linux-stable/arch/riscv/kernel/smpboot.c

249 lines
5.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SMP initialisation and IPI support
* Based on arch/arm64/kernel/smp.c
*
* Copyright (C) 2012 ARM Ltd.
* Copyright (C) 2015 Regents of the University of California
* Copyright (C) 2017 SiFive
*/
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/kernel_stat.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/percpu.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/mm.h>
#include <asm/cpufeature.h>
#include <asm/cpu_ops.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/numa.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/smp.h>
#include <uapi/asm/hwcap.h>
#include <asm/vector.h>
#include "head.h"
static DECLARE_COMPLETION(cpu_running);
void __init smp_prepare_cpus(unsigned int max_cpus)
{
int cpuid;
unsigned int curr_cpuid;
init_cpu_topology();
curr_cpuid = smp_processor_id();
store_cpu_topology(curr_cpuid);
numa_store_cpu_info(curr_cpuid);
numa_add_cpu(curr_cpuid);
/* This covers non-smp usecase mandated by "nosmp" option */
if (max_cpus == 0)
return;
for_each_possible_cpu(cpuid) {
if (cpuid == curr_cpuid)
continue;
set_cpu_present(cpuid, true);
numa_store_cpu_info(cpuid);
}
}
#ifdef CONFIG_ACPI
static unsigned int cpu_count = 1;
static int __init acpi_parse_rintc(union acpi_subtable_headers *header, const unsigned long end)
{
unsigned long hart;
static bool found_boot_cpu;
struct acpi_madt_rintc *processor = (struct acpi_madt_rintc *)header;
/*
* Each RINTC structure in MADT will have a flag. If ACPI_MADT_ENABLED
* bit in the flag is not enabled, it means OS should not try to enable
* the cpu to which RINTC belongs.
*/
if (!(processor->flags & ACPI_MADT_ENABLED))
return 0;
if (BAD_MADT_ENTRY(processor, end))
return -EINVAL;
acpi_table_print_madt_entry(&header->common);
hart = processor->hart_id;
if (hart == INVALID_HARTID) {
pr_warn("Invalid hartid\n");
return 0;
}
if (hart == cpuid_to_hartid_map(0)) {
BUG_ON(found_boot_cpu);
found_boot_cpu = true;
early_map_cpu_to_node(0, acpi_numa_get_nid(cpu_count));
return 0;
}
if (cpu_count >= NR_CPUS) {
pr_warn("NR_CPUS is too small for the number of ACPI tables.\n");
return 0;
}
cpuid_to_hartid_map(cpu_count) = hart;
early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count));
cpu_count++;
return 0;
}
static void __init acpi_parse_and_init_cpus(void)
{
acpi_table_parse_madt(ACPI_MADT_TYPE_RINTC, acpi_parse_rintc, 0);
}
#else
#define acpi_parse_and_init_cpus(...) do { } while (0)
#endif
static void __init of_parse_and_init_cpus(void)
{
struct device_node *dn;
unsigned long hart;
bool found_boot_cpu = false;
int cpuid = 1;
int rc;
for_each_of_cpu_node(dn) {
rc = riscv_early_of_processor_hartid(dn, &hart);
if (rc < 0)
continue;
if (hart == cpuid_to_hartid_map(0)) {
BUG_ON(found_boot_cpu);
found_boot_cpu = 1;
early_map_cpu_to_node(0, of_node_to_nid(dn));
continue;
}
if (cpuid >= NR_CPUS) {
pr_warn("Invalid cpuid [%d] for hartid [%lu]\n",
cpuid, hart);
continue;
}
cpuid_to_hartid_map(cpuid) = hart;
early_map_cpu_to_node(cpuid, of_node_to_nid(dn));
cpuid++;
}
BUG_ON(!found_boot_cpu);
if (cpuid > nr_cpu_ids)
pr_warn("Total number of cpus [%d] is greater than nr_cpus option value [%d]\n",
cpuid, nr_cpu_ids);
}
void __init setup_smp(void)
{
int cpuid;
cpu_set_ops();
if (acpi_disabled)
of_parse_and_init_cpus();
else
acpi_parse_and_init_cpus();
for (cpuid = 1; cpuid < nr_cpu_ids; cpuid++)
if (cpuid_to_hartid_map(cpuid) != INVALID_HARTID)
set_cpu_possible(cpuid, true);
}
static int start_secondary_cpu(int cpu, struct task_struct *tidle)
{
if (cpu_ops->cpu_start)
return cpu_ops->cpu_start(cpu, tidle);
return -EOPNOTSUPP;
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int ret = 0;
tidle->thread_info.cpu = cpu;
ret = start_secondary_cpu(cpu, tidle);
if (!ret) {
wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(1000));
if (!cpu_online(cpu)) {
pr_crit("CPU%u: failed to come online\n", cpu);
ret = -EIO;
}
} else {
pr_crit("CPU%u: failed to start\n", cpu);
}
return ret;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
/*
* C entry point for a secondary processor.
*/
asmlinkage __visible void smp_callin(void)
{
struct mm_struct *mm = &init_mm;
unsigned int curr_cpuid = smp_processor_id();
/* All kernel threads share the same mm context. */
mmgrab(mm);
current->active_mm = mm;
store_cpu_topology(curr_cpuid);
notify_cpu_starting(curr_cpuid);
riscv_ipi_enable();
numa_add_cpu(curr_cpuid);
set_cpu_online(curr_cpuid, 1);
if (has_vector()) {
if (riscv_v_setup_vsize())
elf_hwcap &= ~COMPAT_HWCAP_ISA_V;
}
riscv_user_isa_enable();
/*
* Remote TLB flushes are ignored while the CPU is offline, so emit
* a local TLB flush right now just in case.
*/
local_flush_tlb_all();
complete(&cpu_running);
/*
* Disable preemption before enabling interrupts, so we don't try to
* schedule a CPU that hasn't actually started yet.
*/
local_irq_enable();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}