linux-stable/arch/arm64/crypto/aes-glue.c
Ard Biesheuvel c184472902 crypto: arm64/aes-ce - switch to library version of key expansion routine
Switch to the new AES library that also provides an implementation of
the AES key expansion routine. This removes the dependency on the
generic AES cipher, allowing it to be omitted entirely in the future.

While at it, remove some references to the table based arm64 version
of AES and replace them with AES library calls as well.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-07-26 14:56:06 +10:00

844 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
*
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*/
#include <asm/neon.h>
#include <asm/hwcap.h>
#include <asm/simd.h>
#include <crypto/aes.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <linux/cpufeature.h>
#include <crypto/xts.h>
#include "aes-ce-setkey.h"
#include "aes-ctr-fallback.h"
#ifdef USE_V8_CRYPTO_EXTENSIONS
#define MODE "ce"
#define PRIO 300
#define aes_expandkey ce_aes_expandkey
#define aes_ecb_encrypt ce_aes_ecb_encrypt
#define aes_ecb_decrypt ce_aes_ecb_decrypt
#define aes_cbc_encrypt ce_aes_cbc_encrypt
#define aes_cbc_decrypt ce_aes_cbc_decrypt
#define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
#define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
#define aes_ctr_encrypt ce_aes_ctr_encrypt
#define aes_xts_encrypt ce_aes_xts_encrypt
#define aes_xts_decrypt ce_aes_xts_decrypt
#define aes_mac_update ce_aes_mac_update
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
#else
#define MODE "neon"
#define PRIO 200
#define aes_ecb_encrypt neon_aes_ecb_encrypt
#define aes_ecb_decrypt neon_aes_ecb_decrypt
#define aes_cbc_encrypt neon_aes_cbc_encrypt
#define aes_cbc_decrypt neon_aes_cbc_decrypt
#define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
#define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
#define aes_ctr_encrypt neon_aes_ctr_encrypt
#define aes_xts_encrypt neon_aes_xts_encrypt
#define aes_xts_decrypt neon_aes_xts_decrypt
#define aes_mac_update neon_aes_mac_update
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");
MODULE_ALIAS_CRYPTO("cmac(aes)");
MODULE_ALIAS_CRYPTO("xcbc(aes)");
MODULE_ALIAS_CRYPTO("cbcmac(aes)");
#endif
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
/* defined in aes-modes.S */
asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks);
asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks);
asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 iv[]);
asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 iv[]);
asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int bytes, u8 const iv[]);
asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int bytes, u8 const iv[]);
asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
int rounds, int blocks, u8 ctr[]);
asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
int rounds, int blocks, u32 const rk2[], u8 iv[],
int first);
asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
int rounds, int blocks, u32 const rk2[], u8 iv[],
int first);
asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
int blocks, u8 dg[], int enc_before,
int enc_after);
struct cts_cbc_req_ctx {
struct scatterlist sg_src[2];
struct scatterlist sg_dst[2];
struct skcipher_request subreq;
};
struct crypto_aes_xts_ctx {
struct crypto_aes_ctx key1;
struct crypto_aes_ctx __aligned(8) key2;
};
struct mac_tfm_ctx {
struct crypto_aes_ctx key;
u8 __aligned(8) consts[];
};
struct mac_desc_ctx {
unsigned int len;
u8 dg[AES_BLOCK_SIZE];
};
static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = aes_expandkey(ctx, in_key, key_len);
if (ret)
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ret = xts_verify_key(tfm, in_key, key_len);
if (ret)
return ret;
ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
if (!ret)
ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
key_len / 2);
if (!ret)
return 0;
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
static int ecb_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int ecb_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int cts_cbc_init_tfm(struct crypto_skcipher *tfm)
{
crypto_skcipher_set_reqsize(tfm, sizeof(struct cts_cbc_req_ctx));
return 0;
}
static int cts_cbc_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
int err, rounds = 6 + ctx->key_length / 4;
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct skcipher_walk walk;
skcipher_request_set_tfm(&rctx->subreq, tfm);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
unsigned int blocks;
skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
rctx->subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
rctx->subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&rctx->subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
if (err)
return err;
kernel_neon_begin();
aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, walk.nbytes, walk.iv);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int cts_cbc_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
int err, rounds = 6 + ctx->key_length / 4;
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
struct scatterlist *src = req->src, *dst = req->dst;
struct skcipher_walk walk;
skcipher_request_set_tfm(&rctx->subreq, tfm);
if (req->cryptlen <= AES_BLOCK_SIZE) {
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
cbc_blocks = 1;
}
if (cbc_blocks > 0) {
unsigned int blocks;
skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (err)
return err;
if (req->cryptlen == AES_BLOCK_SIZE)
return 0;
dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
rctx->subreq.cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
rctx->subreq.cryptlen);
}
/* handle ciphertext stealing */
skcipher_request_set_crypt(&rctx->subreq, src, dst,
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
req->iv);
err = skcipher_walk_virt(&walk, &rctx->subreq, false);
if (err)
return err;
kernel_neon_begin();
aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_dec, rounds, walk.nbytes, walk.iv);
kernel_neon_end();
return skcipher_walk_done(&walk, 0);
}
static int ctr_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, rounds = 6 + ctx->key_length / 4;
struct skcipher_walk walk;
int blocks;
err = skcipher_walk_virt(&walk, req, false);
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
kernel_neon_begin();
aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key_enc, rounds, blocks, walk.iv);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
if (walk.nbytes) {
u8 __aligned(8) tail[AES_BLOCK_SIZE];
unsigned int nbytes = walk.nbytes;
u8 *tdst = walk.dst.virt.addr;
u8 *tsrc = walk.src.virt.addr;
/*
* Tell aes_ctr_encrypt() to process a tail block.
*/
blocks = -1;
kernel_neon_begin();
aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
blocks, walk.iv);
kernel_neon_end();
crypto_xor_cpy(tdst, tsrc, tail, nbytes);
err = skcipher_walk_done(&walk, 0);
}
return err;
}
static int ctr_encrypt_sync(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
if (!crypto_simd_usable())
return aes_ctr_encrypt_fallback(ctx, req);
return ctr_encrypt(req);
}
static int xts_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, first, rounds = 6 + ctx->key1.key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
kernel_neon_begin();
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key1.key_enc, rounds, blocks,
ctx->key2.key_enc, walk.iv, first);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static int xts_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int err, first, rounds = 6 + ctx->key1.key_length / 4;
struct skcipher_walk walk;
unsigned int blocks;
err = skcipher_walk_virt(&walk, req, false);
for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
kernel_neon_begin();
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
ctx->key1.key_dec, rounds, blocks,
ctx->key2.key_enc, walk.iv, first);
kernel_neon_end();
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
}
return err;
}
static struct skcipher_alg aes_algs[] = { {
.base = {
.cra_name = "__ecb(aes)",
.cra_driver_name = "__ecb-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
}, {
.base = {
.cra_name = "__cbc(aes)",
.cra_driver_name = "__cbc-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
}, {
.base = {
.cra_name = "__cts(cbc(aes))",
.cra_driver_name = "__cts-cbc-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 2 * AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = cts_cbc_encrypt,
.decrypt = cts_cbc_decrypt,
.init = cts_cbc_init_tfm,
}, {
.base = {
.cra_name = "__ctr(aes)",
.cra_driver_name = "__ctr-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ctr_encrypt,
.decrypt = ctr_encrypt,
}, {
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-" MODE,
.cra_priority = PRIO - 1,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ctr_encrypt_sync,
.decrypt = ctr_encrypt_sync,
}, {
.base = {
.cra_name = "__xts(aes)",
.cra_driver_name = "__xts-aes-" MODE,
.cra_priority = PRIO,
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
.cra_module = THIS_MODULE,
},
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_set_key,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
} };
static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
int err;
err = aes_expandkey(&ctx->key, in_key, key_len);
if (err)
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return err;
}
static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
{
u64 a = be64_to_cpu(x->a);
u64 b = be64_to_cpu(x->b);
y->a = cpu_to_be64((a << 1) | (b >> 63));
y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
}
static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
be128 *consts = (be128 *)ctx->consts;
int rounds = 6 + key_len / 4;
int err;
err = cbcmac_setkey(tfm, in_key, key_len);
if (err)
return err;
/* encrypt the zero vector */
kernel_neon_begin();
aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
rounds, 1);
kernel_neon_end();
cmac_gf128_mul_by_x(consts, consts);
cmac_gf128_mul_by_x(consts + 1, consts);
return 0;
}
static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
unsigned int key_len)
{
static u8 const ks[3][AES_BLOCK_SIZE] = {
{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
};
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
int rounds = 6 + key_len / 4;
u8 key[AES_BLOCK_SIZE];
int err;
err = cbcmac_setkey(tfm, in_key, key_len);
if (err)
return err;
kernel_neon_begin();
aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
kernel_neon_end();
return cbcmac_setkey(tfm, key, sizeof(key));
}
static int mac_init(struct shash_desc *desc)
{
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
memset(ctx->dg, 0, AES_BLOCK_SIZE);
ctx->len = 0;
return 0;
}
static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
u8 dg[], int enc_before, int enc_after)
{
int rounds = 6 + ctx->key_length / 4;
if (crypto_simd_usable()) {
kernel_neon_begin();
aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
enc_after);
kernel_neon_end();
} else {
if (enc_before)
aes_encrypt(ctx, dg, dg);
while (blocks--) {
crypto_xor(dg, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
if (blocks || enc_after)
aes_encrypt(ctx, dg, dg);
}
}
}
static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
while (len > 0) {
unsigned int l;
if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
(ctx->len + len) > AES_BLOCK_SIZE) {
int blocks = len / AES_BLOCK_SIZE;
len %= AES_BLOCK_SIZE;
mac_do_update(&tctx->key, p, blocks, ctx->dg,
(ctx->len != 0), (len != 0));
p += blocks * AES_BLOCK_SIZE;
if (!len) {
ctx->len = AES_BLOCK_SIZE;
break;
}
ctx->len = 0;
}
l = min(len, AES_BLOCK_SIZE - ctx->len);
if (l <= AES_BLOCK_SIZE) {
crypto_xor(ctx->dg + ctx->len, p, l);
ctx->len += l;
len -= l;
p += l;
}
}
return 0;
}
static int cbcmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
return 0;
}
static int cmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
u8 *consts = tctx->consts;
if (ctx->len != AES_BLOCK_SIZE) {
ctx->dg[ctx->len] ^= 0x80;
consts += AES_BLOCK_SIZE;
}
mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
return 0;
}
static struct shash_alg mac_algs[] = { {
.base.cra_name = "cmac(aes)",
.base.cra_driver_name = "cmac-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
2 * AES_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cmac_final,
.setkey = cmac_setkey,
.descsize = sizeof(struct mac_desc_ctx),
}, {
.base.cra_name = "xcbc(aes)",
.base.cra_driver_name = "xcbc-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
2 * AES_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cmac_final,
.setkey = xcbc_setkey,
.descsize = sizeof(struct mac_desc_ctx),
}, {
.base.cra_name = "cbcmac(aes)",
.base.cra_driver_name = "cbcmac-aes-" MODE,
.base.cra_priority = PRIO,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
.base.cra_module = THIS_MODULE,
.digestsize = AES_BLOCK_SIZE,
.init = mac_init,
.update = mac_update,
.final = cbcmac_final,
.setkey = cbcmac_setkey,
.descsize = sizeof(struct mac_desc_ctx),
} };
static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
static void aes_exit(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
if (aes_simd_algs[i])
simd_skcipher_free(aes_simd_algs[i]);
crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
}
static int __init aes_init(void)
{
struct simd_skcipher_alg *simd;
const char *basename;
const char *algname;
const char *drvname;
int err;
int i;
err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
if (err)
return err;
err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
if (err)
goto unregister_ciphers;
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
continue;
algname = aes_algs[i].base.cra_name + 2;
drvname = aes_algs[i].base.cra_driver_name + 2;
basename = aes_algs[i].base.cra_driver_name;
simd = simd_skcipher_create_compat(algname, drvname, basename);
err = PTR_ERR(simd);
if (IS_ERR(simd))
goto unregister_simds;
aes_simd_algs[i] = simd;
}
return 0;
unregister_simds:
aes_exit();
return err;
unregister_ciphers:
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
return err;
}
#ifdef USE_V8_CRYPTO_EXTENSIONS
module_cpu_feature_match(AES, aes_init);
#else
module_init(aes_init);
EXPORT_SYMBOL(neon_aes_ecb_encrypt);
EXPORT_SYMBOL(neon_aes_cbc_encrypt);
#endif
module_exit(aes_exit);