linux-stable/drivers/gpu/vga/vga_switcheroo.c
Lukas Wunner 21b45676b7 vga_switcheroo: Set active attribute to false for audio clients
The active attribute in struct vga_switcheroo_client denotes whether
the outputs are currently switched to this client. The attribute is
only meaningful for vga clients. It is never used for audio clients.

The function vga_switcheroo_register_audio_client() misuses this
attribute to store whether the audio device is fully initialized.
Most likely there was a misunderstanding about the meaning of
"active" when this was added.

Comment from Takashi's review:

"Not really.  The full initialization of audio was meant that the audio
is active indeed.  Admittedly, though, the active flag for each audio
client doesn't play any role because the audio always follows the gfx
state changes, and the value passed there doesn't reflect the actual
state due to the later change.  So, I agree with the removal of the
flag itself -- or let the audio active flag following the
corresponding gfx flag.  The latter will make the proc output more
consistent while the former is certainly more reduction of code."

Set the active attribute to false for audio clients. Remove the
active parameter from vga_switcheroo_register_audio_client() and
its sole caller, hda_intel.c:register_vga_switcheroo().

vga_switcheroo_register_audio_client() was introduced by 3e9e63dbd3
("vga_switcheroo: Add the support for audio clients"). Its use in
hda_intel.c was introduced by a82d51ed24 ("ALSA: hda - Support
VGA-switcheroo").

v1.1: The changes above imply that in find_active_client() the call
to client_is_vga() is now superfluous. Drop it.

Cc: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
[danvet: Add Takashi's clarification to the commit message.]
Reviewed-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-24 20:14:25 +02:00

982 lines
28 KiB
C

/*
* vga_switcheroo.c - Support for laptop with dual GPU using one set of outputs
*
* Copyright (c) 2010 Red Hat Inc.
* Author : Dave Airlie <airlied@redhat.com>
*
* Copyright (c) 2015 Lukas Wunner <lukas@wunner.de>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS
* IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) "vga_switcheroo: " fmt
#include <linux/console.h>
#include <linux/debugfs.h>
#include <linux/fb.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/vgaarb.h>
#include <linux/vga_switcheroo.h>
/**
* DOC: Overview
*
* vga_switcheroo is the Linux subsystem for laptop hybrid graphics.
* These come in two flavors:
*
* * muxed: Dual GPUs with a multiplexer chip to switch outputs between GPUs.
* * muxless: Dual GPUs but only one of them is connected to outputs.
* The other one is merely used to offload rendering, its results
* are copied over PCIe into the framebuffer. On Linux this is
* supported with DRI PRIME.
*
* Hybrid graphics started to appear in the late Naughties and were initially
* all muxed. Newer laptops moved to a muxless architecture for cost reasons.
* A notable exception is the MacBook Pro which continues to use a mux.
* Muxes come with varying capabilities: Some switch only the panel, others
* can also switch external displays. Some switch all display pins at once
* while others can switch just the DDC lines. (To allow EDID probing
* for the inactive GPU.) Also, muxes are often used to cut power to the
* discrete GPU while it is not used.
*
* DRM drivers register GPUs with vga_switcheroo, these are heretoforth called
* clients. The mux is called the handler. Muxless machines also register a
* handler to control the power state of the discrete GPU, its ->switchto
* callback is a no-op for obvious reasons. The discrete GPU is often equipped
* with an HDA controller for the HDMI/DP audio signal, this will also
* register as a client so that vga_switcheroo can take care of the correct
* suspend/resume order when changing the discrete GPU's power state. In total
* there can thus be up to three clients: Two vga clients (GPUs) and one audio
* client (on the discrete GPU). The code is mostly prepared to support
* machines with more than two GPUs should they become available.
* The GPU to which the outputs are currently switched is called the
* active client in vga_switcheroo parlance. The GPU not in use is the
* inactive client.
*/
/**
* struct vga_switcheroo_client - registered client
* @pdev: client pci device
* @fb_info: framebuffer to which console is remapped on switching
* @pwr_state: current power state
* @ops: client callbacks
* @id: client identifier, see enum vga_switcheroo_client_id.
* Determining the id requires the handler, so GPUs are initially
* assigned -1 and later given their true id in vga_switcheroo_enable()
* @active: whether the outputs are currently switched to this client
* @driver_power_control: whether power state is controlled by the driver's
* runtime pm. If true, writing ON and OFF to the vga_switcheroo debugfs
* interface is a no-op so as not to interfere with runtime pm
* @list: client list
*
* Registered client. A client can be either a GPU or an audio device on a GPU.
* For audio clients, the @fb_info, @active and @driver_power_control members
* are bogus.
*/
struct vga_switcheroo_client {
struct pci_dev *pdev;
struct fb_info *fb_info;
int pwr_state;
const struct vga_switcheroo_client_ops *ops;
int id;
bool active;
bool driver_power_control;
struct list_head list;
};
/*
* protects access to struct vgasr_priv
*/
static DEFINE_MUTEX(vgasr_mutex);
/**
* struct vgasr_priv - vga_switcheroo private data
* @active: whether vga_switcheroo is enabled.
* Prerequisite is the registration of two GPUs and a handler
* @delayed_switch_active: whether a delayed switch is pending
* @delayed_client_id: client to which a delayed switch is pending
* @debugfs_root: directory for vga_switcheroo debugfs interface
* @switch_file: file for vga_switcheroo debugfs interface
* @registered_clients: number of registered GPUs
* (counting only vga clients, not audio clients)
* @clients: list of registered clients
* @handler: registered handler
*
* vga_switcheroo private data. Currently only one vga_switcheroo instance
* per system is supported.
*/
struct vgasr_priv {
bool active;
bool delayed_switch_active;
enum vga_switcheroo_client_id delayed_client_id;
struct dentry *debugfs_root;
struct dentry *switch_file;
int registered_clients;
struct list_head clients;
struct vga_switcheroo_handler *handler;
};
#define ID_BIT_AUDIO 0x100
#define client_is_audio(c) ((c)->id & ID_BIT_AUDIO)
#define client_is_vga(c) ((c)->id == -1 || !client_is_audio(c))
#define client_id(c) ((c)->id & ~ID_BIT_AUDIO)
static int vga_switcheroo_debugfs_init(struct vgasr_priv *priv);
static void vga_switcheroo_debugfs_fini(struct vgasr_priv *priv);
/* only one switcheroo per system */
static struct vgasr_priv vgasr_priv = {
.clients = LIST_HEAD_INIT(vgasr_priv.clients),
};
static bool vga_switcheroo_ready(void)
{
/* we're ready if we get two clients + handler */
return !vgasr_priv.active &&
vgasr_priv.registered_clients == 2 && vgasr_priv.handler;
}
static void vga_switcheroo_enable(void)
{
int ret;
struct vga_switcheroo_client *client;
/* call the handler to init */
if (vgasr_priv.handler->init)
vgasr_priv.handler->init();
list_for_each_entry(client, &vgasr_priv.clients, list) {
if (client->id != -1)
continue;
ret = vgasr_priv.handler->get_client_id(client->pdev);
if (ret < 0)
return;
client->id = ret;
}
vga_switcheroo_debugfs_init(&vgasr_priv);
vgasr_priv.active = true;
}
/**
* vga_switcheroo_register_handler() - register handler
* @handler: handler callbacks
*
* Register handler. Enable vga_switcheroo if two vga clients have already
* registered.
*
* Return: 0 on success, -EINVAL if a handler was already registered.
*/
int vga_switcheroo_register_handler(struct vga_switcheroo_handler *handler)
{
mutex_lock(&vgasr_mutex);
if (vgasr_priv.handler) {
mutex_unlock(&vgasr_mutex);
return -EINVAL;
}
vgasr_priv.handler = handler;
if (vga_switcheroo_ready()) {
pr_info("enabled\n");
vga_switcheroo_enable();
}
mutex_unlock(&vgasr_mutex);
return 0;
}
EXPORT_SYMBOL(vga_switcheroo_register_handler);
/**
* vga_switcheroo_unregister_handler() - unregister handler
*
* Unregister handler. Disable vga_switcheroo.
*/
void vga_switcheroo_unregister_handler(void)
{
mutex_lock(&vgasr_mutex);
vgasr_priv.handler = NULL;
if (vgasr_priv.active) {
pr_info("disabled\n");
vga_switcheroo_debugfs_fini(&vgasr_priv);
vgasr_priv.active = false;
}
mutex_unlock(&vgasr_mutex);
}
EXPORT_SYMBOL(vga_switcheroo_unregister_handler);
static int register_client(struct pci_dev *pdev,
const struct vga_switcheroo_client_ops *ops,
int id, bool active, bool driver_power_control)
{
struct vga_switcheroo_client *client;
client = kzalloc(sizeof(*client), GFP_KERNEL);
if (!client)
return -ENOMEM;
client->pwr_state = VGA_SWITCHEROO_ON;
client->pdev = pdev;
client->ops = ops;
client->id = id;
client->active = active;
client->driver_power_control = driver_power_control;
mutex_lock(&vgasr_mutex);
list_add_tail(&client->list, &vgasr_priv.clients);
if (client_is_vga(client))
vgasr_priv.registered_clients++;
if (vga_switcheroo_ready()) {
pr_info("enabled\n");
vga_switcheroo_enable();
}
mutex_unlock(&vgasr_mutex);
return 0;
}
/**
* vga_switcheroo_register_client - register vga client
* @pdev: client pci device
* @ops: client callbacks
* @driver_power_control: whether power state is controlled by the driver's
* runtime pm
*
* Register vga client (GPU). Enable vga_switcheroo if another GPU and a
* handler have already registered. The power state of the client is assumed
* to be ON.
*
* Return: 0 on success, -ENOMEM on memory allocation error.
*/
int vga_switcheroo_register_client(struct pci_dev *pdev,
const struct vga_switcheroo_client_ops *ops,
bool driver_power_control)
{
return register_client(pdev, ops, -1,
pdev == vga_default_device(),
driver_power_control);
}
EXPORT_SYMBOL(vga_switcheroo_register_client);
/**
* vga_switcheroo_register_audio_client - register audio client
* @pdev: client pci device
* @ops: client callbacks
* @id: client identifier, see enum vga_switcheroo_client_id
*
* Register audio client (audio device on a GPU). The power state of the
* client is assumed to be ON.
*
* Return: 0 on success, -ENOMEM on memory allocation error.
*/
int vga_switcheroo_register_audio_client(struct pci_dev *pdev,
const struct vga_switcheroo_client_ops *ops,
int id)
{
return register_client(pdev, ops, id | ID_BIT_AUDIO, false, false);
}
EXPORT_SYMBOL(vga_switcheroo_register_audio_client);
static struct vga_switcheroo_client *
find_client_from_pci(struct list_head *head, struct pci_dev *pdev)
{
struct vga_switcheroo_client *client;
list_for_each_entry(client, head, list)
if (client->pdev == pdev)
return client;
return NULL;
}
static struct vga_switcheroo_client *
find_client_from_id(struct list_head *head, int client_id)
{
struct vga_switcheroo_client *client;
list_for_each_entry(client, head, list)
if (client->id == client_id)
return client;
return NULL;
}
static struct vga_switcheroo_client *
find_active_client(struct list_head *head)
{
struct vga_switcheroo_client *client;
list_for_each_entry(client, head, list)
if (client->active)
return client;
return NULL;
}
/**
* vga_switcheroo_get_client_state() - obtain power state of a given client
* @pdev: client pci device
*
* Obtain power state of a given client as seen from vga_switcheroo.
* The function is only called from hda_intel.c.
*
* Return: Power state.
*/
int vga_switcheroo_get_client_state(struct pci_dev *pdev)
{
struct vga_switcheroo_client *client;
client = find_client_from_pci(&vgasr_priv.clients, pdev);
if (!client)
return VGA_SWITCHEROO_NOT_FOUND;
if (!vgasr_priv.active)
return VGA_SWITCHEROO_INIT;
return client->pwr_state;
}
EXPORT_SYMBOL(vga_switcheroo_get_client_state);
/**
* vga_switcheroo_unregister_client() - unregister client
* @pdev: client pci device
*
* Unregister client. Disable vga_switcheroo if this is a vga client (GPU).
*/
void vga_switcheroo_unregister_client(struct pci_dev *pdev)
{
struct vga_switcheroo_client *client;
mutex_lock(&vgasr_mutex);
client = find_client_from_pci(&vgasr_priv.clients, pdev);
if (client) {
if (client_is_vga(client))
vgasr_priv.registered_clients--;
list_del(&client->list);
kfree(client);
}
if (vgasr_priv.active && vgasr_priv.registered_clients < 2) {
pr_info("disabled\n");
vga_switcheroo_debugfs_fini(&vgasr_priv);
vgasr_priv.active = false;
}
mutex_unlock(&vgasr_mutex);
}
EXPORT_SYMBOL(vga_switcheroo_unregister_client);
/**
* vga_switcheroo_client_fb_set() - set framebuffer of a given client
* @pdev: client pci device
* @info: framebuffer
*
* Set framebuffer of a given client. The console will be remapped to this
* on switching.
*/
void vga_switcheroo_client_fb_set(struct pci_dev *pdev,
struct fb_info *info)
{
struct vga_switcheroo_client *client;
mutex_lock(&vgasr_mutex);
client = find_client_from_pci(&vgasr_priv.clients, pdev);
if (client)
client->fb_info = info;
mutex_unlock(&vgasr_mutex);
}
EXPORT_SYMBOL(vga_switcheroo_client_fb_set);
/**
* DOC: Manual switching and manual power control
*
* In this mode of use, the file /sys/kernel/debug/vgaswitcheroo/switch
* can be read to retrieve the current vga_switcheroo state and commands
* can be written to it to change the state. The file appears as soon as
* two GPU drivers and one handler have registered with vga_switcheroo.
* The following commands are understood:
*
* * OFF: Power off the device not in use.
* * ON: Power on the device not in use.
* * IGD: Switch to the integrated graphics device.
* Power on the integrated GPU if necessary, power off the discrete GPU.
* Prerequisite is that no user space processes (e.g. Xorg, alsactl)
* have opened device files of the GPUs or the audio client. If the
* switch fails, the user may invoke lsof(8) or fuser(1) on /dev/dri/
* and /dev/snd/controlC1 to identify processes blocking the switch.
* * DIS: Switch to the discrete graphics device.
* * DIGD: Delayed switch to the integrated graphics device.
* This will perform the switch once the last user space process has
* closed the device files of the GPUs and the audio client.
* * DDIS: Delayed switch to the discrete graphics device.
* * MIGD: Mux-only switch to the integrated graphics device.
* Does not remap console or change the power state of either gpu.
* If the integrated GPU is currently off, the screen will turn black.
* If it is on, the screen will show whatever happens to be in VRAM.
* Either way, the user has to blindly enter the command to switch back.
* * MDIS: Mux-only switch to the discrete graphics device.
*
* For GPUs whose power state is controlled by the driver's runtime pm,
* the ON and OFF commands are a no-op (see next section).
*
* For muxless machines, the IGD/DIS, DIGD/DDIS and MIGD/MDIS commands
* should not be used.
*/
static int vga_switcheroo_show(struct seq_file *m, void *v)
{
struct vga_switcheroo_client *client;
int i = 0;
mutex_lock(&vgasr_mutex);
list_for_each_entry(client, &vgasr_priv.clients, list) {
seq_printf(m, "%d:%s%s:%c:%s%s:%s\n", i,
client_id(client) == VGA_SWITCHEROO_DIS ? "DIS" :
"IGD",
client_is_vga(client) ? "" : "-Audio",
client->active ? '+' : ' ',
client->driver_power_control ? "Dyn" : "",
client->pwr_state ? "Pwr" : "Off",
pci_name(client->pdev));
i++;
}
mutex_unlock(&vgasr_mutex);
return 0;
}
static int vga_switcheroo_debugfs_open(struct inode *inode, struct file *file)
{
return single_open(file, vga_switcheroo_show, NULL);
}
static int vga_switchon(struct vga_switcheroo_client *client)
{
if (client->driver_power_control)
return 0;
if (vgasr_priv.handler->power_state)
vgasr_priv.handler->power_state(client->id, VGA_SWITCHEROO_ON);
/* call the driver callback to turn on device */
client->ops->set_gpu_state(client->pdev, VGA_SWITCHEROO_ON);
client->pwr_state = VGA_SWITCHEROO_ON;
return 0;
}
static int vga_switchoff(struct vga_switcheroo_client *client)
{
if (client->driver_power_control)
return 0;
/* call the driver callback to turn off device */
client->ops->set_gpu_state(client->pdev, VGA_SWITCHEROO_OFF);
if (vgasr_priv.handler->power_state)
vgasr_priv.handler->power_state(client->id, VGA_SWITCHEROO_OFF);
client->pwr_state = VGA_SWITCHEROO_OFF;
return 0;
}
static void set_audio_state(int id, int state)
{
struct vga_switcheroo_client *client;
client = find_client_from_id(&vgasr_priv.clients, id | ID_BIT_AUDIO);
if (client && client->pwr_state != state) {
client->ops->set_gpu_state(client->pdev, state);
client->pwr_state = state;
}
}
/* stage one happens before delay */
static int vga_switchto_stage1(struct vga_switcheroo_client *new_client)
{
struct vga_switcheroo_client *active;
active = find_active_client(&vgasr_priv.clients);
if (!active)
return 0;
if (new_client->pwr_state == VGA_SWITCHEROO_OFF)
vga_switchon(new_client);
vga_set_default_device(new_client->pdev);
return 0;
}
/* post delay */
static int vga_switchto_stage2(struct vga_switcheroo_client *new_client)
{
int ret;
struct vga_switcheroo_client *active;
active = find_active_client(&vgasr_priv.clients);
if (!active)
return 0;
active->active = false;
set_audio_state(active->id, VGA_SWITCHEROO_OFF);
if (new_client->fb_info) {
struct fb_event event;
console_lock();
event.info = new_client->fb_info;
fb_notifier_call_chain(FB_EVENT_REMAP_ALL_CONSOLE, &event);
console_unlock();
}
ret = vgasr_priv.handler->switchto(new_client->id);
if (ret)
return ret;
if (new_client->ops->reprobe)
new_client->ops->reprobe(new_client->pdev);
if (active->pwr_state == VGA_SWITCHEROO_ON)
vga_switchoff(active);
set_audio_state(new_client->id, VGA_SWITCHEROO_ON);
new_client->active = true;
return 0;
}
static bool check_can_switch(void)
{
struct vga_switcheroo_client *client;
list_for_each_entry(client, &vgasr_priv.clients, list) {
if (!client->ops->can_switch(client->pdev)) {
pr_err("client %x refused switch\n", client->id);
return false;
}
}
return true;
}
static ssize_t
vga_switcheroo_debugfs_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char usercmd[64];
int ret;
bool delay = false, can_switch;
bool just_mux = false;
int client_id = -1;
struct vga_switcheroo_client *client = NULL;
if (cnt > 63)
cnt = 63;
if (copy_from_user(usercmd, ubuf, cnt))
return -EFAULT;
mutex_lock(&vgasr_mutex);
if (!vgasr_priv.active) {
cnt = -EINVAL;
goto out;
}
/* pwr off the device not in use */
if (strncmp(usercmd, "OFF", 3) == 0) {
list_for_each_entry(client, &vgasr_priv.clients, list) {
if (client->active || client_is_audio(client))
continue;
if (client->driver_power_control)
continue;
set_audio_state(client->id, VGA_SWITCHEROO_OFF);
if (client->pwr_state == VGA_SWITCHEROO_ON)
vga_switchoff(client);
}
goto out;
}
/* pwr on the device not in use */
if (strncmp(usercmd, "ON", 2) == 0) {
list_for_each_entry(client, &vgasr_priv.clients, list) {
if (client->active || client_is_audio(client))
continue;
if (client->driver_power_control)
continue;
if (client->pwr_state == VGA_SWITCHEROO_OFF)
vga_switchon(client);
set_audio_state(client->id, VGA_SWITCHEROO_ON);
}
goto out;
}
/* request a delayed switch - test can we switch now */
if (strncmp(usercmd, "DIGD", 4) == 0) {
client_id = VGA_SWITCHEROO_IGD;
delay = true;
}
if (strncmp(usercmd, "DDIS", 4) == 0) {
client_id = VGA_SWITCHEROO_DIS;
delay = true;
}
if (strncmp(usercmd, "IGD", 3) == 0)
client_id = VGA_SWITCHEROO_IGD;
if (strncmp(usercmd, "DIS", 3) == 0)
client_id = VGA_SWITCHEROO_DIS;
if (strncmp(usercmd, "MIGD", 4) == 0) {
just_mux = true;
client_id = VGA_SWITCHEROO_IGD;
}
if (strncmp(usercmd, "MDIS", 4) == 0) {
just_mux = true;
client_id = VGA_SWITCHEROO_DIS;
}
if (client_id == -1)
goto out;
client = find_client_from_id(&vgasr_priv.clients, client_id);
if (!client)
goto out;
vgasr_priv.delayed_switch_active = false;
if (just_mux) {
ret = vgasr_priv.handler->switchto(client_id);
goto out;
}
if (client->active)
goto out;
/* okay we want a switch - test if devices are willing to switch */
can_switch = check_can_switch();
if (can_switch == false && delay == false)
goto out;
if (can_switch) {
ret = vga_switchto_stage1(client);
if (ret)
pr_err("switching failed stage 1 %d\n", ret);
ret = vga_switchto_stage2(client);
if (ret)
pr_err("switching failed stage 2 %d\n", ret);
} else {
pr_info("setting delayed switch to client %d\n", client->id);
vgasr_priv.delayed_switch_active = true;
vgasr_priv.delayed_client_id = client_id;
ret = vga_switchto_stage1(client);
if (ret)
pr_err("delayed switching stage 1 failed %d\n", ret);
}
out:
mutex_unlock(&vgasr_mutex);
return cnt;
}
static const struct file_operations vga_switcheroo_debugfs_fops = {
.owner = THIS_MODULE,
.open = vga_switcheroo_debugfs_open,
.write = vga_switcheroo_debugfs_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void vga_switcheroo_debugfs_fini(struct vgasr_priv *priv)
{
debugfs_remove(priv->switch_file);
priv->switch_file = NULL;
debugfs_remove(priv->debugfs_root);
priv->debugfs_root = NULL;
}
static int vga_switcheroo_debugfs_init(struct vgasr_priv *priv)
{
static const char mp[] = "/sys/kernel/debug";
/* already initialised */
if (priv->debugfs_root)
return 0;
priv->debugfs_root = debugfs_create_dir("vgaswitcheroo", NULL);
if (!priv->debugfs_root) {
pr_err("Cannot create %s/vgaswitcheroo\n", mp);
goto fail;
}
priv->switch_file = debugfs_create_file("switch", 0644,
priv->debugfs_root, NULL,
&vga_switcheroo_debugfs_fops);
if (!priv->switch_file) {
pr_err("cannot create %s/vgaswitcheroo/switch\n", mp);
goto fail;
}
return 0;
fail:
vga_switcheroo_debugfs_fini(priv);
return -1;
}
/**
* vga_switcheroo_process_delayed_switch() - helper for delayed switching
*
* Process a delayed switch if one is pending. DRM drivers should call this
* from their ->lastclose callback.
*
* Return: 0 on success. -EINVAL if no delayed switch is pending, if the client
* has unregistered in the meantime or if there are other clients blocking the
* switch. If the actual switch fails, an error is reported and 0 is returned.
*/
int vga_switcheroo_process_delayed_switch(void)
{
struct vga_switcheroo_client *client;
int ret;
int err = -EINVAL;
mutex_lock(&vgasr_mutex);
if (!vgasr_priv.delayed_switch_active)
goto err;
pr_info("processing delayed switch to %d\n",
vgasr_priv.delayed_client_id);
client = find_client_from_id(&vgasr_priv.clients,
vgasr_priv.delayed_client_id);
if (!client || !check_can_switch())
goto err;
ret = vga_switchto_stage2(client);
if (ret)
pr_err("delayed switching failed stage 2 %d\n", ret);
vgasr_priv.delayed_switch_active = false;
err = 0;
err:
mutex_unlock(&vgasr_mutex);
return err;
}
EXPORT_SYMBOL(vga_switcheroo_process_delayed_switch);
/**
* DOC: Driver power control
*
* In this mode of use, the discrete GPU automatically powers up and down at
* the discretion of the driver's runtime pm. On muxed machines, the user may
* still influence the muxer state by way of the debugfs interface, however
* the ON and OFF commands become a no-op for the discrete GPU.
*
* This mode is the default on Nvidia HybridPower/Optimus and ATI PowerXpress.
* Specifying nouveau.runpm=0, radeon.runpm=0 or amdgpu.runpm=0 on the kernel
* command line disables it.
*
* When the driver decides to power up or down, it notifies vga_switcheroo
* thereof so that it can (a) power the audio device on the GPU up or down,
* and (b) update its internal power state representation for the device.
* This is achieved by vga_switcheroo_set_dynamic_switch().
*
* After the GPU has been suspended, the handler needs to be called to cut
* power to the GPU. Likewise it needs to reinstate power before the GPU
* can resume. This is achieved by vga_switcheroo_init_domain_pm_ops(),
* which augments the GPU's suspend/resume functions by the requisite
* calls to the handler.
*
* When the audio device resumes, the GPU needs to be woken. This is achieved
* by vga_switcheroo_init_domain_pm_optimus_hdmi_audio(), which augments the
* audio device's resume function.
*
* On muxed machines, if the mux is initially switched to the discrete GPU,
* the user ends up with a black screen when the GPU powers down after boot.
* As a workaround, the mux is forced to the integrated GPU on runtime suspend,
* cf. https://bugs.freedesktop.org/show_bug.cgi?id=75917
*/
static void vga_switcheroo_power_switch(struct pci_dev *pdev,
enum vga_switcheroo_state state)
{
struct vga_switcheroo_client *client;
if (!vgasr_priv.handler->power_state)
return;
client = find_client_from_pci(&vgasr_priv.clients, pdev);
if (!client)
return;
if (!client->driver_power_control)
return;
vgasr_priv.handler->power_state(client->id, state);
}
/**
* vga_switcheroo_set_dynamic_switch() - helper for driver power control
* @pdev: client pci device
* @dynamic: new power state
*
* Helper for GPUs whose power state is controlled by the driver's runtime pm.
* When the driver decides to power up or down, it notifies vga_switcheroo
* thereof using this helper so that it can (a) power the audio device on
* the GPU up or down, and (b) update its internal power state representation
* for the device.
*/
void vga_switcheroo_set_dynamic_switch(struct pci_dev *pdev,
enum vga_switcheroo_state dynamic)
{
struct vga_switcheroo_client *client;
client = find_client_from_pci(&vgasr_priv.clients, pdev);
if (!client)
return;
if (!client->driver_power_control)
return;
client->pwr_state = dynamic;
set_audio_state(client->id, dynamic);
}
EXPORT_SYMBOL(vga_switcheroo_set_dynamic_switch);
/* switcheroo power domain */
static int vga_switcheroo_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
ret = dev->bus->pm->runtime_suspend(dev);
if (ret)
return ret;
if (vgasr_priv.handler->switchto)
vgasr_priv.handler->switchto(VGA_SWITCHEROO_IGD);
vga_switcheroo_power_switch(pdev, VGA_SWITCHEROO_OFF);
return 0;
}
static int vga_switcheroo_runtime_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
vga_switcheroo_power_switch(pdev, VGA_SWITCHEROO_ON);
ret = dev->bus->pm->runtime_resume(dev);
if (ret)
return ret;
return 0;
}
/**
* vga_switcheroo_init_domain_pm_ops() - helper for driver power control
* @dev: vga client device
* @domain: power domain
*
* Helper for GPUs whose power state is controlled by the driver's runtime pm.
* After the GPU has been suspended, the handler needs to be called to cut
* power to the GPU. Likewise it needs to reinstate power before the GPU
* can resume. To this end, this helper augments the suspend/resume functions
* by the requisite calls to the handler. It needs only be called on platforms
* where the power switch is separate to the device being powered down.
*/
int vga_switcheroo_init_domain_pm_ops(struct device *dev,
struct dev_pm_domain *domain)
{
/* copy over all the bus versions */
if (dev->bus && dev->bus->pm) {
domain->ops = *dev->bus->pm;
domain->ops.runtime_suspend = vga_switcheroo_runtime_suspend;
domain->ops.runtime_resume = vga_switcheroo_runtime_resume;
dev->pm_domain = domain;
return 0;
}
dev->pm_domain = NULL;
return -EINVAL;
}
EXPORT_SYMBOL(vga_switcheroo_init_domain_pm_ops);
void vga_switcheroo_fini_domain_pm_ops(struct device *dev)
{
dev->pm_domain = NULL;
}
EXPORT_SYMBOL(vga_switcheroo_fini_domain_pm_ops);
static int vga_switcheroo_runtime_resume_hdmi_audio(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
struct vga_switcheroo_client *client, *found = NULL;
/* we need to check if we have to switch back on the video
device so the audio device can come back */
list_for_each_entry(client, &vgasr_priv.clients, list) {
if (PCI_SLOT(client->pdev->devfn) == PCI_SLOT(pdev->devfn) &&
client_is_vga(client)) {
found = client;
ret = pm_runtime_get_sync(&client->pdev->dev);
if (ret) {
if (ret != 1)
return ret;
}
break;
}
}
ret = dev->bus->pm->runtime_resume(dev);
/* put the reference for the gpu */
if (found) {
pm_runtime_mark_last_busy(&found->pdev->dev);
pm_runtime_put_autosuspend(&found->pdev->dev);
}
return ret;
}
/**
* vga_switcheroo_init_domain_pm_optimus_hdmi_audio() - helper for driver
* power control
* @dev: audio client device
* @domain: power domain
*
* Helper for GPUs whose power state is controlled by the driver's runtime pm.
* When the audio device resumes, the GPU needs to be woken. This helper
* augments the audio device's resume function to do that.
*
* Return: 0 on success, -EINVAL if no power management operations are
* defined for this device.
*/
int
vga_switcheroo_init_domain_pm_optimus_hdmi_audio(struct device *dev,
struct dev_pm_domain *domain)
{
/* copy over all the bus versions */
if (dev->bus && dev->bus->pm) {
domain->ops = *dev->bus->pm;
domain->ops.runtime_resume =
vga_switcheroo_runtime_resume_hdmi_audio;
dev->pm_domain = domain;
return 0;
}
dev->pm_domain = NULL;
return -EINVAL;
}
EXPORT_SYMBOL(vga_switcheroo_init_domain_pm_optimus_hdmi_audio);