
if (rx_queue->rx_buff)
free_skb_rx_queue(rx_queue);
}
dma_free_coherent(priv->dev,
sizeof(struct txbd8) * priv->total_tx_ring_size +
sizeof(struct rxbd8) * priv->total_rx_ring_size,
priv->tx_queue[0]->tx_bd_base,
priv->tx_queue[0]->tx_bd_dma_base);
}
void gfar_start(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
int i = 0;
/* Enable Rx/Tx hw queues */
gfar_write(&regs->rqueue, priv->rqueue);
gfar_write(&regs->tqueue, priv->tqueue);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&regs->dmactrl, tempval);
for (i = 0; i < priv->num_grps; i++) {
regs = priv->gfargrp[i].regs;
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
}
/* Enable Rx/Tx DMA */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
gfar_ints_enable(priv);
netif_trans_update(priv->ndev); /* prevent tx timeout */
}
static void free_grp_irqs(struct gfar_priv_grp *grp)
{
free_irq(gfar_irq(grp, TX)->irq, grp);
free_irq(gfar_irq(grp, RX)->irq, grp);
free_irq(gfar_irq(grp, ER)->irq, grp);
}
static int register_grp_irqs(struct gfar_priv_grp *grp)
{
struct gfar_private *priv = grp->priv;
struct net_device *dev = priv->ndev;
int err;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one
*/
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive
*/
err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
gfar_irq(grp, ER)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, ER)->irq);
goto err_irq_fail;
}
enable_irq_wake(gfar_irq(grp, ER)->irq);
err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
gfar_irq(grp, TX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, TX)->irq);
goto tx_irq_fail;
}
err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
gfar_irq(grp, RX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, RX)->irq);
goto rx_irq_fail;
}
enable_irq_wake(gfar_irq(grp, RX)->irq);
} else {
err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
gfar_irq(grp, TX)->name, grp);
if (err < 0) {
netif_err(priv, intr, dev, "Can't get IRQ %d\n",
gfar_irq(grp, TX)->irq);
goto err_irq_fail;
}
enable_irq_wake(gfar_irq(grp, TX)->irq);
}
return 0;
rx_irq_fail:
free_irq(gfar_irq(grp, TX)->irq, grp);
tx_irq_fail:
free_irq(gfar_irq(grp, ER)->irq, grp);
err_irq_fail:
return err;
}
static void gfar_free_irq(struct gfar_private *priv)
{
int i;
/* Free the IRQs */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++)
free_grp_irqs(&priv->gfargrp[i]);
} else {
for (i = 0; i < priv->num_grps; i++)
free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
&priv->gfargrp[i]);
}
}
static int gfar_request_irq(struct gfar_private *priv)
{
int err, i, j;
for (i = 0; i < priv->num_grps; i++) {
err = register_grp_irqs(&priv->gfargrp[i]);
if (err) {
for (j = 0; j < i; j++)
free_grp_irqs(&priv->gfargrp[j]);
return err;
}
}
return 0;
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
int err;
gfar_mac_reset(priv);
err = gfar_alloc_skb_resources(ndev);
if (err)
return err;
gfar_init_tx_rx_base(priv);
smp_mb__before_atomic();
clear_bit(GFAR_DOWN, &priv->state);
smp_mb__after_atomic();
/* Start Rx/Tx DMA and enable the interrupts */
gfar_start(priv);
/* force link state update after mac reset */
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
phy_start(ndev->phydev);
enable_napi(priv);
netif_tx_wake_all_queues(ndev);
return 0;
}
/* Called when something needs to use the ethernet device
* Returns 0 for success.
*/
static int gfar_enet_open(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int err;
err = init_phy(dev);
if (err)
return err;
err = gfar_request_irq(priv);
if (err)
return err;
err = startup_gfar(dev);
if (err)
return err;
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
{
struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
int fcb_length)
{
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
u8 flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is
* And provide the already calculated phcs
*/
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
} else
fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr
*/
fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
}
static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
struct txbd8 *base, int ring_size)
{
struct txbd8 *new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
/* eTSEC12: csum generation not supported for some fcb offsets */
static inline bool gfar_csum_errata_12(struct gfar_private *priv,
unsigned long fcb_addr)
{
return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
(fcb_addr % 0x20) > 0x18);
}
/* eTSEC76: csum generation for frames larger than 2500 may
* cause excess delays before start of transmission
*/
static inline bool gfar_csum_errata_76(struct gfar_private *priv,
unsigned int len)
{
return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
(len > 2500));
}
/* This is called by the kernel when a frame is ready for transmission.
* It is pointed to by the dev->hard_start_xmit function pointer
*/
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar_priv_tx_q *tx_queue = NULL;
struct netdev_queue *txq;
struct gfar __iomem *regs = NULL;
struct txfcb *fcb = NULL;
struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
u32 lstatus;
skb_frag_t *frag;
int i, rq = 0;
int do_tstamp, do_csum, do_vlan;
u32 bufaddr;
unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
rq = skb->queue_mapping;
tx_queue = priv->tx_queue[rq];
txq = netdev_get_tx_queue(dev, rq);
base = tx_queue->tx_bd_base;
regs = tx_queue->grp->regs;
do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
do_vlan = skb_vlan_tag_present(skb);
do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en;
if (do_csum || do_vlan)
fcb_len = GMAC_FCB_LEN;
/* check if time stamp should be generated */
if (unlikely(do_tstamp))
fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
/* make space for additional header when fcb is needed */
if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, fcb_len);
if (!skb_new) {
dev->stats.tx_errors++;
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->sk)
skb_set_owner_w(skb_new, skb->sk);
dev_consume_skb_any(skb);
skb = skb_new;
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
/* calculate the required number of TxBDs for this skb */
if (unlikely(do_tstamp))
nr_txbds = nr_frags + 2;
else
nr_txbds = nr_frags + 1;
/* check if there is space to queue this packet */
if (nr_txbds > tx_queue->num_txbdfree) {
/* no space, stop the queue */
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
bytes_sent = skb->len;
tx_queue->stats.tx_bytes += bytes_sent;
/* keep Tx bytes on wire for BQL accounting */
GFAR_CB(skb)->bytes_sent = bytes_sent;
tx_queue->stats.tx_packets++;
txbdp = txbdp_start = tx_queue->cur_tx;
lstatus = be32_to_cpu(txbdp->lstatus);
/* Add TxPAL between FCB and frame if required */
if (unlikely(do_tstamp)) {
skb_push(skb, GMAC_TXPAL_LEN);
memset(skb->data, 0, GMAC_TXPAL_LEN);
}
/* Add TxFCB if required */
if (fcb_len) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
/* Set up checksumming */
if (do_csum) {
gfar_tx_checksum(skb, fcb, fcb_len);
if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
unlikely(gfar_csum_errata_76(priv, skb->len))) {
__skb_pull(skb, GMAC_FCB_LEN);
skb_checksum_help(skb);
if (do_vlan || do_tstamp) {
/* put back a new fcb for vlan/tstamp TOE */
fcb = gfar_add_fcb(skb);
} else {
/* Tx TOE not used */
lstatus &= ~(BD_LFLAG(TXBD_TOE));
fcb = NULL;
}
}
}
if (do_vlan)
gfar_tx_vlan(skb, fcb);
bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
goto dma_map_err;
txbdp_start->bufPtr = cpu_to_be32(bufaddr);
/* Time stamp insertion requires one additional TxBD */
if (unlikely(do_tstamp))
txbdp_tstamp = txbdp = next_txbd(txbdp, base,
tx_queue->tx_ring_size);
if (likely(!nr_frags)) {
if (likely(!do_tstamp))
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
} else {
u32 lstatus_start = lstatus;
/* Place the fragment addresses and lengths into the TxBDs */
frag = &skb_shinfo(skb)->frags[0];
for (i = 0; i < nr_frags; i++, frag++) {
unsigned int size;
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
size = skb_frag_size(frag);
lstatus = be32_to_cpu(txbdp->lstatus) | size |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if (i == nr_frags - 1)
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
goto dma_map_err;
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = cpu_to_be32(bufaddr);
txbdp->lstatus = cpu_to_be32(lstatus);
}
lstatus = lstatus_start;
}
/* If time stamping is requested one additional TxBD must be set up. The
* first TxBD points to the FCB and must have a data length of
* GMAC_FCB_LEN. The second TxBD points to the actual frame data with
* the full frame length.
*/
if (unlikely(do_tstamp)) {
u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
bufaddr = be32_to_cpu(txbdp_start->bufPtr);
bufaddr += fcb_len;
lstatus_ts |= BD_LFLAG(TXBD_READY) |
(skb_headlen(skb) - fcb_len);
if (!nr_frags)
lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
/* Setup tx hardware time stamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
fcb->ptp = 1;
} else {
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
}
netdev_tx_sent_queue(txq, bytes_sent);
gfar_wmb();
txbdp_start->lstatus = cpu_to_be32(lstatus);
gfar_wmb(); /* force lstatus write before tx_skbuff */
tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary)
*/
tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
TX_RING_MOD_MASK(tx_queue->tx_ring_size);
tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
/* We can work in parallel with gfar_clean_tx_ring(), except
* when modifying num_txbdfree. Note that we didn't grab the lock
* when we were reading the num_txbdfree and checking for available
* space, that's because outside of this function it can only grow.
*/
spin_lock_bh(&tx_queue->txlock);
/* reduce TxBD free count */
tx_queue->num_txbdfree -= (nr_txbds);
spin_unlock_bh(&tx_queue->txlock);
/* If the next BD still needs to be cleaned up, then the bds
* are full. We need to tell the kernel to stop sending us stuff.
*/
if (!tx_queue->num_txbdfree) {
netif_tx_stop_queue(txq);
dev->stats.tx_fifo_errors++;
}
/* Tell the DMA to go go go */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
return NETDEV_TX_OK;
dma_map_err:
txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
if (do_tstamp)
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
for (i = 0; i < nr_frags; i++) {
lstatus = be32_to_cpu(txbdp->lstatus);
if (!(lstatus & BD_LFLAG(TXBD_READY)))
break;
lstatus &= ~BD_LFLAG(TXBD_READY);
txbdp->lstatus = cpu_to_be32(lstatus);
bufaddr = be32_to_cpu(txbdp->bufPtr);
dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
DMA_TO_DEVICE);
txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
}
gfar_wmb();
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(dev->phydev);
gfar_free_irq(priv);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
struct gfar_private *priv = netdev_priv(dev);
while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
cpu_relax();
if (dev->flags & IFF_UP)
stop_gfar(dev);
dev->mtu = new_mtu;
if (dev->flags & IFF_UP)
startup_gfar(dev);
clear_bit_unlock(GFAR_RESETTING, &priv->state);
return 0;
}
void reset_gfar(struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
cpu_relax();
stop_gfar(ndev);
startup_gfar(ndev);
clear_bit_unlock(GFAR_RESETTING, &priv->state);
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct *work)
{
struct gfar_private *priv = container_of(work, struct gfar_private,
reset_task);
reset_gfar(priv->ndev);
}
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
/* Interrupt Handler for Transmit complete */
static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
{
struct net_device *dev = tx_queue->dev;
struct netdev_queue *txq;
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp, *next = NULL;
struct txbd8 *lbdp = NULL;
struct txbd8 *base = tx_queue->tx_bd_base;
struct sk_buff *skb;
int skb_dirtytx;
int tx_ring_size = tx_queue->tx_ring_size;
int frags = 0, nr_txbds = 0;
int i;
int howmany = 0;
int tqi = tx_queue->qindex;
unsigned int bytes_sent = 0;
u32 lstatus;
size_t buflen;
txq = netdev_get_tx_queue(dev, tqi);
bdp = tx_queue->dirty_tx;
skb_dirtytx = tx_queue->skb_dirtytx;
while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
frags = skb_shinfo(skb)->nr_frags;
/* When time stamping, one additional TxBD must be freed.
* Also, we need to dma_unmap_single() the TxPAL.
*/
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
nr_txbds = frags + 2;
else
nr_txbds = frags + 1;
lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
lstatus = be32_to_cpu(lbdp->lstatus);
/* Only clean completed frames */
if ((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
break;
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
next = next_txbd(bdp, base, tx_ring_size);
buflen = be16_to_cpu(next->length) +
GMAC_FCB_LEN + GMAC_TXPAL_LEN;
} else
buflen = be16_to_cpu(bdp->length);
dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
buflen, DMA_TO_DEVICE);
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
struct skb_shared_hwtstamps shhwtstamps;
u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
~0x7UL);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
skb_tstamp_tx(skb, &shhwtstamps);
gfar_clear_txbd_status(bdp);
bdp = next;
}
gfar_clear_txbd_status(bdp);
bdp = next_txbd(bdp, base, tx_ring_size);
for (i = 0; i < frags; i++) {
dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
be16_to_cpu(bdp->length),
DMA_TO_DEVICE);
gfar_clear_txbd_status(bdp);
bdp = next_txbd(bdp, base, tx_ring_size);
}
bytes_sent += GFAR_CB(skb)->bytes_sent;
dev_kfree_skb_any(skb);
tx_queue->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
spin_lock(&tx_queue->txlock);
tx_queue->num_txbdfree += nr_txbds;
spin_unlock(&tx_queue->txlock);
}
/* If we freed a buffer, we can restart transmission, if necessary */
if (tx_queue->num_txbdfree &&
netif_tx_queue_stopped(txq) &&
!(test_bit(GFAR_DOWN, &priv->state)))
netif_wake_subqueue(priv->ndev, tqi);
/* Update dirty indicators */
tx_queue->skb_dirtytx = skb_dirtytx;
tx_queue->dirty_tx = bdp;
netdev_tx_completed_queue(txq, howmany, bytes_sent);
}
static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
{
struct page *page;
dma_addr_t addr;
page = dev_alloc_page();
if (unlikely(!page))
return false;
addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rxq->dev, addr))) {
__free_page(page);
return false;
}
rxb->dma = addr;
rxb->page = page;
rxb->page_offset = 0;
return true;
}
static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
{
struct gfar_private *priv = netdev_priv(rx_queue->ndev);
struct gfar_extra_stats *estats = &priv->extra_stats;
netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
atomic64_inc(&estats->rx_alloc_err);
}
static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
int alloc_cnt)
{
struct rxbd8 *bdp;
struct gfar_rx_buff *rxb;
int i;
i = rx_queue->next_to_use;
bdp = &rx_queue->rx_bd_base[i];
rxb = &rx_queue->rx_buff[i];
while (alloc_cnt--) {
/* try reuse page */
if (unlikely(!rxb->page)) {
if (unlikely(!gfar_new_page(rx_queue, rxb))) {
gfar_rx_alloc_err(rx_queue);
break;
}
}
/* Setup the new RxBD */
gfar_init_rxbdp(rx_queue, bdp,
rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
/* Update to the next pointer */
bdp++;
rxb++;
if (unlikely(++i == rx_queue->rx_ring_size)) {
i = 0;
bdp = rx_queue->rx_bd_base;
rxb = rx_queue->rx_buff;
}
}
rx_queue->next_to_use = i;
rx_queue->next_to_alloc = i;
}
static void count_errors(u32 lstatus, struct net_device *ndev)
{
struct gfar_private *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors matter */
if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
stats->rx_length_errors++;
atomic64_inc(&estats->rx_trunc);
return;
}
/* Count the errors, if there were any */
if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (lstatus & BD_LFLAG(RXBD_LARGE))
atomic64_inc(&estats->rx_large);
else
atomic64_inc(&estats->rx_short);
}
if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
stats->rx_frame_errors++;
atomic64_inc(&estats->rx_nonoctet);
}
if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
atomic64_inc(&estats->rx_crcerr);
stats->rx_crc_errors++;
}
if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
atomic64_inc(&estats->rx_overrun);
stats->rx_over_errors++;
}
}
irqreturn_t gfar_receive(int irq, void *grp_id)
{
struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
unsigned long flags;
u32 imask, ievent;
ievent = gfar_read(&grp->regs->ievent);
if (unlikely(ievent & IEVENT_FGPI)) {
gfar_write(&grp->regs->ievent, IEVENT_FGPI);
return IRQ_HANDLED;
}
if (likely(napi_schedule_prep(&grp->napi_rx))) {
spin_lock_irqsave(&grp->grplock, flags);
imask = gfar_read(&grp->regs->imask);
imask &= IMASK_RX_DISABLED;
gfar_write(&grp->regs->imask, imask);
spin_unlock_irqrestore(&grp->grplock, flags);
__napi_schedule(&grp->napi_rx);
} else {
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
}
return IRQ_HANDLED;
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *grp_id)
{
struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
unsigned long flags;
u32 imask;
if (likely(napi_schedule_prep(&grp->napi_tx))) {
spin_lock_irqsave(&grp->grplock, flags);
imask = gfar_read(&grp->regs->imask);
imask &= IMASK_TX_DISABLED;
gfar_write(&grp->regs->imask, imask);
spin_unlock_irqrestore(&grp->grplock, flags);
__napi_schedule(&grp->napi_tx);
} else {
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
}
return IRQ_HANDLED;
}
static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
struct sk_buff *skb, bool first)
{
unsigned int size = lstatus & BD_LENGTH_MASK;
struct page *page = rxb->page;
bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
/* Remove the FCS from the packet length */
if (last)
size -= ETH_FCS_LEN;
if (likely(first)) {
skb_put(skb, size);
} else {
/* the last fragments' length contains the full frame length */
if (last)
size -= skb->len;
/* in case the last fragment consisted only of the FCS */
if (size > 0)
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
rxb->page_offset + RXBUF_ALIGNMENT,
size, GFAR_RXB_TRUESIZE);
}
/* try reuse page */
if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
return false;
/* change offset to the other half */
rxb->page_offset ^= GFAR_RXB_TRUESIZE;
page_ref_inc(page);
return true;
}
static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
struct gfar_rx_buff *old_rxb)
{
struct gfar_rx_buff *new_rxb;
u16 nta = rxq->next_to_alloc;
new_rxb = &rxq->rx_buff[nta];
/* find next buf that can reuse a page */
nta++;
rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
/* copy page reference */
*new_rxb = *old_rxb;
/* sync for use by the device */
dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
old_rxb->page_offset,
GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
}
static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
u32 lstatus, struct sk_buff *skb)
{
struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
struct page *page = rxb->page;
bool first = false;
if (likely(!skb)) {
void *buff_addr = page_address(page) + rxb->page_offset;
skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
if (unlikely(!skb)) {
gfar_rx_alloc_err(rx_queue);
return NULL;
}
skb_reserve(skb, RXBUF_ALIGNMENT);
first = true;
}
dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
/* reuse the free half of the page */
gfar_reuse_rx_page(rx_queue, rxb);
} else {
/* page cannot be reused, unmap it */
dma_unmap_page(rx_queue->dev, rxb->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
}
/* clear rxb content */
rxb->page = NULL;
return skb;
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is [FIXME]
*/
if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
(RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
}
/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
{
struct gfar_private *priv = netdev_priv(ndev);
struct rxfcb *fcb = NULL;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb
* Remove the padded bytes, if there are any
*/
if (priv->uses_rxfcb)
skb_pull(skb, GMAC_FCB_LEN);
/* Get receive timestamp from the skb */
if (priv->hwts_rx_en) {
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
u64 *ns = (u64 *) skb->data;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
}
if (priv->padding)
skb_pull(skb, priv->padding);
if (ndev->features & NETIF_F_RXCSUM)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, ndev);
/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
* Even if vlan rx accel is disabled, on some chips
* RXFCB_VLN is pseudo randomly set.
*/
if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
be16_to_cpu(fcb->flags) & RXFCB_VLN)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
be16_to_cpu(fcb->vlctl));
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
{
struct net_device *ndev = rx_queue->ndev;
struct gfar_private *priv = netdev_priv(ndev);
struct rxbd8 *bdp;
int i, howmany = 0;
struct sk_buff *skb = rx_queue->skb;
int cleaned_cnt = gfar_rxbd_unused(rx_queue);
unsigned int total_bytes = 0, total_pkts = 0;
/* Get the first full descriptor */
i = rx_queue->next_to_clean;
while (rx_work_limit--) {
u32 lstatus;
if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
cleaned_cnt = 0;
}
bdp = &rx_queue->rx_bd_base[i];
lstatus = be32_to_cpu(bdp->lstatus);
if (lstatus & BD_LFLAG(RXBD_EMPTY))
break;
/* order rx buffer descriptor reads */
rmb();
/* fetch next to clean buffer from the ring */
skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
if (unlikely(!skb))
break;
cleaned_cnt++;
howmany++;
if (unlikely(++i == rx_queue->rx_ring_size))
i = 0;
rx_queue->next_to_clean = i;
/* fetch next buffer if not the last in frame */
if (!(lstatus & BD_LFLAG(RXBD_LAST)))
continue;
if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
count_errors(lstatus, ndev);
/* discard faulty buffer */
dev_kfree_skb(skb);
skb = NULL;
rx_queue->stats.rx_dropped++;
continue;
}
/* Increment the number of packets */
total_pkts++;
total_bytes += skb->len;
skb_record_rx_queue(skb, rx_queue->qindex);
gfar_process_frame(ndev, skb);
/* Send the packet up the stack */
napi_gro_receive(&rx_queue->grp->napi_rx, skb);
skb = NULL;
}
/* Store incomplete frames for completion */
rx_queue->skb = skb;
rx_queue->stats.rx_packets += total_pkts;
rx_queue->stats.rx_bytes += total_bytes;
if (cleaned_cnt)
gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
/* Update Last Free RxBD pointer for LFC */
if (unlikely(priv->tx_actual_en)) {
u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
gfar_write(rx_queue->rfbptr, bdp_dma);
}
return howmany;
}
static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_rx);
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
int work_done = 0;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_RX_MASK);
work_done = gfar_clean_rx_ring(rx_queue, budget);
if (work_done < budget) {
u32 imask;
napi_complete_done(napi, work_done);
/* Clear the halt bit in RSTAT */
gfar_write(&regs->rstat, gfargrp->rstat);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_RX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return work_done;
}
static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_tx);
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
u32 imask;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_TX_MASK);
/* run Tx cleanup to completion */
if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
gfar_clean_tx_ring(tx_queue);
napi_complete(napi);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_TX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
return 0;
}
static int gfar_poll_rx(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_rx);
struct gfar_private *priv = gfargrp->priv;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_rx_q *rx_queue = NULL;
int work_done = 0, work_done_per_q = 0;
int i, budget_per_q = 0;
unsigned long rstat_rxf;
int num_act_queues;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_RX_MASK);
rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
if (num_act_queues)
budget_per_q = budget/num_act_queues;
for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
/* skip queue if not active */
if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
continue;
rx_queue = priv->rx_queue[i];
work_done_per_q =
gfar_clean_rx_ring(rx_queue, budget_per_q);
work_done += work_done_per_q;
/* finished processing this queue */
if (work_done_per_q < budget_per_q) {
/* clear active queue hw indication */
gfar_write(&regs->rstat,
RSTAT_CLEAR_RXF0 >> i);
num_act_queues--;
if (!num_act_queues)
break;
}
}
if (!num_act_queues) {
u32 imask;
napi_complete_done(napi, work_done);
/* Clear the halt bit in RSTAT */
gfar_write(&regs->rstat, gfargrp->rstat);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_RX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return work_done;
}
static int gfar_poll_tx(struct napi_struct *napi, int budget)
{
struct gfar_priv_grp *gfargrp =
container_of(napi, struct gfar_priv_grp, napi_tx);
struct gfar_private *priv = gfargrp->priv;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_priv_tx_q *tx_queue = NULL;
int has_tx_work = 0;
int i;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived
*/
gfar_write(&regs->ievent, IEVENT_TX_MASK);
for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
tx_queue = priv->tx_queue[i];
/* run Tx cleanup to completion */
if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
gfar_clean_tx_ring(tx_queue);
has_tx_work = 1;
}
}
if (!has_tx_work) {
u32 imask;
napi_complete(napi);
spin_lock_irq(&gfargrp->grplock);
imask = gfar_read(&regs->imask);
imask |= IMASK_TX_DEFAULT;
gfar_write(&regs->imask, imask);
spin_unlock_irq(&gfargrp->grplock);
}
return 0;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int i;
/* If the device has multiple interrupts, run tx/rx */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
disable_irq(gfar_irq(grp, TX)->irq);
disable_irq(gfar_irq(grp, RX)->irq);
disable_irq(gfar_irq(grp, ER)->irq);
gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
enable_irq(gfar_irq(grp, ER)->irq);
enable_irq(gfar_irq(grp, RX)->irq);
enable_irq(gfar_irq(grp, TX)->irq);
}
} else {
for (i = 0; i < priv->num_grps; i++) {
struct gfar_priv_grp *grp = &priv->gfargrp[i];
disable_irq(gfar_irq(grp, TX)->irq);
gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
enable_irq(gfar_irq(grp, TX)->irq);
}
}
}
#endif
/* The interrupt handler for devices with one interrupt */
static irqreturn_t gfar_interrupt(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
/* Save ievent for future reference */
u32 events = gfar_read(&gfargrp->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
gfar_receive(irq, grp_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
gfar_transmit(irq, grp_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, grp_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *phydev = dev->phydev;
if (unlikely(phydev->link != priv->oldlink ||
(phydev->link && (phydev->duplex != priv->oldduplex ||
phydev->speed != priv->oldspeed))))
gfar_update_link_state(priv);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed
*/
static void gfar_set_multi(struct net_device *dev)
{
struct netdev_hw_addr *ha;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
if (dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if (dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them
*/
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if (netdev_mc_empty(dev))
return;
/* Parse the list, and set the appropriate bits */
netdev_for_each_mc_addr(ha, dev) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx, ha->addr);
idx++;
} else
gfar_set_hash_for_addr(dev, ha->addr);
}
}
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception
*/
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
gfar_set_mac_for_addr(dev, idx, zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry.
*/
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(ETH_ALEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num,
const u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->gfargrp[0].regs;
u32 tempval;
u32 __iomem *macptr = &regs->macstnaddr1;
macptr += num*2;
/* For a station address of 0x12345678ABCD in transmission
* order (BE), MACnADDR1 is set to 0xCDAB7856 and
* MACnADDR2 is set to 0x34120000.
*/
tempval = (addr[5] << 24) | (addr[4] << 16) |
(addr[3] << 8) | addr[2];
gfar_write(macptr, tempval);
tempval = (addr[1] << 24) | (addr[0] << 16);
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
static irqreturn_t gfar_error(int irq, void *grp_id)
{
struct gfar_priv_grp *gfargrp = grp_id;
struct gfar __iomem *regs = gfargrp->regs;
struct gfar_private *priv= gfargrp->priv;
struct net_device *dev = priv->ndev;
/* Save ievent for future reference */
u32 events = gfar_read(&regs->ievent);
/* Clear IEVENT */
gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
/* Magic Packet is not an error. */
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
(events & IEVENT_MAG))
events &= ~IEVENT_MAG;
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
netdev_dbg(dev,
"error interrupt (ievent=0x%08x imask=0x%08x)\n",
events, gfar_read(&regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
netif_dbg(priv, tx_err, dev,
"TX FIFO underrun, packet dropped\n");
dev->stats.tx_dropped++;
atomic64_inc(&priv->extra_stats.tx_underrun);
schedule_work(&priv->reset_task);
}
netif_dbg(priv, tx_err, dev, "Transmit Error\n");
}
if (events & IEVENT_BSY) {
dev->stats.rx_over_errors++;
atomic64_inc(&priv->extra_stats.rx_bsy);
netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
gfar_read(&regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
atomic64_inc(&priv->extra_stats.rx_babr);
netif_dbg(priv, rx_err, dev, "babbling RX error\n");
}
if (events & IEVENT_EBERR) {
atomic64_inc(&priv->extra_stats.eberr);
netif_dbg(priv, rx_err, dev, "bus error\n");
}
if (events & IEVENT_RXC)
netif_dbg(priv, rx_status, dev, "control frame\n");
if (events & IEVENT_BABT) {
atomic64_inc(&priv->extra_stats.tx_babt);
netif_dbg(priv, tx_err, dev, "babbling TX error\n");
}
return IRQ_HANDLED;
}
static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
{
struct net_device *ndev = priv->ndev;
struct phy_device *phydev = ndev->phydev;
u32 val = 0;
if (!phydev->duplex)
return val;
if (!priv->pause_aneg_en) {
if (priv->tx_pause_en)
val |= MACCFG1_TX_FLOW;
if (priv->rx_pause_en)
val |= MACCFG1_RX_FLOW;
} else {
u16 lcl_adv, rmt_adv;
u8 flowctrl;
/* get link partner capabilities */
rmt_adv = 0;
if (phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
lcl_adv = 0;
if (phydev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (phydev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
val |= MACCFG1_TX_FLOW;
if (flowctrl & FLOW_CTRL_RX)
val |= MACCFG1_RX_FLOW;
}
return val;
}
static noinline void gfar_update_link_state(struct gfar_private *priv)
{
struct gfar __iomem *regs = priv->gfargrp[0].regs;
struct net_device *ndev = priv->ndev;
struct phy_device *phydev = ndev->phydev;
struct gfar_priv_rx_q *rx_queue = NULL;
int i;
if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
return;
if (phydev->link) {
u32 tempval1 = gfar_read(&regs->maccfg1);
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
if (phydev->duplex != priv->oldduplex) {
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100
*/
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
netif_warn(priv, link, priv->ndev,
"Ack! Speed (%d) is not 10/100/1000!\n",
phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
tempval1 |= gfar_get_flowctrl_cfg(priv);
/* Turn last free buffer recording on */
if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
for (i = 0; i < priv->num_rx_queues; i++) {
u32 bdp_dma;
rx_queue = priv->rx_queue[i];
bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
gfar_write(rx_queue->rfbptr, bdp_dma);
}
priv->tx_actual_en = 1;
}
if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
priv->tx_actual_en = 0;
gfar_write(&regs->maccfg1, tempval1);
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if (!priv->oldlink)
priv->oldlink = 1;
} else if (priv->oldlink) {
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (netif_msg_link(priv))
phy_print_status(phydev);
}
static const struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{
.compatible = "fsl,etsec2",
},
{},
};
MODULE_DEVICE_TABLE(of, gfar_match);
/* Structure for a device driver */
static struct platform_driver gfar_driver = {
.driver = {
.name = "fsl-gianfar",
.pm = GFAR_PM_OPS,
.of_match_table = gfar_match,
},
.probe = gfar_probe,
.remove = gfar_remove,
};
module_platform_driver(gfar_driver);