linux-stable/drivers/gpu/drm/i915/display/intel_display_power.c
Matt Roper e30e6c7b82 drm/i915: Move MCHBAR registers to their own header
Registers that exist within the MCH BAR and are mirrored into the GPU's
MMIO space are a good candidate to separate out into their own header.

For reference, the mirror of the MCH BAR starts at the following
locations in the graphics MMIO space (the end of the MCHBAR range
differs slightly on each platform):

 * Pre-gen6:           0x10000
 * Gen6-Gen11 + RKL:  0x140000

v2:
 - Create separate patch to swtich a few register definitions to be
   relative to the MCHBAR mirror base.
 - Drop upper bound of MCHBAR mirror from commit message; there are too
   many different combinations between various platforms to list out,
   and the documentation is spotty for the older pre-gen6 platforms
   anyway.

Bspec: 134, 51771
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Suggested-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20220215061342.2055952-2-matthew.d.roper@intel.com
2022-02-16 12:29:47 -08:00

6546 lines
183 KiB
C

/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2019 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_irq.h"
#include "intel_cdclk.h"
#include "intel_combo_phy.h"
#include "intel_combo_phy_regs.h"
#include "intel_crt.h"
#include "intel_de.h"
#include "intel_display_power.h"
#include "intel_display_types.h"
#include "intel_dmc.h"
#include "intel_dpio_phy.h"
#include "intel_dpll.h"
#include "intel_hotplug.h"
#include "intel_mchbar_regs.h"
#include "intel_pch_refclk.h"
#include "intel_pcode.h"
#include "intel_pm.h"
#include "intel_pps.h"
#include "intel_snps_phy.h"
#include "intel_tc.h"
#include "intel_vga.h"
#include "vlv_sideband.h"
struct i915_power_well_ops {
/*
* Synchronize the well's hw state to match the current sw state, for
* example enable/disable it based on the current refcount. Called
* during driver init and resume time, possibly after first calling
* the enable/disable handlers.
*/
void (*sync_hw)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/*
* Enable the well and resources that depend on it (for example
* interrupts located on the well). Called after the 0->1 refcount
* transition.
*/
void (*enable)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/*
* Disable the well and resources that depend on it. Called after
* the 1->0 refcount transition.
*/
void (*disable)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
/* Returns the hw enabled state. */
bool (*is_enabled)(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well);
};
struct i915_power_well_regs {
i915_reg_t bios;
i915_reg_t driver;
i915_reg_t kvmr;
i915_reg_t debug;
};
/* Power well structure for haswell */
struct i915_power_well_desc {
const char *name;
bool always_on;
u64 domains;
/* unique identifier for this power well */
enum i915_power_well_id id;
/*
* Arbitraty data associated with this power well. Platform and power
* well specific.
*/
union {
struct {
/*
* request/status flag index in the PUNIT power well
* control/status registers.
*/
u8 idx;
} vlv;
struct {
enum dpio_phy phy;
} bxt;
struct {
const struct i915_power_well_regs *regs;
/*
* request/status flag index in the power well
* constrol/status registers.
*/
u8 idx;
/* Mask of pipes whose IRQ logic is backed by the pw */
u8 irq_pipe_mask;
/*
* Instead of waiting for the status bit to ack enables,
* just wait a specific amount of time and then consider
* the well enabled.
*/
u16 fixed_enable_delay;
/* The pw is backing the VGA functionality */
bool has_vga:1;
bool has_fuses:1;
/*
* The pw is for an ICL+ TypeC PHY port in
* Thunderbolt mode.
*/
bool is_tc_tbt:1;
} hsw;
};
const struct i915_power_well_ops *ops;
};
struct i915_power_well {
const struct i915_power_well_desc *desc;
/* power well enable/disable usage count */
int count;
/* cached hw enabled state */
bool hw_enabled;
};
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id);
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
switch (domain) {
case POWER_DOMAIN_DISPLAY_CORE:
return "DISPLAY_CORE";
case POWER_DOMAIN_PIPE_A:
return "PIPE_A";
case POWER_DOMAIN_PIPE_B:
return "PIPE_B";
case POWER_DOMAIN_PIPE_C:
return "PIPE_C";
case POWER_DOMAIN_PIPE_D:
return "PIPE_D";
case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
return "PIPE_A_PANEL_FITTER";
case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
return "PIPE_B_PANEL_FITTER";
case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
return "PIPE_C_PANEL_FITTER";
case POWER_DOMAIN_PIPE_D_PANEL_FITTER:
return "PIPE_D_PANEL_FITTER";
case POWER_DOMAIN_TRANSCODER_A:
return "TRANSCODER_A";
case POWER_DOMAIN_TRANSCODER_B:
return "TRANSCODER_B";
case POWER_DOMAIN_TRANSCODER_C:
return "TRANSCODER_C";
case POWER_DOMAIN_TRANSCODER_D:
return "TRANSCODER_D";
case POWER_DOMAIN_TRANSCODER_EDP:
return "TRANSCODER_EDP";
case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
return "TRANSCODER_VDSC_PW2";
case POWER_DOMAIN_TRANSCODER_DSI_A:
return "TRANSCODER_DSI_A";
case POWER_DOMAIN_TRANSCODER_DSI_C:
return "TRANSCODER_DSI_C";
case POWER_DOMAIN_PORT_DDI_A_LANES:
return "PORT_DDI_A_LANES";
case POWER_DOMAIN_PORT_DDI_B_LANES:
return "PORT_DDI_B_LANES";
case POWER_DOMAIN_PORT_DDI_C_LANES:
return "PORT_DDI_C_LANES";
case POWER_DOMAIN_PORT_DDI_D_LANES:
return "PORT_DDI_D_LANES";
case POWER_DOMAIN_PORT_DDI_E_LANES:
return "PORT_DDI_E_LANES";
case POWER_DOMAIN_PORT_DDI_F_LANES:
return "PORT_DDI_F_LANES";
case POWER_DOMAIN_PORT_DDI_G_LANES:
return "PORT_DDI_G_LANES";
case POWER_DOMAIN_PORT_DDI_H_LANES:
return "PORT_DDI_H_LANES";
case POWER_DOMAIN_PORT_DDI_I_LANES:
return "PORT_DDI_I_LANES";
case POWER_DOMAIN_PORT_DDI_A_IO:
return "PORT_DDI_A_IO";
case POWER_DOMAIN_PORT_DDI_B_IO:
return "PORT_DDI_B_IO";
case POWER_DOMAIN_PORT_DDI_C_IO:
return "PORT_DDI_C_IO";
case POWER_DOMAIN_PORT_DDI_D_IO:
return "PORT_DDI_D_IO";
case POWER_DOMAIN_PORT_DDI_E_IO:
return "PORT_DDI_E_IO";
case POWER_DOMAIN_PORT_DDI_F_IO:
return "PORT_DDI_F_IO";
case POWER_DOMAIN_PORT_DDI_G_IO:
return "PORT_DDI_G_IO";
case POWER_DOMAIN_PORT_DDI_H_IO:
return "PORT_DDI_H_IO";
case POWER_DOMAIN_PORT_DDI_I_IO:
return "PORT_DDI_I_IO";
case POWER_DOMAIN_PORT_DSI:
return "PORT_DSI";
case POWER_DOMAIN_PORT_CRT:
return "PORT_CRT";
case POWER_DOMAIN_PORT_OTHER:
return "PORT_OTHER";
case POWER_DOMAIN_VGA:
return "VGA";
case POWER_DOMAIN_AUDIO_MMIO:
return "AUDIO_MMIO";
case POWER_DOMAIN_AUDIO_PLAYBACK:
return "AUDIO_PLAYBACK";
case POWER_DOMAIN_AUX_A:
return "AUX_A";
case POWER_DOMAIN_AUX_B:
return "AUX_B";
case POWER_DOMAIN_AUX_C:
return "AUX_C";
case POWER_DOMAIN_AUX_D:
return "AUX_D";
case POWER_DOMAIN_AUX_E:
return "AUX_E";
case POWER_DOMAIN_AUX_F:
return "AUX_F";
case POWER_DOMAIN_AUX_G:
return "AUX_G";
case POWER_DOMAIN_AUX_H:
return "AUX_H";
case POWER_DOMAIN_AUX_I:
return "AUX_I";
case POWER_DOMAIN_AUX_IO_A:
return "AUX_IO_A";
case POWER_DOMAIN_AUX_C_TBT:
return "AUX_C_TBT";
case POWER_DOMAIN_AUX_D_TBT:
return "AUX_D_TBT";
case POWER_DOMAIN_AUX_E_TBT:
return "AUX_E_TBT";
case POWER_DOMAIN_AUX_F_TBT:
return "AUX_F_TBT";
case POWER_DOMAIN_AUX_G_TBT:
return "AUX_G_TBT";
case POWER_DOMAIN_AUX_H_TBT:
return "AUX_H_TBT";
case POWER_DOMAIN_AUX_I_TBT:
return "AUX_I_TBT";
case POWER_DOMAIN_GMBUS:
return "GMBUS";
case POWER_DOMAIN_INIT:
return "INIT";
case POWER_DOMAIN_MODESET:
return "MODESET";
case POWER_DOMAIN_GT_IRQ:
return "GT_IRQ";
case POWER_DOMAIN_DC_OFF:
return "DC_OFF";
case POWER_DOMAIN_TC_COLD_OFF:
return "TC_COLD_OFF";
default:
MISSING_CASE(domain);
return "?";
}
}
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
drm_dbg_kms(&dev_priv->drm, "enabling %s\n", power_well->desc->name);
power_well->desc->ops->enable(dev_priv, power_well);
power_well->hw_enabled = true;
}
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
drm_dbg_kms(&dev_priv->drm, "disabling %s\n", power_well->desc->name);
power_well->hw_enabled = false;
power_well->desc->ops->disable(dev_priv, power_well);
}
static void intel_power_well_get(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (!power_well->count++)
intel_power_well_enable(dev_priv, power_well);
}
static void intel_power_well_put(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
drm_WARN(&dev_priv->drm, !power_well->count,
"Use count on power well %s is already zero",
power_well->desc->name);
if (!--power_well->count)
intel_power_well_disable(dev_priv, power_well);
}
/**
* __intel_display_power_is_enabled - unlocked check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This is the unlocked version of intel_display_power_is_enabled() and should
* only be used from error capture and recovery code where deadlocks are
* possible.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_well *power_well;
bool is_enabled;
if (dev_priv->runtime_pm.suspended)
return false;
is_enabled = true;
for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain)) {
if (power_well->desc->always_on)
continue;
if (!power_well->hw_enabled) {
is_enabled = false;
break;
}
}
return is_enabled;
}
/**
* intel_display_power_is_enabled - check for a power domain
* @dev_priv: i915 device instance
* @domain: power domain to check
*
* This function can be used to check the hw power domain state. It is mostly
* used in hardware state readout functions. Everywhere else code should rely
* upon explicit power domain reference counting to ensure that the hardware
* block is powered up before accessing it.
*
* Callers must hold the relevant modesetting locks to ensure that concurrent
* threads can't disable the power well while the caller tries to read a few
* registers.
*
* Returns:
* True when the power domain is enabled, false otherwise.
*/
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
bool ret;
power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
ret = __intel_display_power_is_enabled(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return ret;
}
/*
* Starting with Haswell, we have a "Power Down Well" that can be turned off
* when not needed anymore. We have 4 registers that can request the power well
* to be enabled, and it will only be disabled if none of the registers is
* requesting it to be enabled.
*/
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask, bool has_vga)
{
if (has_vga)
intel_vga_reset_io_mem(dev_priv);
if (irq_pipe_mask)
gen8_irq_power_well_post_enable(dev_priv, irq_pipe_mask);
}
static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv,
u8 irq_pipe_mask)
{
if (irq_pipe_mask)
gen8_irq_power_well_pre_disable(dev_priv, irq_pipe_mask);
}
#define ICL_AUX_PW_TO_CH(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_A + AUX_CH_A)
#define ICL_TBT_AUX_PW_TO_CH(pw_idx) \
((pw_idx) - ICL_PW_CTL_IDX_AUX_TBT1 + AUX_CH_C)
static enum aux_ch icl_aux_pw_to_ch(const struct i915_power_well *power_well)
{
int pw_idx = power_well->desc->hsw.idx;
return power_well->desc->hsw.is_tc_tbt ? ICL_TBT_AUX_PW_TO_CH(pw_idx) :
ICL_AUX_PW_TO_CH(pw_idx);
}
static struct intel_digital_port *
aux_ch_to_digital_port(struct drm_i915_private *dev_priv,
enum aux_ch aux_ch)
{
struct intel_digital_port *dig_port = NULL;
struct intel_encoder *encoder;
for_each_intel_encoder(&dev_priv->drm, encoder) {
/* We'll check the MST primary port */
if (encoder->type == INTEL_OUTPUT_DP_MST)
continue;
dig_port = enc_to_dig_port(encoder);
if (!dig_port)
continue;
if (dig_port->aux_ch != aux_ch) {
dig_port = NULL;
continue;
}
break;
}
return dig_port;
}
static enum phy icl_aux_pw_to_phy(struct drm_i915_private *i915,
const struct i915_power_well *power_well)
{
enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well);
struct intel_digital_port *dig_port = aux_ch_to_digital_port(i915, aux_ch);
return intel_port_to_phy(i915, dig_port->base.port);
}
static void hsw_wait_for_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool timeout_expected)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
int enable_delay = power_well->desc->hsw.fixed_enable_delay;
/*
* For some power wells we're not supposed to watch the status bit for
* an ack, but rather just wait a fixed amount of time and then
* proceed. This is only used on DG2.
*/
if (IS_DG2(dev_priv) && enable_delay) {
usleep_range(enable_delay, 2 * enable_delay);
return;
}
/* Timeout for PW1:10 us, AUX:not specified, other PWs:20 us. */
if (intel_de_wait_for_set(dev_priv, regs->driver,
HSW_PWR_WELL_CTL_STATE(pw_idx), 1)) {
drm_dbg_kms(&dev_priv->drm, "%s power well enable timeout\n",
power_well->desc->name);
drm_WARN_ON(&dev_priv->drm, !timeout_expected);
}
}
static u32 hsw_power_well_requesters(struct drm_i915_private *dev_priv,
const struct i915_power_well_regs *regs,
int pw_idx)
{
u32 req_mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 ret;
ret = intel_de_read(dev_priv, regs->bios) & req_mask ? 1 : 0;
ret |= intel_de_read(dev_priv, regs->driver) & req_mask ? 2 : 0;
if (regs->kvmr.reg)
ret |= intel_de_read(dev_priv, regs->kvmr) & req_mask ? 4 : 0;
ret |= intel_de_read(dev_priv, regs->debug) & req_mask ? 8 : 0;
return ret;
}
static void hsw_wait_for_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
bool disabled;
u32 reqs;
/*
* Bspec doesn't require waiting for PWs to get disabled, but still do
* this for paranoia. The known cases where a PW will be forced on:
* - a KVMR request on any power well via the KVMR request register
* - a DMC request on PW1 and MISC_IO power wells via the BIOS and
* DEBUG request registers
* Skip the wait in case any of the request bits are set and print a
* diagnostic message.
*/
wait_for((disabled = !(intel_de_read(dev_priv, regs->driver) &
HSW_PWR_WELL_CTL_STATE(pw_idx))) ||
(reqs = hsw_power_well_requesters(dev_priv, regs, pw_idx)), 1);
if (disabled)
return;
drm_dbg_kms(&dev_priv->drm,
"%s forced on (bios:%d driver:%d kvmr:%d debug:%d)\n",
power_well->desc->name,
!!(reqs & 1), !!(reqs & 2), !!(reqs & 4), !!(reqs & 8));
}
static void gen9_wait_for_power_well_fuses(struct drm_i915_private *dev_priv,
enum skl_power_gate pg)
{
/* Timeout 5us for PG#0, for other PGs 1us */
drm_WARN_ON(&dev_priv->drm,
intel_de_wait_for_set(dev_priv, SKL_FUSE_STATUS,
SKL_FUSE_PG_DIST_STATUS(pg), 1));
}
static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
u32 val;
if (power_well->desc->hsw.has_fuses) {
enum skl_power_gate pg;
pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) :
SKL_PW_CTL_IDX_TO_PG(pw_idx);
/* Wa_16013190616:adlp */
if (IS_ALDERLAKE_P(dev_priv) && pg == SKL_PG1)
intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0, DISABLE_FLR_SRC);
/*
* For PW1 we have to wait both for the PW0/PG0 fuse state
* before enabling the power well and PW1/PG1's own fuse
* state after the enabling. For all other power wells with
* fuses we only have to wait for that PW/PG's fuse state
* after the enabling.
*/
if (pg == SKL_PG1)
gen9_wait_for_power_well_fuses(dev_priv, SKL_PG0);
}
val = intel_de_read(dev_priv, regs->driver);
intel_de_write(dev_priv, regs->driver,
val | HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_enable(dev_priv, power_well, false);
if (power_well->desc->hsw.has_fuses) {
enum skl_power_gate pg;
pg = DISPLAY_VER(dev_priv) >= 11 ? ICL_PW_CTL_IDX_TO_PG(pw_idx) :
SKL_PW_CTL_IDX_TO_PG(pw_idx);
gen9_wait_for_power_well_fuses(dev_priv, pg);
}
hsw_power_well_post_enable(dev_priv,
power_well->desc->hsw.irq_pipe_mask,
power_well->desc->hsw.has_vga);
}
static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
u32 val;
hsw_power_well_pre_disable(dev_priv,
power_well->desc->hsw.irq_pipe_mask);
val = intel_de_read(dev_priv, regs->driver);
intel_de_write(dev_priv, regs->driver,
val & ~HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
static void
icl_combo_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
u32 val;
drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv));
val = intel_de_read(dev_priv, regs->driver);
intel_de_write(dev_priv, regs->driver,
val | HSW_PWR_WELL_CTL_REQ(pw_idx));
if (DISPLAY_VER(dev_priv) < 12) {
val = intel_de_read(dev_priv, ICL_PORT_CL_DW12(phy));
intel_de_write(dev_priv, ICL_PORT_CL_DW12(phy),
val | ICL_LANE_ENABLE_AUX);
}
hsw_wait_for_power_well_enable(dev_priv, power_well, false);
/* Display WA #1178: icl */
if (pw_idx >= ICL_PW_CTL_IDX_AUX_A && pw_idx <= ICL_PW_CTL_IDX_AUX_B &&
!intel_bios_is_port_edp(dev_priv, (enum port)phy)) {
val = intel_de_read(dev_priv, ICL_AUX_ANAOVRD1(pw_idx));
val |= ICL_AUX_ANAOVRD1_ENABLE | ICL_AUX_ANAOVRD1_LDO_BYPASS;
intel_de_write(dev_priv, ICL_AUX_ANAOVRD1(pw_idx), val);
}
}
static void
icl_combo_phy_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
u32 val;
drm_WARN_ON(&dev_priv->drm, !IS_ICELAKE(dev_priv));
val = intel_de_read(dev_priv, ICL_PORT_CL_DW12(phy));
intel_de_write(dev_priv, ICL_PORT_CL_DW12(phy),
val & ~ICL_LANE_ENABLE_AUX);
val = intel_de_read(dev_priv, regs->driver);
intel_de_write(dev_priv, regs->driver,
val & ~HSW_PWR_WELL_CTL_REQ(pw_idx));
hsw_wait_for_power_well_disable(dev_priv, power_well);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static u64 async_put_domains_mask(struct i915_power_domains *power_domains);
static int power_well_async_ref_count(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int refs = hweight64(power_well->desc->domains &
async_put_domains_mask(&dev_priv->power_domains));
drm_WARN_ON(&dev_priv->drm, refs > power_well->count);
return refs;
}
static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
struct intel_digital_port *dig_port)
{
/* Bypass the check if all references are released asynchronously */
if (power_well_async_ref_count(dev_priv, power_well) ==
power_well->count)
return;
if (drm_WARN_ON(&dev_priv->drm, !dig_port))
return;
if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port))
return;
drm_WARN_ON(&dev_priv->drm, !intel_tc_port_ref_held(dig_port));
}
#else
static void icl_tc_port_assert_ref_held(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
struct intel_digital_port *dig_port)
{
}
#endif
#define TGL_AUX_PW_TO_TC_PORT(pw_idx) ((pw_idx) - TGL_PW_CTL_IDX_AUX_TC1)
static void icl_tc_cold_exit(struct drm_i915_private *i915)
{
int ret, tries = 0;
while (1) {
ret = snb_pcode_write_timeout(i915, ICL_PCODE_EXIT_TCCOLD, 0,
250, 1);
if (ret != -EAGAIN || ++tries == 3)
break;
msleep(1);
}
/* Spec states that TC cold exit can take up to 1ms to complete */
if (!ret)
msleep(1);
/* TODO: turn failure into a error as soon i915 CI updates ICL IFWI */
drm_dbg_kms(&i915->drm, "TC cold block %s\n", ret ? "failed" :
"succeeded");
}
static void
icl_tc_phy_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well);
struct intel_digital_port *dig_port = aux_ch_to_digital_port(dev_priv, aux_ch);
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
bool is_tbt = power_well->desc->hsw.is_tc_tbt;
bool timeout_expected;
u32 val;
icl_tc_port_assert_ref_held(dev_priv, power_well, dig_port);
val = intel_de_read(dev_priv, DP_AUX_CH_CTL(aux_ch));
val &= ~DP_AUX_CH_CTL_TBT_IO;
if (is_tbt)
val |= DP_AUX_CH_CTL_TBT_IO;
intel_de_write(dev_priv, DP_AUX_CH_CTL(aux_ch), val);
val = intel_de_read(dev_priv, regs->driver);
intel_de_write(dev_priv, regs->driver,
val | HSW_PWR_WELL_CTL_REQ(power_well->desc->hsw.idx));
/*
* An AUX timeout is expected if the TBT DP tunnel is down,
* or need to enable AUX on a legacy TypeC port as part of the TC-cold
* exit sequence.
*/
timeout_expected = is_tbt || intel_tc_cold_requires_aux_pw(dig_port);
if (DISPLAY_VER(dev_priv) == 11 && intel_tc_cold_requires_aux_pw(dig_port))
icl_tc_cold_exit(dev_priv);
hsw_wait_for_power_well_enable(dev_priv, power_well, timeout_expected);
if (DISPLAY_VER(dev_priv) >= 12 && !is_tbt) {
enum tc_port tc_port;
tc_port = TGL_AUX_PW_TO_TC_PORT(power_well->desc->hsw.idx);
intel_de_write(dev_priv, HIP_INDEX_REG(tc_port),
HIP_INDEX_VAL(tc_port, 0x2));
if (intel_de_wait_for_set(dev_priv, DKL_CMN_UC_DW_27(tc_port),
DKL_CMN_UC_DW27_UC_HEALTH, 1))
drm_warn(&dev_priv->drm,
"Timeout waiting TC uC health\n");
}
}
static void
icl_tc_phy_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum aux_ch aux_ch = icl_aux_pw_to_ch(power_well);
struct intel_digital_port *dig_port = aux_ch_to_digital_port(dev_priv, aux_ch);
icl_tc_port_assert_ref_held(dev_priv, power_well, dig_port);
hsw_power_well_disable(dev_priv, power_well);
}
static void
icl_aux_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
if (intel_phy_is_tc(dev_priv, phy))
return icl_tc_phy_aux_power_well_enable(dev_priv, power_well);
else if (IS_ICELAKE(dev_priv))
return icl_combo_phy_aux_power_well_enable(dev_priv,
power_well);
else
return hsw_power_well_enable(dev_priv, power_well);
}
static void
icl_aux_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum phy phy = icl_aux_pw_to_phy(dev_priv, power_well);
if (intel_phy_is_tc(dev_priv, phy))
return icl_tc_phy_aux_power_well_disable(dev_priv, power_well);
else if (IS_ICELAKE(dev_priv))
return icl_combo_phy_aux_power_well_disable(dev_priv,
power_well);
else
return hsw_power_well_disable(dev_priv, power_well);
}
/*
* We should only use the power well if we explicitly asked the hardware to
* enable it, so check if it's enabled and also check if we've requested it to
* be enabled.
*/
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
enum i915_power_well_id id = power_well->desc->id;
int pw_idx = power_well->desc->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx) |
HSW_PWR_WELL_CTL_STATE(pw_idx);
u32 val;
val = intel_de_read(dev_priv, regs->driver);
/*
* On GEN9 big core due to a DMC bug the driver's request bits for PW1
* and the MISC_IO PW will be not restored, so check instead for the
* BIOS's own request bits, which are forced-on for these power wells
* when exiting DC5/6.
*/
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv) &&
(id == SKL_DISP_PW_1 || id == SKL_DISP_PW_MISC_IO))
val |= intel_de_read(dev_priv, regs->bios);
return (val & mask) == mask;
}
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC9),
"DC9 already programmed to be enabled.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled to enable DC9.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, HSW_PWR_WELL_CTL2) &
HSW_PWR_WELL_CTL_REQ(SKL_PW_CTL_IDX_PW_2),
"Power well 2 on.\n");
drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
/*
* TODO: check for the following to verify the conditions to enter DC9
* state are satisfied:
* 1] Check relevant display engine registers to verify if mode set
* disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm, intel_irqs_enabled(dev_priv),
"Interrupts not disabled yet.\n");
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5,
"DC5 still not disabled.\n");
/*
* TODO: check for the following to verify DC9 state was indeed
* entered before programming to disable it:
* 1] Check relevant display engine registers to verify if mode
* set disable sequence was followed.
* 2] Check if display uninitialize sequence is initialized.
*/
}
static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
int rewrites = 0;
int rereads = 0;
u32 v;
intel_de_write(dev_priv, DC_STATE_EN, state);
/* It has been observed that disabling the dc6 state sometimes
* doesn't stick and dmc keeps returning old value. Make sure
* the write really sticks enough times and also force rewrite until
* we are confident that state is exactly what we want.
*/
do {
v = intel_de_read(dev_priv, DC_STATE_EN);
if (v != state) {
intel_de_write(dev_priv, DC_STATE_EN, state);
rewrites++;
rereads = 0;
} else if (rereads++ > 5) {
break;
}
} while (rewrites < 100);
if (v != state)
drm_err(&dev_priv->drm,
"Writing dc state to 0x%x failed, now 0x%x\n",
state, v);
/* Most of the times we need one retry, avoid spam */
if (rewrites > 1)
drm_dbg_kms(&dev_priv->drm,
"Rewrote dc state to 0x%x %d times\n",
state, rewrites);
}
static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
{
u32 mask;
mask = DC_STATE_EN_UPTO_DC5;
if (DISPLAY_VER(dev_priv) >= 12)
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6
| DC_STATE_EN_DC9;
else if (DISPLAY_VER(dev_priv) == 11)
mask |= DC_STATE_EN_UPTO_DC6 | DC_STATE_EN_DC9;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
mask |= DC_STATE_EN_DC9;
else
mask |= DC_STATE_EN_UPTO_DC6;
return mask;
}
static void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
{
u32 val;
if (!HAS_DISPLAY(dev_priv))
return;
val = intel_de_read(dev_priv, DC_STATE_EN) & gen9_dc_mask(dev_priv);
drm_dbg_kms(&dev_priv->drm,
"Resetting DC state tracking from %02x to %02x\n",
dev_priv->dmc.dc_state, val);
dev_priv->dmc.dc_state = val;
}
/**
* gen9_set_dc_state - set target display C power state
* @dev_priv: i915 device instance
* @state: target DC power state
* - DC_STATE_DISABLE
* - DC_STATE_EN_UPTO_DC5
* - DC_STATE_EN_UPTO_DC6
* - DC_STATE_EN_DC9
*
* Signal to DMC firmware/HW the target DC power state passed in @state.
* DMC/HW can turn off individual display clocks and power rails when entering
* a deeper DC power state (higher in number) and turns these back when exiting
* that state to a shallower power state (lower in number). The HW will decide
* when to actually enter a given state on an on-demand basis, for instance
* depending on the active state of display pipes. The state of display
* registers backed by affected power rails are saved/restored as needed.
*
* Based on the above enabling a deeper DC power state is asynchronous wrt.
* enabling it. Disabling a deeper power state is synchronous: for instance
* setting %DC_STATE_DISABLE won't complete until all HW resources are turned
* back on and register state is restored. This is guaranteed by the MMIO write
* to DC_STATE_EN blocking until the state is restored.
*/
static void gen9_set_dc_state(struct drm_i915_private *dev_priv, u32 state)
{
u32 val;
u32 mask;
if (!HAS_DISPLAY(dev_priv))
return;
if (drm_WARN_ON_ONCE(&dev_priv->drm,
state & ~dev_priv->dmc.allowed_dc_mask))
state &= dev_priv->dmc.allowed_dc_mask;
val = intel_de_read(dev_priv, DC_STATE_EN);
mask = gen9_dc_mask(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Setting DC state from %02x to %02x\n",
val & mask, state);
/* Check if DMC is ignoring our DC state requests */
if ((val & mask) != dev_priv->dmc.dc_state)
drm_err(&dev_priv->drm, "DC state mismatch (0x%x -> 0x%x)\n",
dev_priv->dmc.dc_state, val & mask);
val &= ~mask;
val |= state;
gen9_write_dc_state(dev_priv, val);
dev_priv->dmc.dc_state = val & mask;
}
static u32
sanitize_target_dc_state(struct drm_i915_private *dev_priv,
u32 target_dc_state)
{
static const u32 states[] = {
DC_STATE_EN_UPTO_DC6,
DC_STATE_EN_UPTO_DC5,
DC_STATE_EN_DC3CO,
DC_STATE_DISABLE,
};
int i;
for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
if (target_dc_state != states[i])
continue;
if (dev_priv->dmc.allowed_dc_mask & target_dc_state)
break;
target_dc_state = states[i + 1];
}
return target_dc_state;
}
static void tgl_enable_dc3co(struct drm_i915_private *dev_priv)
{
drm_dbg_kms(&dev_priv->drm, "Enabling DC3CO\n");
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC3CO);
}
static void tgl_disable_dc3co(struct drm_i915_private *dev_priv)
{
u32 val;
drm_dbg_kms(&dev_priv->drm, "Disabling DC3CO\n");
val = intel_de_read(dev_priv, DC_STATE_EN);
val &= ~DC_STATE_DC3CO_STATUS;
intel_de_write(dev_priv, DC_STATE_EN, val);
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/*
* Delay of 200us DC3CO Exit time B.Spec 49196
*/
usleep_range(200, 210);
}
static void bxt_enable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc9(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC9\n");
/*
* Power sequencer reset is not needed on
* platforms with South Display Engine on PCH,
* because PPS registers are always on.
*/
if (!HAS_PCH_SPLIT(dev_priv))
intel_pps_reset_all(dev_priv);
gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}
static void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
assert_can_disable_dc9(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Disabling DC9\n");
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
intel_pps_unlock_regs_wa(dev_priv);
}
static void assert_dmc_loaded(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm,
!intel_de_read(dev_priv,
DMC_PROGRAM(dev_priv->dmc.dmc_info[DMC_FW_MAIN].start_mmioaddr, 0)),
"DMC program storage start is NULL\n");
drm_WARN_ONCE(&dev_priv->drm, !intel_de_read(dev_priv, DMC_SSP_BASE),
"DMC SSP Base Not fine\n");
drm_WARN_ONCE(&dev_priv->drm, !intel_de_read(dev_priv, DMC_HTP_SKL),
"DMC HTP Not fine\n");
}
static struct i915_power_well *
lookup_power_well(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
for_each_power_well(dev_priv, power_well)
if (power_well->desc->id == power_well_id)
return power_well;
/*
* It's not feasible to add error checking code to the callers since
* this condition really shouldn't happen and it doesn't even make sense
* to abort things like display initialization sequences. Just return
* the first power well and hope the WARN gets reported so we can fix
* our driver.
*/
drm_WARN(&dev_priv->drm, 1,
"Power well %d not defined for this platform\n",
power_well_id);
return &dev_priv->power_domains.power_wells[0];
}
/**
* intel_display_power_set_target_dc_state - Set target dc state.
* @dev_priv: i915 device
* @state: state which needs to be set as target_dc_state.
*
* This function set the "DC off" power well target_dc_state,
* based upon this target_dc_stste, "DC off" power well will
* enable desired DC state.
*/
void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
u32 state)
{
struct i915_power_well *power_well;
bool dc_off_enabled;
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
if (drm_WARN_ON(&dev_priv->drm, !power_well))
goto unlock;
state = sanitize_target_dc_state(dev_priv, state);
if (state == dev_priv->dmc.target_dc_state)
goto unlock;
dc_off_enabled = power_well->desc->ops->is_enabled(dev_priv,
power_well);
/*
* If DC off power well is disabled, need to enable and disable the
* DC off power well to effect target DC state.
*/
if (!dc_off_enabled)
power_well->desc->ops->enable(dev_priv, power_well);
dev_priv->dmc.target_dc_state = state;
if (!dc_off_enabled)
power_well->desc->ops->disable(dev_priv, power_well);
unlock:
mutex_unlock(&power_domains->lock);
}
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
{
enum i915_power_well_id high_pg;
/* Power wells at this level and above must be disabled for DC5 entry */
if (DISPLAY_VER(dev_priv) == 12)
high_pg = ICL_DISP_PW_3;
else
high_pg = SKL_DISP_PW_2;
drm_WARN_ONCE(&dev_priv->drm,
intel_display_power_well_is_enabled(dev_priv, high_pg),
"Power wells above platform's DC5 limit still enabled.\n");
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC5),
"DC5 already programmed to be enabled.\n");
assert_rpm_wakelock_held(&dev_priv->runtime_pm);
assert_dmc_loaded(dev_priv);
}
static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc5(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC5\n");
/* Wa Display #1183: skl,kbl,cfl */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
intel_de_write(dev_priv, GEN8_CHICKEN_DCPR_1,
intel_de_read(dev_priv, GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
}
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
{
drm_WARN_ONCE(&dev_priv->drm,
intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Backlight is not disabled.\n");
drm_WARN_ONCE(&dev_priv->drm,
(intel_de_read(dev_priv, DC_STATE_EN) &
DC_STATE_EN_UPTO_DC6),
"DC6 already programmed to be enabled.\n");
assert_dmc_loaded(dev_priv);
}
static void skl_enable_dc6(struct drm_i915_private *dev_priv)
{
assert_can_enable_dc6(dev_priv);
drm_dbg_kms(&dev_priv->drm, "Enabling DC6\n");
/* Wa Display #1183: skl,kbl,cfl */
if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv))
intel_de_write(dev_priv, GEN8_CHICKEN_DCPR_1,
intel_de_read(dev_priv, GEN8_CHICKEN_DCPR_1) | SKL_SELECT_ALTERNATE_DC_EXIT);
gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
}
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
const struct i915_power_well_regs *regs = power_well->desc->hsw.regs;
int pw_idx = power_well->desc->hsw.idx;
u32 mask = HSW_PWR_WELL_CTL_REQ(pw_idx);
u32 bios_req = intel_de_read(dev_priv, regs->bios);
/* Take over the request bit if set by BIOS. */
if (bios_req & mask) {
u32 drv_req = intel_de_read(dev_priv, regs->driver);
if (!(drv_req & mask))
intel_de_write(dev_priv, regs->driver, drv_req | mask);
intel_de_write(dev_priv, regs->bios, bios_req & ~mask);
}
}
static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_ddi_phy_init(dev_priv, power_well->desc->bxt.phy);
}
static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
bxt_ddi_phy_uninit(dev_priv, power_well->desc->bxt.phy);
}
static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return bxt_ddi_phy_is_enabled(dev_priv, power_well->desc->bxt.phy);
}
static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
{
struct i915_power_well *power_well;
power_well = lookup_power_well(dev_priv, BXT_DISP_PW_DPIO_CMN_A);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy);
power_well = lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv, power_well->desc->bxt.phy);
if (IS_GEMINILAKE(dev_priv)) {
power_well = lookup_power_well(dev_priv,
GLK_DISP_PW_DPIO_CMN_C);
if (power_well->count > 0)
bxt_ddi_phy_verify_state(dev_priv,
power_well->desc->bxt.phy);
}
}
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return ((intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_DC3CO) == 0 &&
(intel_de_read(dev_priv, DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0);
}
static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
{
u8 hw_enabled_dbuf_slices = intel_enabled_dbuf_slices_mask(dev_priv);
u8 enabled_dbuf_slices = dev_priv->dbuf.enabled_slices;
drm_WARN(&dev_priv->drm,
hw_enabled_dbuf_slices != enabled_dbuf_slices,
"Unexpected DBuf power power state (0x%08x, expected 0x%08x)\n",
hw_enabled_dbuf_slices,
enabled_dbuf_slices);
}
static void gen9_disable_dc_states(struct drm_i915_private *dev_priv)
{
struct intel_cdclk_config cdclk_config = {};
if (dev_priv->dmc.target_dc_state == DC_STATE_EN_DC3CO) {
tgl_disable_dc3co(dev_priv);
return;
}
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
if (!HAS_DISPLAY(dev_priv))
return;
intel_cdclk_get_cdclk(dev_priv, &cdclk_config);
/* Can't read out voltage_level so can't use intel_cdclk_changed() */
drm_WARN_ON(&dev_priv->drm,
intel_cdclk_needs_modeset(&dev_priv->cdclk.hw,
&cdclk_config));
gen9_assert_dbuf_enabled(dev_priv);
if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
bxt_verify_ddi_phy_power_wells(dev_priv);
if (DISPLAY_VER(dev_priv) >= 11)
/*
* DMC retains HW context only for port A, the other combo
* PHY's HW context for port B is lost after DC transitions,
* so we need to restore it manually.
*/
intel_combo_phy_init(dev_priv);
}
static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
gen9_disable_dc_states(dev_priv);
}
static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (!intel_dmc_has_payload(dev_priv))
return;
switch (dev_priv->dmc.target_dc_state) {
case DC_STATE_EN_DC3CO:
tgl_enable_dc3co(dev_priv);
break;
case DC_STATE_EN_UPTO_DC6:
skl_enable_dc6(dev_priv);
break;
case DC_STATE_EN_UPTO_DC5:
gen9_enable_dc5(dev_priv);
break;
}
}
static void i9xx_power_well_sync_hw_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
}
static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return true;
}
static void i830_pipes_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if ((intel_de_read(dev_priv, PIPECONF(PIPE_A)) & PIPECONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_A);
if ((intel_de_read(dev_priv, PIPECONF(PIPE_B)) & PIPECONF_ENABLE) == 0)
i830_enable_pipe(dev_priv, PIPE_B);
}
static void i830_pipes_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
i830_disable_pipe(dev_priv, PIPE_B);
i830_disable_pipe(dev_priv, PIPE_A);
}
static bool i830_pipes_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
return intel_de_read(dev_priv, PIPECONF(PIPE_A)) & PIPECONF_ENABLE &&
intel_de_read(dev_priv, PIPECONF(PIPE_B)) & PIPECONF_ENABLE;
}
static void i830_pipes_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
if (power_well->count > 0)
i830_pipes_power_well_enable(dev_priv, power_well);
else
i830_pipes_power_well_disable(dev_priv, power_well);
}
static void vlv_set_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well, bool enable)
{
int pw_idx = power_well->desc->vlv.idx;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
state = enable ? PUNIT_PWRGT_PWR_ON(pw_idx) :
PUNIT_PWRGT_PWR_GATE(pw_idx);
vlv_punit_get(dev_priv);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
ctrl &= ~mask;
ctrl |= state;
vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
if (wait_for(COND, 100))
drm_err(&dev_priv->drm,
"timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
#undef COND
out:
vlv_punit_put(dev_priv);
}
static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
}
static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, false);
}
static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
int pw_idx = power_well->desc->vlv.idx;
bool enabled = false;
u32 mask;
u32 state;
u32 ctrl;
mask = PUNIT_PWRGT_MASK(pw_idx);
ctrl = PUNIT_PWRGT_PWR_ON(pw_idx);
vlv_punit_get(dev_priv);
state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
drm_WARN_ON(&dev_priv->drm, state != PUNIT_PWRGT_PWR_ON(pw_idx) &&
state != PUNIT_PWRGT_PWR_GATE(pw_idx));
if (state == ctrl)
enabled = true;
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
drm_WARN_ON(&dev_priv->drm, ctrl != state);
vlv_punit_put(dev_priv);
return enabled;
}
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
u32 val;
/*
* On driver load, a pipe may be active and driving a DSI display.
* Preserve DPOUNIT_CLOCK_GATE_DISABLE to avoid the pipe getting stuck
* (and never recovering) in this case. intel_dsi_post_disable() will
* clear it when we turn off the display.
*/
val = intel_de_read(dev_priv, DSPCLK_GATE_D);
val &= DPOUNIT_CLOCK_GATE_DISABLE;
val |= VRHUNIT_CLOCK_GATE_DISABLE;
intel_de_write(dev_priv, DSPCLK_GATE_D, val);
/*
* Disable trickle feed and enable pnd deadline calculation
*/
intel_de_write(dev_priv, MI_ARB_VLV,
MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
intel_de_write(dev_priv, CBR1_VLV, 0);
drm_WARN_ON(&dev_priv->drm, RUNTIME_INFO(dev_priv)->rawclk_freq == 0);
intel_de_write(dev_priv, RAWCLK_FREQ_VLV,
DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq,
1000));
}
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
enum pipe pipe;
/*
* Enable the CRI clock source so we can get at the
* display and the reference clock for VGA
* hotplug / manual detection. Supposedly DSI also
* needs the ref clock up and running.
*
* CHV DPLL B/C have some issues if VGA mode is enabled.
*/
for_each_pipe(dev_priv, pipe) {
u32 val = intel_de_read(dev_priv, DPLL(pipe));
val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
intel_de_write(dev_priv, DPLL(pipe), val);
}
vlv_init_display_clock_gating(dev_priv);
spin_lock_irq(&dev_priv->irq_lock);
valleyview_enable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/*
* During driver initialization/resume we can avoid restoring the
* part of the HW/SW state that will be inited anyway explicitly.
*/
if (dev_priv->power_domains.initializing)
return;
intel_hpd_init(dev_priv);
intel_hpd_poll_disable(dev_priv);
/* Re-enable the ADPA, if we have one */
for_each_intel_encoder(&dev_priv->drm, encoder) {
if (encoder->type == INTEL_OUTPUT_ANALOG)
intel_crt_reset(&encoder->base);
}
intel_vga_redisable_power_on(dev_priv);
intel_pps_unlock_regs_wa(dev_priv);
}
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
spin_lock_irq(&dev_priv->irq_lock);
valleyview_disable_display_irqs(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
/* make sure we're done processing display irqs */
intel_synchronize_irq(dev_priv);
intel_pps_reset_all(dev_priv);
/* Prevent us from re-enabling polling on accident in late suspend */
if (!dev_priv->drm.dev->power.is_suspended)
intel_hpd_poll_enable(dev_priv);
}
static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_set_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
vlv_set_power_well(dev_priv, power_well, false);
}
static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/*
* From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
* 6. De-assert cmn_reset/side_reset. Same as VLV X0.
* a. GUnit 0x2110 bit[0] set to 1 (def 0)
* b. The other bits such as sfr settings / modesel may all
* be set to 0.
*
* This should only be done on init and resume from S3 with
* both PLLs disabled, or we risk losing DPIO and PLL
* synchronization.
*/
intel_de_write(dev_priv, DPIO_CTL,
intel_de_read(dev_priv, DPIO_CTL) | DPIO_CMNRST);
}
static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
assert_pll_disabled(dev_priv, pipe);
/* Assert common reset */
intel_de_write(dev_priv, DPIO_CTL,
intel_de_read(dev_priv, DPIO_CTL) & ~DPIO_CMNRST);
vlv_set_power_well(dev_priv, power_well, false);
}
#define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
#define BITS_SET(val, bits) (((val) & (bits)) == (bits))
static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
u32 phy_control = dev_priv->chv_phy_control;
u32 phy_status = 0;
u32 phy_status_mask = 0xffffffff;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[DPIO_PHY0])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
if (!dev_priv->chv_phy_assert[DPIO_PHY1])
phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY0);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
/* CL1 is on whenever anything is on in either channel */
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
/*
* The DPLLB check accounts for the pipe B + port A usage
* with CL2 powered up but all the lanes in the second channel
* powered down.
*/
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
(intel_de_read(dev_priv, DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
}
if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) {
phy_status |= PHY_POWERGOOD(DPIO_PHY1);
/* this assumes override is only used to enable lanes */
if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
if (BITS_SET(phy_control,
PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
}
phy_status &= phy_status_mask;
/*
* The PHY may be busy with some initial calibration and whatnot,
* so the power state can take a while to actually change.
*/
if (intel_de_wait_for_register(dev_priv, DISPLAY_PHY_STATUS,
phy_status_mask, phy_status, 10))
drm_err(&dev_priv->drm,
"Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
intel_de_read(dev_priv, DISPLAY_PHY_STATUS) & phy_status_mask,
phy_status, dev_priv->chv_phy_control);
}
#undef BITS_SET
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
enum pipe pipe;
u32 tmp;
drm_WARN_ON_ONCE(&dev_priv->drm,
power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC &&
power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
pipe = PIPE_A;
phy = DPIO_PHY0;
} else {
pipe = PIPE_C;
phy = DPIO_PHY1;
}
/* since ref/cri clock was enabled */
udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
vlv_set_power_well(dev_priv, power_well, true);
/* Poll for phypwrgood signal */
if (intel_de_wait_for_set(dev_priv, DISPLAY_PHY_STATUS,
PHY_POWERGOOD(phy), 1))
drm_err(&dev_priv->drm, "Display PHY %d is not power up\n",
phy);
vlv_dpio_get(dev_priv);
/* Enable dynamic power down */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
tmp |= DPIO_DYNPWRDOWNEN_CH1;
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
} else {
/*
* Force the non-existing CL2 off. BXT does this
* too, so maybe it saves some power even though
* CL2 doesn't exist?
*/
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
tmp |= DPIO_CL2_LDOFUSE_PWRENB;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
}
vlv_dpio_put(dev_priv);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
}
static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum dpio_phy phy;
drm_WARN_ON_ONCE(&dev_priv->drm,
power_well->desc->id != VLV_DISP_PW_DPIO_CMN_BC &&
power_well->desc->id != CHV_DISP_PW_DPIO_CMN_D);
if (power_well->desc->id == VLV_DISP_PW_DPIO_CMN_BC) {
phy = DPIO_PHY0;
assert_pll_disabled(dev_priv, PIPE_A);
assert_pll_disabled(dev_priv, PIPE_B);
} else {
phy = DPIO_PHY1;
assert_pll_disabled(dev_priv, PIPE_C);
}
dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->chv_phy_control);
vlv_set_power_well(dev_priv, power_well, false);
drm_dbg_kms(&dev_priv->drm,
"Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
phy, dev_priv->chv_phy_control);
/* PHY is fully reset now, so we can enable the PHY state asserts */
dev_priv->chv_phy_assert[phy] = true;
assert_chv_phy_status(dev_priv);
}
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override, unsigned int mask)
{
enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
u32 reg, val, expected, actual;
/*
* The BIOS can leave the PHY is some weird state
* where it doesn't fully power down some parts.
* Disable the asserts until the PHY has been fully
* reset (ie. the power well has been disabled at
* least once).
*/
if (!dev_priv->chv_phy_assert[phy])
return;
if (ch == DPIO_CH0)
reg = _CHV_CMN_DW0_CH0;
else
reg = _CHV_CMN_DW6_CH1;
vlv_dpio_get(dev_priv);
val = vlv_dpio_read(dev_priv, pipe, reg);
vlv_dpio_put(dev_priv);
/*
* This assumes !override is only used when the port is disabled.
* All lanes should power down even without the override when
* the port is disabled.
*/
if (!override || mask == 0xf) {
expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
/*
* If CH1 common lane is not active anymore
* (eg. for pipe B DPLL) the entire channel will
* shut down, which causes the common lane registers
* to read as 0. That means we can't actually check
* the lane power down status bits, but as the entire
* register reads as 0 it's a good indication that the
* channel is indeed entirely powered down.
*/
if (ch == DPIO_CH1 && val == 0)
expected = 0;
} else if (mask != 0x0) {
expected = DPIO_ANYDL_POWERDOWN;
} else {
expected = 0;
}
if (ch == DPIO_CH0)
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
else
actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
drm_WARN(&dev_priv->drm, actual != expected,
"Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
!!(actual & DPIO_ALLDL_POWERDOWN),
!!(actual & DPIO_ANYDL_POWERDOWN),
!!(expected & DPIO_ALLDL_POWERDOWN),
!!(expected & DPIO_ANYDL_POWERDOWN),
reg, val);
}
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
enum dpio_channel ch, bool override)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
bool was_override;
mutex_lock(&power_domains->lock);
was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
if (override == was_override)
goto out;
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
phy, ch, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
out:
mutex_unlock(&power_domains->lock);
return was_override;
}
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
bool override, unsigned int mask)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
enum dpio_phy phy = vlv_dig_port_to_phy(enc_to_dig_port(encoder));
enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
mutex_lock(&power_domains->lock);
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
if (override)
dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
else
dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->chv_phy_control);
drm_dbg_kms(&dev_priv->drm,
"Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
phy, ch, mask, dev_priv->chv_phy_control);
assert_chv_phy_status(dev_priv);
assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
mutex_unlock(&power_domains->lock);
}
static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
enum pipe pipe = PIPE_A;
bool enabled;
u32 state, ctrl;
vlv_punit_get(dev_priv);
state = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe);
/*
* We only ever set the power-on and power-gate states, anything
* else is unexpected.
*/
drm_WARN_ON(&dev_priv->drm, state != DP_SSS_PWR_ON(pipe) &&
state != DP_SSS_PWR_GATE(pipe));
enabled = state == DP_SSS_PWR_ON(pipe);
/*
* A transient state at this point would mean some unexpected party
* is poking at the power controls too.
*/
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSC_MASK(pipe);
drm_WARN_ON(&dev_priv->drm, ctrl << 16 != state);
vlv_punit_put(dev_priv);
return enabled;
}
static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well,
bool enable)
{
enum pipe pipe = PIPE_A;
u32 state;
u32 ctrl;
state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
vlv_punit_get(dev_priv);
#define COND \
((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) & DP_SSS_MASK(pipe)) == state)
if (COND)
goto out;
ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
ctrl &= ~DP_SSC_MASK(pipe);
ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, ctrl);
if (wait_for(COND, 100))
drm_err(&dev_priv->drm,
"timeout setting power well state %08x (%08x)\n",
state,
vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM));
#undef COND
out:
vlv_punit_put(dev_priv);
}
static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
intel_de_write(dev_priv, DISPLAY_PHY_CONTROL,
dev_priv->chv_phy_control);
}
static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
chv_set_pipe_power_well(dev_priv, power_well, true);
vlv_display_power_well_init(dev_priv);
}
static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
vlv_display_power_well_deinit(dev_priv);
chv_set_pipe_power_well(dev_priv, power_well, false);
}
static u64 __async_put_domains_mask(struct i915_power_domains *power_domains)
{
return power_domains->async_put_domains[0] |
power_domains->async_put_domains[1];
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static bool
assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
return !drm_WARN_ON(&i915->drm, power_domains->async_put_domains[0] &
power_domains->async_put_domains[1]);
}
static bool
__async_put_domains_state_ok(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
enum intel_display_power_domain domain;
bool err = false;
err |= !assert_async_put_domain_masks_disjoint(power_domains);
err |= drm_WARN_ON(&i915->drm, !!power_domains->async_put_wakeref !=
!!__async_put_domains_mask(power_domains));
for_each_power_domain(domain, __async_put_domains_mask(power_domains))
err |= drm_WARN_ON(&i915->drm,
power_domains->domain_use_count[domain] != 1);
return !err;
}
static void print_power_domains(struct i915_power_domains *power_domains,
const char *prefix, u64 mask)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
enum intel_display_power_domain domain;
drm_dbg(&i915->drm, "%s (%lu):\n", prefix, hweight64(mask));
for_each_power_domain(domain, mask)
drm_dbg(&i915->drm, "%s use_count %d\n",
intel_display_power_domain_str(domain),
power_domains->domain_use_count[domain]);
}
static void
print_async_put_domains_state(struct i915_power_domains *power_domains)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
drm_dbg(&i915->drm, "async_put_wakeref %u\n",
power_domains->async_put_wakeref);
print_power_domains(power_domains, "async_put_domains[0]",
power_domains->async_put_domains[0]);
print_power_domains(power_domains, "async_put_domains[1]",
power_domains->async_put_domains[1]);
}
static void
verify_async_put_domains_state(struct i915_power_domains *power_domains)
{
if (!__async_put_domains_state_ok(power_domains))
print_async_put_domains_state(power_domains);
}
#else
static void
assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
{
}
static void
verify_async_put_domains_state(struct i915_power_domains *power_domains)
{
}
#endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
static u64 async_put_domains_mask(struct i915_power_domains *power_domains)
{
assert_async_put_domain_masks_disjoint(power_domains);
return __async_put_domains_mask(power_domains);
}
static void
async_put_domains_clear_domain(struct i915_power_domains *power_domains,
enum intel_display_power_domain domain)
{
assert_async_put_domain_masks_disjoint(power_domains);
power_domains->async_put_domains[0] &= ~BIT_ULL(domain);
power_domains->async_put_domains[1] &= ~BIT_ULL(domain);
}
static bool
intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
bool ret = false;
if (!(async_put_domains_mask(power_domains) & BIT_ULL(domain)))
goto out_verify;
async_put_domains_clear_domain(power_domains, domain);
ret = true;
if (async_put_domains_mask(power_domains))
goto out_verify;
cancel_delayed_work(&power_domains->async_put_work);
intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
fetch_and_zero(&power_domains->async_put_wakeref));
out_verify:
verify_async_put_domains_state(power_domains);
return ret;
}
static void
__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
if (intel_display_power_grab_async_put_ref(dev_priv, domain))
return;
for_each_power_domain_well(dev_priv, power_well, BIT_ULL(domain))
intel_power_well_get(dev_priv, power_well);
power_domains->domain_use_count[domain]++;
}
/**
* intel_display_power_get - grab a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
mutex_lock(&power_domains->lock);
__intel_display_power_get_domain(dev_priv, domain);
mutex_unlock(&power_domains->lock);
return wakeref;
}
/**
* intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function grabs a power domain reference for @domain and ensures that the
* power domain and all its parents are powered up. Therefore users should only
* grab a reference to the innermost power domain they need.
*
* Any power domain reference obtained by this function must have a symmetric
* call to intel_display_power_put() to release the reference again.
*/
intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
intel_wakeref_t wakeref;
bool is_enabled;
wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
if (!wakeref)
return false;
mutex_lock(&power_domains->lock);
if (__intel_display_power_is_enabled(dev_priv, domain)) {
__intel_display_power_get_domain(dev_priv, domain);
is_enabled = true;
} else {
is_enabled = false;
}
mutex_unlock(&power_domains->lock);
if (!is_enabled) {
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
wakeref = 0;
}
return wakeref;
}
static void
__intel_display_power_put_domain(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains;
struct i915_power_well *power_well;
const char *name = intel_display_power_domain_str(domain);
power_domains = &dev_priv->power_domains;
drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
"Use count on domain %s is already zero\n",
name);
drm_WARN(&dev_priv->drm,
async_put_domains_mask(power_domains) & BIT_ULL(domain),
"Async disabling of domain %s is pending\n",
name);
power_domains->domain_use_count[domain]--;
for_each_power_domain_well_reverse(dev_priv, power_well, BIT_ULL(domain))
intel_power_well_put(dev_priv, power_well);
}
static void __intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
mutex_lock(&power_domains->lock);
__intel_display_power_put_domain(dev_priv, domain);
mutex_unlock(&power_domains->lock);
}
static void
queue_async_put_domains_work(struct i915_power_domains *power_domains,
intel_wakeref_t wakeref)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
power_domains->async_put_wakeref = wakeref;
drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
&power_domains->async_put_work,
msecs_to_jiffies(100)));
}
static void
release_async_put_domains(struct i915_power_domains *power_domains, u64 mask)
{
struct drm_i915_private *dev_priv =
container_of(power_domains, struct drm_i915_private,
power_domains);
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
enum intel_display_power_domain domain;
intel_wakeref_t wakeref;
/*
* The caller must hold already raw wakeref, upgrade that to a proper
* wakeref to make the state checker happy about the HW access during
* power well disabling.
*/
assert_rpm_raw_wakeref_held(rpm);
wakeref = intel_runtime_pm_get(rpm);
for_each_power_domain(domain, mask) {
/* Clear before put, so put's sanity check is happy. */
async_put_domains_clear_domain(power_domains, domain);
__intel_display_power_put_domain(dev_priv, domain);
}
intel_runtime_pm_put(rpm, wakeref);
}
static void
intel_display_power_put_async_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private,
power_domains.async_put_work.work);
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
intel_wakeref_t old_work_wakeref = 0;
mutex_lock(&power_domains->lock);
/*
* Bail out if all the domain refs pending to be released were grabbed
* by subsequent gets or a flush_work.
*/
old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
if (!old_work_wakeref)
goto out_verify;
release_async_put_domains(power_domains,
power_domains->async_put_domains[0]);
/* Requeue the work if more domains were async put meanwhile. */
if (power_domains->async_put_domains[1]) {
power_domains->async_put_domains[0] =
fetch_and_zero(&power_domains->async_put_domains[1]);
queue_async_put_domains_work(power_domains,
fetch_and_zero(&new_work_wakeref));
} else {
/*
* Cancel the work that got queued after this one got dequeued,
* since here we released the corresponding async-put reference.
*/
cancel_delayed_work(&power_domains->async_put_work);
}
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (old_work_wakeref)
intel_runtime_pm_put_raw(rpm, old_work_wakeref);
if (new_work_wakeref)
intel_runtime_pm_put_raw(rpm, new_work_wakeref);
}
/**
* intel_display_power_put_async - release a power domain reference asynchronously
* @i915: i915 device instance
* @domain: power domain to reference
* @wakeref: wakeref acquired for the reference that is being released
*
* This function drops the power domain reference obtained by
* intel_display_power_get*() and schedules a work to power down the
* corresponding hardware block if this is the last reference.
*/
void __intel_display_power_put_async(struct drm_i915_private *i915,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct intel_runtime_pm *rpm = &i915->runtime_pm;
intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
mutex_lock(&power_domains->lock);
if (power_domains->domain_use_count[domain] > 1) {
__intel_display_power_put_domain(i915, domain);
goto out_verify;
}
drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
/* Let a pending work requeue itself or queue a new one. */
if (power_domains->async_put_wakeref) {
power_domains->async_put_domains[1] |= BIT_ULL(domain);
} else {
power_domains->async_put_domains[0] |= BIT_ULL(domain);
queue_async_put_domains_work(power_domains,
fetch_and_zero(&work_wakeref));
}
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (work_wakeref)
intel_runtime_pm_put_raw(rpm, work_wakeref);
intel_runtime_pm_put(rpm, wakeref);
}
/**
* intel_display_power_flush_work - flushes the async display power disabling work
* @i915: i915 device instance
*
* Flushes any pending work that was scheduled by a preceding
* intel_display_power_put_async() call, completing the disabling of the
* corresponding power domains.
*
* Note that the work handler function may still be running after this
* function returns; to ensure that the work handler isn't running use
* intel_display_power_flush_work_sync() instead.
*/
void intel_display_power_flush_work(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_wakeref_t work_wakeref;
mutex_lock(&power_domains->lock);
work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
if (!work_wakeref)
goto out_verify;
release_async_put_domains(power_domains,
async_put_domains_mask(power_domains));
cancel_delayed_work(&power_domains->async_put_work);
out_verify:
verify_async_put_domains_state(power_domains);
mutex_unlock(&power_domains->lock);
if (work_wakeref)
intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
}
/**
* intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
* @i915: i915 device instance
*
* Like intel_display_power_flush_work(), but also ensure that the work
* handler function is not running any more when this function returns.
*/
static void
intel_display_power_flush_work_sync(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_display_power_flush_work(i915);
cancel_delayed_work_sync(&power_domains->async_put_work);
verify_async_put_domains_state(power_domains);
drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
/**
* intel_display_power_put - release a power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
* @wakeref: wakeref acquired for the reference that is being released
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*/
void intel_display_power_put(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain,
intel_wakeref_t wakeref)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
}
#else
/**
* intel_display_power_put_unchecked - release an unchecked power domain reference
* @dev_priv: i915 device instance
* @domain: power domain to reference
*
* This function drops the power domain reference obtained by
* intel_display_power_get() and might power down the corresponding hardware
* block right away if this is the last reference.
*
* This function is only for the power domain code's internal use to suppress wakeref
* tracking when the correspondig debug kconfig option is disabled, should not
* be used otherwise.
*/
void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
enum intel_display_power_domain domain)
{
__intel_display_power_put(dev_priv, domain);
intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
}
#endif
void
intel_display_power_get_in_set(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
enum intel_display_power_domain domain)
{
intel_wakeref_t __maybe_unused wf;
drm_WARN_ON(&i915->drm, power_domain_set->mask & BIT_ULL(domain));
wf = intel_display_power_get(i915, domain);
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
power_domain_set->wakerefs[domain] = wf;
#endif
power_domain_set->mask |= BIT_ULL(domain);
}
bool
intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
enum intel_display_power_domain domain)
{
intel_wakeref_t wf;
drm_WARN_ON(&i915->drm, power_domain_set->mask & BIT_ULL(domain));
wf = intel_display_power_get_if_enabled(i915, domain);
if (!wf)
return false;
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
power_domain_set->wakerefs[domain] = wf;
#endif
power_domain_set->mask |= BIT_ULL(domain);
return true;
}
void
intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
struct intel_display_power_domain_set *power_domain_set,
u64 mask)
{
enum intel_display_power_domain domain;
drm_WARN_ON(&i915->drm, mask & ~power_domain_set->mask);
for_each_power_domain(domain, mask) {
intel_wakeref_t __maybe_unused wf = -1;
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
#endif
intel_display_power_put(i915, domain, wf);
power_domain_set->mask &= ~BIT_ULL(domain);
}
}
#define I830_PIPES_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_DISPLAY_CORE) | \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_DISPLAY_CORE) | \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define CHV_DPIO_CMN_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BDW_DISPLAY_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_CRT) | /* DDI E */ \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS ( \
BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DPIO_CMN_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define BXT_DPIO_CMN_BC_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
#define GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
#define GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
#define GLK_DPIO_CMN_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DPIO_CMN_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DPIO_CMN_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_AUX_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define GLK_DISPLAY_DC_OFF_POWER_DOMAINS ( \
GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_GT_IRQ) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_GMBUS) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* ICL PW_0/PG_0 domains (HW/DMC control):
* - PCI
* - clocks except port PLL
* - central power except FBC
* - shared functions except pipe interrupts, pipe MBUS, DBUF registers
* ICL PW_1/PG_1 domains (HW/DMC control):
* - DBUF function
* - PIPE_A and its planes, except VGA
* - transcoder EDP + PSR
* - transcoder DSI
* - DDI_A
* - FBC
*/
#define ICL_PW_4_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_INIT))
/* VDSC/joining */
#define ICL_PW_3_POWER_DOMAINS ( \
ICL_PW_4_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_A) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_LANES) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D) | \
BIT_ULL(POWER_DOMAIN_AUX_E) | \
BIT_ULL(POWER_DOMAIN_AUX_F) | \
BIT_ULL(POWER_DOMAIN_AUX_C_TBT) | \
BIT_ULL(POWER_DOMAIN_AUX_D_TBT) | \
BIT_ULL(POWER_DOMAIN_AUX_E_TBT) | \
BIT_ULL(POWER_DOMAIN_AUX_F_TBT) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* - transcoder WD
* - KVMR (HW control)
*/
#define ICL_PW_2_POWER_DOMAINS ( \
ICL_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_VDSC_PW2) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* - KVMR (HW control)
*/
#define ICL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
ICL_PW_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_DC_OFF) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define ICL_DDI_IO_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_A_IO))
#define ICL_DDI_IO_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_B_IO))
#define ICL_DDI_IO_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_IO))
#define ICL_DDI_IO_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_D_IO))
#define ICL_DDI_IO_E_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_E_IO))
#define ICL_DDI_IO_F_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PORT_DDI_F_IO))
#define ICL_AUX_A_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_AUX_A))
#define ICL_AUX_B_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B))
#define ICL_AUX_C_TC1_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C))
#define ICL_AUX_D_TC2_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_D))
#define ICL_AUX_E_TC3_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_E))
#define ICL_AUX_F_TC4_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_F))
#define ICL_AUX_C_TBT1_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C_TBT))
#define ICL_AUX_D_TBT2_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_D_TBT))
#define ICL_AUX_E_TBT3_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_E_TBT))
#define ICL_AUX_F_TBT4_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_F_TBT))
#define TGL_PW_5_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_D) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_D) | \
BIT_ULL(POWER_DOMAIN_PIPE_D_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define TGL_PW_4_POWER_DOMAINS ( \
TGL_PW_5_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define TGL_PW_3_POWER_DOMAINS ( \
TGL_PW_4_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC1) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC2) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC3) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC4) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC5) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC6) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC1) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC2) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC3) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC4) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC5) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC6) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT5) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT6) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define TGL_PW_2_POWER_DOMAINS ( \
TGL_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_VDSC_PW2) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define TGL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
TGL_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define TGL_DDI_IO_TC1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC1)
#define TGL_DDI_IO_TC2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC2)
#define TGL_DDI_IO_TC3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC3)
#define TGL_DDI_IO_TC4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC4)
#define TGL_DDI_IO_TC5_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC5)
#define TGL_DDI_IO_TC6_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC6)
#define TGL_AUX_A_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_IO_A) | \
BIT_ULL(POWER_DOMAIN_AUX_A))
#define TGL_AUX_B_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_B))
#define TGL_AUX_C_IO_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_C))
#define TGL_AUX_IO_USBC1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC1)
#define TGL_AUX_IO_USBC2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC2)
#define TGL_AUX_IO_USBC3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC3)
#define TGL_AUX_IO_USBC4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC4)
#define TGL_AUX_IO_USBC5_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC5)
#define TGL_AUX_IO_USBC6_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC6)
#define TGL_AUX_IO_TBT1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT1)
#define TGL_AUX_IO_TBT2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT2)
#define TGL_AUX_IO_TBT3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT3)
#define TGL_AUX_IO_TBT4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT4)
#define TGL_AUX_IO_TBT5_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT5)
#define TGL_AUX_IO_TBT6_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT6)
#define TGL_TC_COLD_OFF_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_AUX_USBC1) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC2) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC3) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC4) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC5) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC6) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT5) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT6) | \
BIT_ULL(POWER_DOMAIN_TC_COLD_OFF))
#define RKL_PW_4_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define RKL_PW_3_POWER_DOMAINS ( \
RKL_PW_4_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC1) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC2) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC1) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC2) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* There is no PW_2/PG_2 on RKL.
*
* RKL PW_1/PG_1 domains (under HW/DMC control):
* - DBUF function (note: registers are in PW0)
* - PIPE_A and its planes and VDSC/joining, except VGA
* - transcoder A
* - DDI_A and DDI_B
* - FBC
*
* RKL PW_0/PG_0 domains (under HW/DMC control):
* - PCI
* - clocks except port PLL
* - shared functions:
* * interrupts except pipe interrupts
* * MBus except PIPE_MBUS_DBOX_CTL
* * DBUF registers
* - central power except FBC
* - top-level GTC (DDI-level GTC is in the well associated with the DDI)
*/
#define RKL_DISPLAY_DC_OFF_POWER_DOMAINS ( \
RKL_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* DG1 onwards Audio MMIO/VERBS lies in PG0 power well.
*/
#define DG1_PW_3_POWER_DOMAINS ( \
TGL_PW_4_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC1) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC2) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC1) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC2) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define DG1_PW_2_POWER_DOMAINS ( \
DG1_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_VDSC_PW2) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define DG1_DISPLAY_DC_OFF_POWER_DOMAINS ( \
DG1_PW_3_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* XE_LPD Power Domains
*
* Previous platforms required that PG(n-1) be enabled before PG(n). That
* dependency chain turns into a dependency tree on XE_LPD:
*
* PG0
* |
* --PG1--
* / \
* PGA --PG2--
* / | \
* PGB PGC PGD
*
* Power wells must be enabled from top to bottom and disabled from bottom
* to top. This allows pipes to be power gated independently.
*/
#define XELPD_PW_D_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_D) | \
BIT_ULL(POWER_DOMAIN_PIPE_D_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_D) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define XELPD_PW_C_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_C) | \
BIT_ULL(POWER_DOMAIN_PIPE_C_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_C) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define XELPD_PW_B_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_B) | \
BIT_ULL(POWER_DOMAIN_PIPE_B_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_TRANSCODER_B) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define XELPD_PW_A_POWER_DOMAINS ( \
BIT_ULL(POWER_DOMAIN_PIPE_A) | \
BIT_ULL(POWER_DOMAIN_PIPE_A_PANEL_FITTER) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define XELPD_PW_2_POWER_DOMAINS ( \
XELPD_PW_B_POWER_DOMAINS | \
XELPD_PW_C_POWER_DOMAINS | \
XELPD_PW_D_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_AUDIO_PLAYBACK) | \
BIT_ULL(POWER_DOMAIN_VGA) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_C_LANES) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_D_XELPD) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_E_XELPD) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC1) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC2) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC3) | \
BIT_ULL(POWER_DOMAIN_PORT_DDI_LANES_TC4) | \
BIT_ULL(POWER_DOMAIN_AUX_C) | \
BIT_ULL(POWER_DOMAIN_AUX_D_XELPD) | \
BIT_ULL(POWER_DOMAIN_AUX_E_XELPD) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC1) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC2) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC3) | \
BIT_ULL(POWER_DOMAIN_AUX_USBC4) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT1) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT2) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT3) | \
BIT_ULL(POWER_DOMAIN_AUX_TBT4) | \
BIT_ULL(POWER_DOMAIN_INIT))
/*
* XELPD PW_1/PG_1 domains (under HW/DMC control):
* - DBUF function (registers are in PW0)
* - Transcoder A
* - DDI_A and DDI_B
*
* XELPD PW_0/PW_1 domains (under HW/DMC control):
* - PCI
* - Clocks except port PLL
* - Shared functions:
* * interrupts except pipe interrupts
* * MBus except PIPE_MBUS_DBOX_CTL
* * DBUF registers
* - Central power except FBC
* - Top-level GTC (DDI-level GTC is in the well associated with the DDI)
*/
#define XELPD_DISPLAY_DC_OFF_POWER_DOMAINS ( \
XELPD_PW_2_POWER_DOMAINS | \
BIT_ULL(POWER_DOMAIN_AUDIO_MMIO) | \
BIT_ULL(POWER_DOMAIN_MODESET) | \
BIT_ULL(POWER_DOMAIN_AUX_A) | \
BIT_ULL(POWER_DOMAIN_AUX_B) | \
BIT_ULL(POWER_DOMAIN_PORT_DSI) | \
BIT_ULL(POWER_DOMAIN_INIT))
#define XELPD_AUX_IO_D_XELPD_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_D_XELPD)
#define XELPD_AUX_IO_E_XELPD_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_E_XELPD)
#define XELPD_AUX_IO_USBC1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC1)
#define XELPD_AUX_IO_USBC2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC2)
#define XELPD_AUX_IO_USBC3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC3)
#define XELPD_AUX_IO_USBC4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_USBC4)
#define XELPD_AUX_IO_TBT1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT1)
#define XELPD_AUX_IO_TBT2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT2)
#define XELPD_AUX_IO_TBT3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT3)
#define XELPD_AUX_IO_TBT4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_AUX_TBT4)
#define XELPD_DDI_IO_D_XELPD_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_D_XELPD)
#define XELPD_DDI_IO_E_XELPD_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_E_XELPD)
#define XELPD_DDI_IO_TC1_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC1)
#define XELPD_DDI_IO_TC2_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC2)
#define XELPD_DDI_IO_TC3_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC3)
#define XELPD_DDI_IO_TC4_POWER_DOMAINS BIT_ULL(POWER_DOMAIN_PORT_DDI_IO_TC4)
static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = i9xx_always_on_power_well_noop,
.disable = i9xx_always_on_power_well_noop,
.is_enabled = i9xx_always_on_power_well_enabled,
};
static const struct i915_power_well_ops chv_pipe_power_well_ops = {
.sync_hw = chv_pipe_power_well_sync_hw,
.enable = chv_pipe_power_well_enable,
.disable = chv_pipe_power_well_disable,
.is_enabled = chv_pipe_power_well_enabled,
};
static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = chv_dpio_cmn_power_well_enable,
.disable = chv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_desc i9xx_always_on_power_well[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
};
static const struct i915_power_well_ops i830_pipes_power_well_ops = {
.sync_hw = i830_pipes_power_well_sync_hw,
.enable = i830_pipes_power_well_enable,
.disable = i830_pipes_power_well_disable,
.is_enabled = i830_pipes_power_well_enabled,
};
static const struct i915_power_well_desc i830_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "pipes",
.domains = I830_PIPES_POWER_DOMAINS,
.ops = &i830_pipes_power_well_ops,
.id = DISP_PW_ID_NONE,
},
};
static const struct i915_power_well_ops hsw_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = hsw_power_well_enable,
.disable = hsw_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = gen9_dc_off_power_well_enable,
.disable = gen9_dc_off_power_well_disable,
.is_enabled = gen9_dc_off_power_well_enabled,
};
static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = bxt_dpio_cmn_power_well_enable,
.disable = bxt_dpio_cmn_power_well_disable,
.is_enabled = bxt_dpio_cmn_power_well_enabled,
};
static const struct i915_power_well_regs hsw_power_well_regs = {
.bios = HSW_PWR_WELL_CTL1,
.driver = HSW_PWR_WELL_CTL2,
.kvmr = HSW_PWR_WELL_CTL3,
.debug = HSW_PWR_WELL_CTL4,
};
static const struct i915_power_well_desc hsw_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = HSW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = HSW_DISP_PW_GLOBAL,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = HSW_PW_CTL_IDX_GLOBAL,
.hsw.has_vga = true,
},
},
};
static const struct i915_power_well_desc bdw_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = BDW_DISPLAY_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = HSW_DISP_PW_GLOBAL,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = HSW_PW_CTL_IDX_GLOBAL,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
},
},
};
static const struct i915_power_well_ops vlv_display_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_display_power_well_enable,
.disable = vlv_display_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_dpio_cmn_power_well_enable,
.disable = vlv_dpio_cmn_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
.sync_hw = i9xx_power_well_sync_hw_noop,
.enable = vlv_power_well_enable,
.disable = vlv_power_well_disable,
.is_enabled = vlv_power_well_enabled,
};
static const struct i915_power_well_desc vlv_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
.domains = VLV_DISPLAY_POWER_DOMAINS,
.ops = &vlv_display_power_well_ops,
.id = VLV_DISP_PW_DISP2D,
{
.vlv.idx = PUNIT_PWGT_IDX_DISP2D,
},
},
{
.name = "dpio-tx-b-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_01,
},
},
{
.name = "dpio-tx-b-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_B_LANES_23,
},
},
{
.name = "dpio-tx-c-01",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_01,
},
},
{
.name = "dpio-tx-c-23",
.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
.ops = &vlv_dpio_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_TX_C_LANES_23,
},
},
{
.name = "dpio-common",
.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &vlv_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC,
},
},
};
static const struct i915_power_well_desc chv_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "display",
/*
* Pipe A power well is the new disp2d well. Pipe B and C
* power wells don't actually exist. Pipe A power well is
* required for any pipe to work.
*/
.domains = CHV_DISPLAY_POWER_DOMAINS,
.ops = &chv_pipe_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "dpio-common-bc",
.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &chv_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_BC,
},
},
{
.name = "dpio-common-d",
.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
.ops = &chv_dpio_cmn_power_well_ops,
.id = CHV_DISP_PW_DPIO_CMN_D,
{
.vlv.idx = PUNIT_PWGT_IDX_DPIO_CMN_D,
},
},
};
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
enum i915_power_well_id power_well_id)
{
struct i915_power_well *power_well;
bool ret;
power_well = lookup_power_well(dev_priv, power_well_id);
ret = power_well->desc->ops->is_enabled(dev_priv, power_well);
return ret;
}
static const struct i915_power_well_desc skl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "MISC IO power well",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_MISC_IO,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_MISC_IO,
},
},
{
.name = "DC off",
.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A/E IO power well",
.domains = SKL_DISPLAY_DDI_IO_A_E_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_A_E,
},
},
{
.name = "DDI B IO power well",
.domains = SKL_DISPLAY_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO power well",
.domains = SKL_DISPLAY_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_C,
},
},
{
.name = "DDI D IO power well",
.domains = SKL_DISPLAY_DDI_IO_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_D,
},
},
};
static const struct i915_power_well_desc bxt_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "dpio-common-a",
.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = BXT_DISP_PW_DPIO_CMN_A,
{
.bxt.phy = DPIO_PHY1,
},
},
{
.name = "dpio-common-bc",
.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.bxt.phy = DPIO_PHY0,
},
},
};
static const struct i915_power_well_desc glk_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = GLK_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = GLK_DISPLAY_POWERWELL_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_PW_2,
.hsw.irq_pipe_mask = BIT(PIPE_B) | BIT(PIPE_C),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "dpio-common-a",
.domains = GLK_DPIO_CMN_A_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = BXT_DISP_PW_DPIO_CMN_A,
{
.bxt.phy = DPIO_PHY1,
},
},
{
.name = "dpio-common-b",
.domains = GLK_DPIO_CMN_B_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = VLV_DISP_PW_DPIO_CMN_BC,
{
.bxt.phy = DPIO_PHY0,
},
},
{
.name = "dpio-common-c",
.domains = GLK_DPIO_CMN_C_POWER_DOMAINS,
.ops = &bxt_dpio_cmn_power_well_ops,
.id = GLK_DISP_PW_DPIO_CMN_C,
{
.bxt.phy = DPIO_PHY2,
},
},
{
.name = "AUX A",
.domains = GLK_DISPLAY_AUX_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = GLK_DISPLAY_AUX_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C",
.domains = GLK_DISPLAY_AUX_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_AUX_C,
},
},
{
.name = "DDI A IO power well",
.domains = GLK_DISPLAY_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = GLK_PW_CTL_IDX_DDI_A,
},
},
{
.name = "DDI B IO power well",
.domains = GLK_DISPLAY_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO power well",
.domains = GLK_DISPLAY_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = SKL_PW_CTL_IDX_DDI_C,
},
},
};
static const struct i915_power_well_ops icl_aux_power_well_ops = {
.sync_hw = hsw_power_well_sync_hw,
.enable = icl_aux_power_well_enable,
.disable = icl_aux_power_well_disable,
.is_enabled = hsw_power_well_enabled,
};
static const struct i915_power_well_regs icl_aux_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_AUX1,
.driver = ICL_PWR_WELL_CTL_AUX2,
.debug = ICL_PWR_WELL_CTL_AUX4,
};
static const struct i915_power_well_regs icl_ddi_power_well_regs = {
.bios = ICL_PWR_WELL_CTL_DDI1,
.driver = ICL_PWR_WELL_CTL_DDI2,
.debug = ICL_PWR_WELL_CTL_DDI4,
};
static const struct i915_power_well_desc icl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = ICL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = ICL_PW_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_2,
.hsw.has_fuses = true,
},
},
{
.name = "power well 3",
.domains = ICL_PW_3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = ICL_DISP_PW_3,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_3,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
},
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
},
},
{
.name = "DDI C IO",
.domains = ICL_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_C,
},
},
{
.name = "DDI D IO",
.domains = ICL_DDI_IO_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_D,
},
},
{
.name = "DDI E IO",
.domains = ICL_DDI_IO_E_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_E,
},
},
{
.name = "DDI F IO",
.domains = ICL_DDI_IO_F_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_F,
},
},
{
.name = "AUX A",
.domains = ICL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = ICL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C TC1",
.domains = ICL_AUX_C_TC1_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_C,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX D TC2",
.domains = ICL_AUX_D_TC2_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_D,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX E TC3",
.domains = ICL_AUX_E_TC3_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_E,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX F TC4",
.domains = ICL_AUX_F_TC4_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_F,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX C TBT1",
.domains = ICL_AUX_C_TBT1_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT1,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX D TBT2",
.domains = ICL_AUX_D_TBT2_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT2,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX E TBT3",
.domains = ICL_AUX_E_TBT3_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT3,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX F TBT4",
.domains = ICL_AUX_F_TBT4_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_TBT4,
.hsw.is_tc_tbt = true,
},
},
{
.name = "power well 4",
.domains = ICL_PW_4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_4,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_C),
},
},
};
static void
tgl_tc_cold_request(struct drm_i915_private *i915, bool block)
{
u8 tries = 0;
int ret;
while (1) {
u32 low_val;
u32 high_val = 0;
if (block)
low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_BLOCK_REQ;
else
low_val = TGL_PCODE_EXIT_TCCOLD_DATA_L_UNBLOCK_REQ;
/*
* Spec states that we should timeout the request after 200us
* but the function below will timeout after 500us
*/
ret = snb_pcode_read(i915, TGL_PCODE_TCCOLD, &low_val, &high_val);
if (ret == 0) {
if (block &&
(low_val & TGL_PCODE_EXIT_TCCOLD_DATA_L_EXIT_FAILED))
ret = -EIO;
else
break;
}
if (++tries == 3)
break;
msleep(1);
}
if (ret)
drm_err(&i915->drm, "TC cold %sblock failed\n",
block ? "" : "un");
else
drm_dbg_kms(&i915->drm, "TC cold %sblock succeeded\n",
block ? "" : "un");
}
static void
tgl_tc_cold_off_power_well_enable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
tgl_tc_cold_request(i915, true);
}
static void
tgl_tc_cold_off_power_well_disable(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
tgl_tc_cold_request(i915, false);
}
static void
tgl_tc_cold_off_power_well_sync_hw(struct drm_i915_private *i915,
struct i915_power_well *power_well)
{
if (power_well->count > 0)
tgl_tc_cold_off_power_well_enable(i915, power_well);
else
tgl_tc_cold_off_power_well_disable(i915, power_well);
}
static bool
tgl_tc_cold_off_power_well_is_enabled(struct drm_i915_private *dev_priv,
struct i915_power_well *power_well)
{
/*
* Not the correctly implementation but there is no way to just read it
* from PCODE, so returning count to avoid state mismatch errors
*/
return power_well->count;
}
static const struct i915_power_well_ops tgl_tc_cold_off_ops = {
.sync_hw = tgl_tc_cold_off_power_well_sync_hw,
.enable = tgl_tc_cold_off_power_well_enable,
.disable = tgl_tc_cold_off_power_well_disable,
.is_enabled = tgl_tc_cold_off_power_well_is_enabled,
};
static const struct i915_power_well_desc tgl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = TGL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = TGL_PW_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_2,
.hsw.has_fuses = true,
},
},
{
.name = "power well 3",
.domains = TGL_PW_3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = ICL_DISP_PW_3,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_3,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
}
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
}
},
{
.name = "DDI C IO",
.domains = ICL_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_C,
}
},
{
.name = "DDI IO TC1",
.domains = TGL_DDI_IO_TC1_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC1,
},
},
{
.name = "DDI IO TC2",
.domains = TGL_DDI_IO_TC2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC2,
},
},
{
.name = "DDI IO TC3",
.domains = TGL_DDI_IO_TC3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC3,
},
},
{
.name = "DDI IO TC4",
.domains = TGL_DDI_IO_TC4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC4,
},
},
{
.name = "DDI IO TC5",
.domains = TGL_DDI_IO_TC5_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC5,
},
},
{
.name = "DDI IO TC6",
.domains = TGL_DDI_IO_TC6_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC6,
},
},
{
.name = "TC cold off",
.domains = TGL_TC_COLD_OFF_POWER_DOMAINS,
.ops = &tgl_tc_cold_off_ops,
.id = TGL_DISP_PW_TC_COLD_OFF,
},
{
.name = "AUX A",
.domains = TGL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = TGL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX C",
.domains = TGL_AUX_C_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_C,
},
},
{
.name = "AUX USBC1",
.domains = TGL_AUX_IO_USBC1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC1,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC2",
.domains = TGL_AUX_IO_USBC2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC2,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC3",
.domains = TGL_AUX_IO_USBC3_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC3,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC4",
.domains = TGL_AUX_IO_USBC4_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC4,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC5",
.domains = TGL_AUX_IO_USBC5_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC5,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC6",
.domains = TGL_AUX_IO_USBC6_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC6,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX TBT1",
.domains = TGL_AUX_IO_TBT1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT1,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT2",
.domains = TGL_AUX_IO_TBT2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT2,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT3",
.domains = TGL_AUX_IO_TBT3_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT3,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT4",
.domains = TGL_AUX_IO_TBT4_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT4,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT5",
.domains = TGL_AUX_IO_TBT5_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT5,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT6",
.domains = TGL_AUX_IO_TBT6_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT6,
.hsw.is_tc_tbt = true,
},
},
{
.name = "power well 4",
.domains = TGL_PW_4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_4,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_C),
}
},
{
.name = "power well 5",
.domains = TGL_PW_5_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_PW_5,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_D),
},
},
};
static const struct i915_power_well_desc rkl_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = RKL_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 3",
.domains = RKL_PW_3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = ICL_DISP_PW_3,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_3,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "power well 4",
.domains = RKL_PW_4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_4,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_C),
}
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
}
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
}
},
{
.name = "DDI IO TC1",
.domains = TGL_DDI_IO_TC1_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC1,
},
},
{
.name = "DDI IO TC2",
.domains = TGL_DDI_IO_TC2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC2,
},
},
{
.name = "AUX A",
.domains = ICL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = ICL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX USBC1",
.domains = TGL_AUX_IO_USBC1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC1,
},
},
{
.name = "AUX USBC2",
.domains = TGL_AUX_IO_USBC2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC2,
},
},
};
static const struct i915_power_well_desc dg1_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = DG1_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = DG1_PW_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_2,
.hsw.has_fuses = true,
},
},
{
.name = "power well 3",
.domains = DG1_PW_3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = ICL_DISP_PW_3,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_3,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
}
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
}
},
{
.name = "DDI IO TC1",
.domains = TGL_DDI_IO_TC1_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC1,
},
},
{
.name = "DDI IO TC2",
.domains = TGL_DDI_IO_TC2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC2,
},
},
{
.name = "AUX A",
.domains = TGL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
},
},
{
.name = "AUX B",
.domains = TGL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
},
},
{
.name = "AUX USBC1",
.domains = TGL_AUX_IO_USBC1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC1,
.hsw.is_tc_tbt = false,
},
},
{
.name = "AUX USBC2",
.domains = TGL_AUX_IO_USBC2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC2,
.hsw.is_tc_tbt = false,
},
},
{
.name = "power well 4",
.domains = TGL_PW_4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_4,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_C),
}
},
{
.name = "power well 5",
.domains = TGL_PW_5_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_PW_5,
.hsw.has_fuses = true,
.hsw.irq_pipe_mask = BIT(PIPE_D),
},
},
};
static const struct i915_power_well_desc xelpd_power_wells[] = {
{
.name = "always-on",
.always_on = true,
.domains = POWER_DOMAIN_MASK,
.ops = &i9xx_always_on_power_well_ops,
.id = DISP_PW_ID_NONE,
},
{
.name = "power well 1",
/* Handled by the DMC firmware */
.always_on = true,
.domains = 0,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_1,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_1,
.hsw.has_fuses = true,
},
},
{
.name = "DC off",
.domains = XELPD_DISPLAY_DC_OFF_POWER_DOMAINS,
.ops = &gen9_dc_off_power_well_ops,
.id = SKL_DISP_DC_OFF,
},
{
.name = "power well 2",
.domains = XELPD_PW_2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = SKL_DISP_PW_2,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_PW_2,
.hsw.has_vga = true,
.hsw.has_fuses = true,
},
},
{
.name = "power well A",
.domains = XELPD_PW_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_PW_A,
.hsw.irq_pipe_mask = BIT(PIPE_A),
.hsw.has_fuses = true,
},
},
{
.name = "power well B",
.domains = XELPD_PW_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_PW_B,
.hsw.irq_pipe_mask = BIT(PIPE_B),
.hsw.has_fuses = true,
},
},
{
.name = "power well C",
.domains = XELPD_PW_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_PW_C,
.hsw.irq_pipe_mask = BIT(PIPE_C),
.hsw.has_fuses = true,
},
},
{
.name = "power well D",
.domains = XELPD_PW_D_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &hsw_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_PW_D,
.hsw.irq_pipe_mask = BIT(PIPE_D),
.hsw.has_fuses = true,
},
},
{
.name = "DDI A IO",
.domains = ICL_DDI_IO_A_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_A,
}
},
{
.name = "DDI B IO",
.domains = ICL_DDI_IO_B_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_B,
}
},
{
.name = "DDI C IO",
.domains = ICL_DDI_IO_C_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_DDI_C,
}
},
{
.name = "DDI IO D_XELPD",
.domains = XELPD_DDI_IO_D_XELPD_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_DDI_D,
}
},
{
.name = "DDI IO E_XELPD",
.domains = XELPD_DDI_IO_E_XELPD_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_DDI_E,
}
},
{
.name = "DDI IO TC1",
.domains = XELPD_DDI_IO_TC1_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC1,
}
},
{
.name = "DDI IO TC2",
.domains = XELPD_DDI_IO_TC2_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC2,
}
},
{
.name = "DDI IO TC3",
.domains = XELPD_DDI_IO_TC3_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC3,
}
},
{
.name = "DDI IO TC4",
.domains = XELPD_DDI_IO_TC4_POWER_DOMAINS,
.ops = &hsw_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_ddi_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_DDI_TC4,
}
},
{
.name = "AUX A",
.domains = ICL_AUX_A_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_A,
.hsw.fixed_enable_delay = 600,
},
},
{
.name = "AUX B",
.domains = ICL_AUX_B_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_B,
.hsw.fixed_enable_delay = 600,
},
},
{
.name = "AUX C",
.domains = TGL_AUX_C_IO_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = ICL_PW_CTL_IDX_AUX_C,
.hsw.fixed_enable_delay = 600,
},
},
{
.name = "AUX D_XELPD",
.domains = XELPD_AUX_IO_D_XELPD_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_AUX_D,
.hsw.fixed_enable_delay = 600,
},
},
{
.name = "AUX E_XELPD",
.domains = XELPD_AUX_IO_E_XELPD_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = XELPD_PW_CTL_IDX_AUX_E,
},
},
{
.name = "AUX USBC1",
.domains = XELPD_AUX_IO_USBC1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC1,
.hsw.fixed_enable_delay = 600,
},
},
{
.name = "AUX USBC2",
.domains = XELPD_AUX_IO_USBC2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC2,
},
},
{
.name = "AUX USBC3",
.domains = XELPD_AUX_IO_USBC3_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC3,
},
},
{
.name = "AUX USBC4",
.domains = XELPD_AUX_IO_USBC4_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TC4,
},
},
{
.name = "AUX TBT1",
.domains = XELPD_AUX_IO_TBT1_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT1,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT2",
.domains = XELPD_AUX_IO_TBT2_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT2,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT3",
.domains = XELPD_AUX_IO_TBT3_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT3,
.hsw.is_tc_tbt = true,
},
},
{
.name = "AUX TBT4",
.domains = XELPD_AUX_IO_TBT4_POWER_DOMAINS,
.ops = &icl_aux_power_well_ops,
.id = DISP_PW_ID_NONE,
{
.hsw.regs = &icl_aux_power_well_regs,
.hsw.idx = TGL_PW_CTL_IDX_AUX_TBT4,
.hsw.is_tc_tbt = true,
},
},
};
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
int disable_power_well)
{
if (disable_power_well >= 0)
return !!disable_power_well;
return 1;
}
static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
int enable_dc)
{
u32 mask;
int requested_dc;
int max_dc;
if (!HAS_DISPLAY(dev_priv))
return 0;
if (IS_DG1(dev_priv))
max_dc = 3;
else if (DISPLAY_VER(dev_priv) >= 12)
max_dc = 4;
else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
max_dc = 1;
else if (DISPLAY_VER(dev_priv) >= 9)
max_dc = 2;
else
max_dc = 0;
/*
* DC9 has a separate HW flow from the rest of the DC states,
* not depending on the DMC firmware. It's needed by system
* suspend/resume, so allow it unconditionally.
*/
mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
DISPLAY_VER(dev_priv) >= 11 ?
DC_STATE_EN_DC9 : 0;
if (!dev_priv->params.disable_power_well)
max_dc = 0;
if (enable_dc >= 0 && enable_dc <= max_dc) {
requested_dc = enable_dc;
} else if (enable_dc == -1) {
requested_dc = max_dc;
} else if (enable_dc > max_dc && enable_dc <= 4) {
drm_dbg_kms(&dev_priv->drm,
"Adjusting requested max DC state (%d->%d)\n",
enable_dc, max_dc);
requested_dc = max_dc;
} else {
drm_err(&dev_priv->drm,
"Unexpected value for enable_dc (%d)\n", enable_dc);
requested_dc = max_dc;
}
switch (requested_dc) {
case 4:
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
break;
case 3:
mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
break;
case 2:
mask |= DC_STATE_EN_UPTO_DC6;
break;
case 1:
mask |= DC_STATE_EN_UPTO_DC5;
break;
}
drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
return mask;
}
static int
__set_power_wells(struct i915_power_domains *power_domains,
const struct i915_power_well_desc *power_well_descs,
int power_well_descs_sz, u64 skip_mask)
{
struct drm_i915_private *i915 = container_of(power_domains,
struct drm_i915_private,
power_domains);
u64 power_well_ids = 0;
int power_well_count = 0;
int i, plt_idx = 0;
for (i = 0; i < power_well_descs_sz; i++)
if (!(BIT_ULL(power_well_descs[i].id) & skip_mask))
power_well_count++;
power_domains->power_well_count = power_well_count;
power_domains->power_wells =
kcalloc(power_well_count,
sizeof(*power_domains->power_wells),
GFP_KERNEL);
if (!power_domains->power_wells)
return -ENOMEM;
for (i = 0; i < power_well_descs_sz; i++) {
enum i915_power_well_id id = power_well_descs[i].id;
if (BIT_ULL(id) & skip_mask)
continue;
power_domains->power_wells[plt_idx++].desc =
&power_well_descs[i];
if (id == DISP_PW_ID_NONE)
continue;
drm_WARN_ON(&i915->drm, id >= sizeof(power_well_ids) * 8);
drm_WARN_ON(&i915->drm, power_well_ids & BIT_ULL(id));
power_well_ids |= BIT_ULL(id);
}
return 0;
}
#define set_power_wells_mask(power_domains, __power_well_descs, skip_mask) \
__set_power_wells(power_domains, __power_well_descs, \
ARRAY_SIZE(__power_well_descs), skip_mask)
#define set_power_wells(power_domains, __power_well_descs) \
set_power_wells_mask(power_domains, __power_well_descs, 0)
/**
* intel_power_domains_init - initializes the power domain structures
* @dev_priv: i915 device instance
*
* Initializes the power domain structures for @dev_priv depending upon the
* supported platform.
*/
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
int err;
dev_priv->params.disable_power_well =
sanitize_disable_power_well_option(dev_priv,
dev_priv->params.disable_power_well);
dev_priv->dmc.allowed_dc_mask =
get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
dev_priv->dmc.target_dc_state =
sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
BUILD_BUG_ON(POWER_DOMAIN_NUM > 64);
mutex_init(&power_domains->lock);
INIT_DELAYED_WORK(&power_domains->async_put_work,
intel_display_power_put_async_work);
/*
* The enabling order will be from lower to higher indexed wells,
* the disabling order is reversed.
*/
if (!HAS_DISPLAY(dev_priv)) {
power_domains->power_well_count = 0;
err = 0;
} else if (DISPLAY_VER(dev_priv) >= 13) {
err = set_power_wells(power_domains, xelpd_power_wells);
} else if (IS_DG1(dev_priv)) {
err = set_power_wells(power_domains, dg1_power_wells);
} else if (IS_ALDERLAKE_S(dev_priv)) {
err = set_power_wells_mask(power_domains, tgl_power_wells,
BIT_ULL(TGL_DISP_PW_TC_COLD_OFF));
} else if (IS_ROCKETLAKE(dev_priv)) {
err = set_power_wells(power_domains, rkl_power_wells);
} else if (DISPLAY_VER(dev_priv) == 12) {
err = set_power_wells(power_domains, tgl_power_wells);
} else if (DISPLAY_VER(dev_priv) == 11) {
err = set_power_wells(power_domains, icl_power_wells);
} else if (IS_GEMINILAKE(dev_priv)) {
err = set_power_wells(power_domains, glk_power_wells);
} else if (IS_BROXTON(dev_priv)) {
err = set_power_wells(power_domains, bxt_power_wells);
} else if (DISPLAY_VER(dev_priv) == 9) {
err = set_power_wells(power_domains, skl_power_wells);
} else if (IS_CHERRYVIEW(dev_priv)) {
err = set_power_wells(power_domains, chv_power_wells);
} else if (IS_BROADWELL(dev_priv)) {
err = set_power_wells(power_domains, bdw_power_wells);
} else if (IS_HASWELL(dev_priv)) {
err = set_power_wells(power_domains, hsw_power_wells);
} else if (IS_VALLEYVIEW(dev_priv)) {
err = set_power_wells(power_domains, vlv_power_wells);
} else if (IS_I830(dev_priv)) {
err = set_power_wells(power_domains, i830_power_wells);
} else {
err = set_power_wells(power_domains, i9xx_always_on_power_well);
}
return err;
}
/**
* intel_power_domains_cleanup - clean up power domains resources
* @dev_priv: i915 device instance
*
* Release any resources acquired by intel_power_domains_init()
*/
void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
{
kfree(dev_priv->power_domains.power_wells);
}
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *power_well;
mutex_lock(&power_domains->lock);
for_each_power_well(dev_priv, power_well) {
power_well->desc->ops->sync_hw(dev_priv, power_well);
power_well->hw_enabled =
power_well->desc->ops->is_enabled(dev_priv, power_well);
}
mutex_unlock(&power_domains->lock);
}
static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
enum dbuf_slice slice, bool enable)
{
i915_reg_t reg = DBUF_CTL_S(slice);
bool state;
intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
enable ? DBUF_POWER_REQUEST : 0);
intel_de_posting_read(dev_priv, reg);
udelay(10);
state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
drm_WARN(&dev_priv->drm, enable != state,
"DBuf slice %d power %s timeout!\n",
slice, enabledisable(enable));
}
void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
u8 req_slices)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
u8 slice_mask = INTEL_INFO(dev_priv)->dbuf.slice_mask;
enum dbuf_slice slice;
drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
"Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
req_slices, slice_mask);
drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
req_slices);
/*
* Might be running this in parallel to gen9_dc_off_power_well_enable
* being called from intel_dp_detect for instance,
* which causes assertion triggered by race condition,
* as gen9_assert_dbuf_enabled might preempt this when registers
* were already updated, while dev_priv was not.
*/
mutex_lock(&power_domains->lock);
for_each_dbuf_slice(dev_priv, slice)
gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
dev_priv->dbuf.enabled_slices = req_slices;
mutex_unlock(&power_domains->lock);
}
static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
{
dev_priv->dbuf.enabled_slices =
intel_enabled_dbuf_slices_mask(dev_priv);
/*
* Just power up at least 1 slice, we will
* figure out later which slices we have and what we need.
*/
gen9_dbuf_slices_update(dev_priv, BIT(DBUF_S1) |
dev_priv->dbuf.enabled_slices);
}
static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
{
gen9_dbuf_slices_update(dev_priv, 0);
}
static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
{
enum dbuf_slice slice;
if (IS_ALDERLAKE_P(dev_priv))
return;
for_each_dbuf_slice(dev_priv, slice)
intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
DBUF_TRACKER_STATE_SERVICE_MASK,
DBUF_TRACKER_STATE_SERVICE(8));
}
static void icl_mbus_init(struct drm_i915_private *dev_priv)
{
unsigned long abox_regs = INTEL_INFO(dev_priv)->display.abox_mask;
u32 mask, val, i;
if (IS_ALDERLAKE_P(dev_priv))
return;
mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
MBUS_ABOX_BT_CREDIT_POOL2_MASK |
MBUS_ABOX_B_CREDIT_MASK |
MBUS_ABOX_BW_CREDIT_MASK;
val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
MBUS_ABOX_BT_CREDIT_POOL2(16) |
MBUS_ABOX_B_CREDIT(1) |
MBUS_ABOX_BW_CREDIT(1);
/*
* gen12 platforms that use abox1 and abox2 for pixel data reads still
* expect us to program the abox_ctl0 register as well, even though
* we don't have to program other instance-0 registers like BW_BUDDY.
*/
if (DISPLAY_VER(dev_priv) == 12)
abox_regs |= BIT(0);
for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
}
static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
{
u32 val = intel_de_read(dev_priv, LCPLL_CTL);
/*
* The LCPLL register should be turned on by the BIOS. For now
* let's just check its state and print errors in case
* something is wrong. Don't even try to turn it on.
*/
if (val & LCPLL_CD_SOURCE_FCLK)
drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
if (val & LCPLL_PLL_DISABLE)
drm_err(&dev_priv->drm, "LCPLL is disabled\n");
if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
}
static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = &dev_priv->drm;
struct intel_crtc *crtc;
for_each_intel_crtc(dev, crtc)
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
I915_STATE_WARN(intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
"Display power well on\n");
I915_STATE_WARN(intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
"SPLL enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
"WRPLL1 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
"WRPLL2 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
"Panel power on\n");
I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev_priv))
I915_STATE_WARN(intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
I915_STATE_WARN(intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
"PCH GTC enabled\n");
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
* interrupts remain enabled. We used to check for that, but since it's
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
{
if (IS_HASWELL(dev_priv))
return intel_de_read(dev_priv, D_COMP_HSW);
else
return intel_de_read(dev_priv, D_COMP_BDW);
}
static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
{
if (IS_HASWELL(dev_priv)) {
if (snb_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
drm_dbg_kms(&dev_priv->drm,
"Failed to write to D_COMP\n");
} else {
intel_de_write(dev_priv, D_COMP_BDW, val);
intel_de_posting_read(dev_priv, D_COMP_BDW);
}
}
/*
* This function implements pieces of two sequences from BSpec:
* - Sequence for display software to disable LCPLL
* - Sequence for display software to allow package C8+
* The steps implemented here are just the steps that actually touch the LCPLL
* register. Callers should take care of disabling all the display engine
* functions, doing the mode unset, fixing interrupts, etc.
*/
static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
bool switch_to_fclk, bool allow_power_down)
{
u32 val;
assert_can_disable_lcpll(dev_priv);
val = intel_de_read(dev_priv, LCPLL_CTL);
if (switch_to_fclk) {
val |= LCPLL_CD_SOURCE_FCLK;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
val = intel_de_read(dev_priv, LCPLL_CTL);
}
val |= LCPLL_PLL_DISABLE;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
drm_err(&dev_priv->drm, "LCPLL still locked\n");
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
ndelay(100);
if (wait_for((hsw_read_dcomp(dev_priv) &
D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
if (allow_power_down) {
val = intel_de_read(dev_priv, LCPLL_CTL);
val |= LCPLL_POWER_DOWN_ALLOW;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
}
}
/*
* Fully restores LCPLL, disallowing power down and switching back to LCPLL
* source.
*/
static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
{
u32 val;
val = intel_de_read(dev_priv, LCPLL_CTL);
if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
return;
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*/
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
intel_de_write(dev_priv, LCPLL_CTL, val);
intel_de_posting_read(dev_priv, LCPLL_CTL);
}
val = hsw_read_dcomp(dev_priv);
val |= D_COMP_COMP_FORCE;
val &= ~D_COMP_COMP_DISABLE;
hsw_write_dcomp(dev_priv, val);
val = intel_de_read(dev_priv, LCPLL_CTL);
val &= ~LCPLL_PLL_DISABLE;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
if (val & LCPLL_CD_SOURCE_FCLK) {
val = intel_de_read(dev_priv, LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
intel_de_write(dev_priv, LCPLL_CTL, val);
if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
drm_err(&dev_priv->drm,
"Switching back to LCPLL failed\n");
}
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
intel_update_cdclk(dev_priv);
intel_cdclk_dump_config(dev_priv, &dev_priv->cdclk.hw, "Current CDCLK");
}
/*
* Package states C8 and deeper are really deep PC states that can only be
* reached when all the devices on the system allow it, so even if the graphics
* device allows PC8+, it doesn't mean the system will actually get to these
* states. Our driver only allows PC8+ when going into runtime PM.
*
* The requirements for PC8+ are that all the outputs are disabled, the power
* well is disabled and most interrupts are disabled, and these are also
* requirements for runtime PM. When these conditions are met, we manually do
* the other conditions: disable the interrupts, clocks and switch LCPLL refclk
* to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
* hang the machine.
*
* When we really reach PC8 or deeper states (not just when we allow it) we lose
* the state of some registers, so when we come back from PC8+ we need to
* restore this state. We don't get into PC8+ if we're not in RC6, so we don't
* need to take care of the registers kept by RC6. Notice that this happens even
* if we don't put the device in PCI D3 state (which is what currently happens
* because of the runtime PM support).
*
* For more, read "Display Sequences for Package C8" on the hardware
* documentation.
*/
static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
if (HAS_PCH_LPT_LP(dev_priv)) {
val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
}
lpt_disable_clkout_dp(dev_priv);
hsw_disable_lcpll(dev_priv, true, true);
}
static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
{
u32 val;
drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
hsw_restore_lcpll(dev_priv);
intel_init_pch_refclk(dev_priv);
if (HAS_PCH_LPT_LP(dev_priv)) {
val = intel_de_read(dev_priv, SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
intel_de_write(dev_priv, SOUTH_DSPCLK_GATE_D, val);
}
}
static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
bool enable)
{
i915_reg_t reg;
u32 reset_bits, val;
if (IS_IVYBRIDGE(dev_priv)) {
reg = GEN7_MSG_CTL;
reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
} else {
reg = HSW_NDE_RSTWRN_OPT;
reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
}
val = intel_de_read(dev_priv, reg);
if (enable)
val |= reset_bits;
else
val &= ~reset_bits;
intel_de_write(dev_priv, reg, val);
}
static void skl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* enable PCH reset handshake */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
if (!HAS_DISPLAY(dev_priv))
return;
/* enable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
intel_cdclk_init_hw(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume && intel_dmc_has_payload(dev_priv))
intel_dmc_load_program(dev_priv);
}
static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
gen9_dbuf_disable(dev_priv);
intel_cdclk_uninit_hw(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/* disable PG1 and Misc I/O */
mutex_lock(&power_domains->lock);
/*
* BSpec says to keep the MISC IO power well enabled here, only
* remove our request for power well 1.
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/*
* NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
* or else the reset will hang because there is no PCH to respond.
* Move the handshake programming to initialization sequence.
* Previously was left up to BIOS.
*/
intel_pch_reset_handshake(dev_priv, false);
if (!HAS_DISPLAY(dev_priv))
return;
/* Enable PG1 */
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
intel_cdclk_init_hw(dev_priv);
gen9_dbuf_enable(dev_priv);
if (resume && intel_dmc_has_payload(dev_priv))
intel_dmc_load_program(dev_priv);
}
static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
gen9_dbuf_disable(dev_priv);
intel_cdclk_uninit_hw(dev_priv);
/* The spec doesn't call for removing the reset handshake flag */
/*
* Disable PW1 (PG1).
* Note that even though the driver's request is removed power well 1
* may stay enabled after this due to DMC's own request on it.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
usleep_range(10, 30); /* 10 us delay per Bspec */
}
struct buddy_page_mask {
u32 page_mask;
u8 type;
u8 num_channels;
};
static const struct buddy_page_mask tgl_buddy_page_masks[] = {
{ .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0xF },
{ .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0xF },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
{ .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x1F },
{ .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x1E },
{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
{}
};
static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_DDR4, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_DDR5, .page_mask = 0x1 },
{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_DDR4, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_DDR5, .page_mask = 0x3 },
{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
{}
};
static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
{
enum intel_dram_type type = dev_priv->dram_info.type;
u8 num_channels = dev_priv->dram_info.num_channels;
const struct buddy_page_mask *table;
unsigned long abox_mask = INTEL_INFO(dev_priv)->display.abox_mask;
int config, i;
/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
return;
if (IS_ALDERLAKE_S(dev_priv) ||
IS_DG1_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
IS_RKL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) ||
IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
/* Wa_1409767108:tgl,dg1,adl-s */
table = wa_1409767108_buddy_page_masks;
else
table = tgl_buddy_page_masks;
for (config = 0; table[config].page_mask != 0; config++)
if (table[config].num_channels == num_channels &&
table[config].type == type)
break;
if (table[config].page_mask == 0) {
drm_dbg(&dev_priv->drm,
"Unknown memory configuration; disabling address buddy logic.\n");
for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
intel_de_write(dev_priv, BW_BUDDY_CTL(i),
BW_BUDDY_DISABLE);
} else {
for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
table[config].page_mask);
/* Wa_22010178259:tgl,dg1,rkl,adl-s */
if (DISPLAY_VER(dev_priv) == 12)
intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
BW_BUDDY_TLB_REQ_TIMER_MASK,
BW_BUDDY_TLB_REQ_TIMER(0x8));
}
}
}
static void icl_display_core_init(struct drm_i915_private *dev_priv,
bool resume)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
u32 val;
gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
if (INTEL_PCH_TYPE(dev_priv) >= PCH_JSP &&
INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
/* 1. Enable PCH reset handshake. */
intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
if (!HAS_DISPLAY(dev_priv))
return;
/* 2. Initialize all combo phys */
intel_combo_phy_init(dev_priv);
/*
* 3. Enable Power Well 1 (PG1).
* The AUX IO power wells will be enabled on demand.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_enable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 4. Enable CDCLK. */
intel_cdclk_init_hw(dev_priv);
if (DISPLAY_VER(dev_priv) >= 12)
gen12_dbuf_slices_config(dev_priv);
/* 5. Enable DBUF. */
gen9_dbuf_enable(dev_priv);
/* 6. Setup MBUS. */
icl_mbus_init(dev_priv);
/* 7. Program arbiter BW_BUDDY registers */
if (DISPLAY_VER(dev_priv) >= 12)
tgl_bw_buddy_init(dev_priv);
/* 8. Ensure PHYs have completed calibration and adaptation */
if (IS_DG2(dev_priv))
intel_snps_phy_wait_for_calibration(dev_priv);
if (resume && intel_dmc_has_payload(dev_priv))
intel_dmc_load_program(dev_priv);
/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
if (DISPLAY_VER(dev_priv) >= 12) {
val = DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR;
intel_uncore_rmw(&dev_priv->uncore, GEN11_CHICKEN_DCPR_2, 0, val);
}
/* Wa_14011503030:xelpd */
if (DISPLAY_VER(dev_priv) >= 13)
intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
}
static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
{
struct i915_power_domains *power_domains = &dev_priv->power_domains;
struct i915_power_well *well;
if (!HAS_DISPLAY(dev_priv))
return;
gen9_disable_dc_states(dev_priv);
/* 1. Disable all display engine functions -> aready done */
/* 2. Disable DBUF */
gen9_dbuf_disable(dev_priv);
/* 3. Disable CD clock */
intel_cdclk_uninit_hw(dev_priv);
/*
* 4. Disable Power Well 1 (PG1).
* The AUX IO power wells are toggled on demand, so they are already
* disabled at this point.
*/
mutex_lock(&power_domains->lock);
well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
intel_power_well_disable(dev_priv, well);
mutex_unlock(&power_domains->lock);
/* 5. */
intel_combo_phy_uninit(dev_priv);
}
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn_bc =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *cmn_d =
lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
/*
* DISPLAY_PHY_CONTROL can get corrupted if read. As a
* workaround never ever read DISPLAY_PHY_CONTROL, and
* instead maintain a shadow copy ourselves. Use the actual
* power well state and lane status to reconstruct the
* expected initial value.
*/
dev_priv->chv_phy_control =
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
/*
* If all lanes are disabled we leave the override disabled
* with all power down bits cleared to match the state we
* would use after disabling the port. Otherwise enable the
* override and set the lane powerdown bits accding to the
* current lane status.
*/
if (cmn_bc->desc->ops->is_enabled(dev_priv, cmn_bc)) {
u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
unsigned int mask;
mask = status & DPLL_PORTB_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
mask = (status & DPLL_PORTC_READY_MASK) >> 4;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
dev_priv->chv_phy_assert[DPIO_PHY0] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY0] = true;
}
if (cmn_d->desc->ops->is_enabled(dev_priv, cmn_d)) {
u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
unsigned int mask;
mask = status & DPLL_PORTD_READY_MASK;
if (mask == 0xf)
mask = 0x0;
else
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |=
PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
dev_priv->chv_phy_assert[DPIO_PHY1] = false;
} else {
dev_priv->chv_phy_assert[DPIO_PHY1] = true;
}
drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
dev_priv->chv_phy_control);
/* Defer application of initial phy_control to enabling the powerwell */
}
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
struct i915_power_well *cmn =
lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
struct i915_power_well *disp2d =
lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
/* If the display might be already active skip this */
if (cmn->desc->ops->is_enabled(dev_priv, cmn) &&
disp2d->desc->ops->is_enabled(dev_priv, disp2d) &&
intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
return;
drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
/* cmnlane needs DPLL registers */
disp2d->desc->ops->enable(dev_priv, disp2d);
/*
* From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
* Need to assert and de-assert PHY SB reset by gating the
* common lane power, then un-gating it.
* Simply ungating isn't enough to reset the PHY enough to get
* ports and lanes running.
*/
cmn->desc->ops->disable(dev_priv, cmn);
}
static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
{
bool ret;
vlv_punit_get(dev_priv);
ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
vlv_punit_put(dev_priv);
return ret;
}
static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
{
drm_WARN(&dev_priv->drm,
!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
"VED not power gated\n");
}
static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
{
static const struct pci_device_id isp_ids[] = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
{}
};
drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
!vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
"ISP not power gated\n");
}
static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
/**
* intel_power_domains_init_hw - initialize hardware power domain state
* @i915: i915 device instance
* @resume: Called from resume code paths or not
*
* This function initializes the hardware power domain state and enables all
* power wells belonging to the INIT power domain. Power wells in other
* domains (and not in the INIT domain) are referenced or disabled by
* intel_modeset_readout_hw_state(). After that the reference count of each
* power well must match its HW enabled state, see
* intel_power_domains_verify_state().
*
* It will return with power domains disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_driver_remove().
*/
void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
{
struct i915_power_domains *power_domains = &i915->power_domains;
power_domains->initializing = true;
if (DISPLAY_VER(i915) >= 11) {
icl_display_core_init(i915, resume);
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_display_core_init(i915, resume);
} else if (DISPLAY_VER(i915) == 9) {
skl_display_core_init(i915, resume);
} else if (IS_CHERRYVIEW(i915)) {
mutex_lock(&power_domains->lock);
chv_phy_control_init(i915);
mutex_unlock(&power_domains->lock);
assert_isp_power_gated(i915);
} else if (IS_VALLEYVIEW(i915)) {
mutex_lock(&power_domains->lock);
vlv_cmnlane_wa(i915);
mutex_unlock(&power_domains->lock);
assert_ved_power_gated(i915);
assert_isp_power_gated(i915);
} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
hsw_assert_cdclk(i915);
intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
} else if (IS_IVYBRIDGE(i915)) {
intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
}
/*
* Keep all power wells enabled for any dependent HW access during
* initialization and to make sure we keep BIOS enabled display HW
* resources powered until display HW readout is complete. We drop
* this reference in intel_power_domains_enable().
*/
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
/* Disable power support if the user asked so. */
if (!i915->params.disable_power_well) {
drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
i915->power_domains.disable_wakeref = intel_display_power_get(i915,
POWER_DOMAIN_INIT);
}
intel_power_domains_sync_hw(i915);
power_domains->initializing = false;
}
/**
* intel_power_domains_driver_remove - deinitialize hw power domain state
* @i915: i915 device instance
*
* De-initializes the display power domain HW state. It also ensures that the
* device stays powered up so that the driver can be reloaded.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and must be paired with
* intel_power_domains_init_hw().
*/
void intel_power_domains_driver_remove(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.init_wakeref);
/* Remove the refcount we took to keep power well support disabled. */
if (!i915->params.disable_power_well)
intel_display_power_put(i915, POWER_DOMAIN_INIT,
fetch_and_zero(&i915->power_domains.disable_wakeref));
intel_display_power_flush_work_sync(i915);
intel_power_domains_verify_state(i915);
/* Keep the power well enabled, but cancel its rpm wakeref. */
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
}
/**
* intel_power_domains_sanitize_state - sanitize power domains state
* @i915: i915 device instance
*
* Sanitize the power domains state during driver loading and system resume.
* The function will disable all display power wells that BIOS has enabled
* without a user for it (any user for a power well has taken a reference
* on it by the time this function is called, after the state of all the
* pipe, encoder, etc. HW resources have been sanitized).
*/
void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
mutex_lock(&power_domains->lock);
for_each_power_well_reverse(i915, power_well) {
if (power_well->desc->always_on || power_well->count ||
!power_well->desc->ops->is_enabled(i915, power_well))
continue;
drm_dbg_kms(&i915->drm,
"BIOS left unused %s power well enabled, disabling it\n",
power_well->desc->name);
intel_power_well_disable(i915, power_well);
}
mutex_unlock(&power_domains->lock);
}
/**
* intel_power_domains_enable - enable toggling of display power wells
* @i915: i915 device instance
*
* Enable the ondemand enabling/disabling of the display power wells. Note that
* power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
* only at specific points of the display modeset sequence, thus they are not
* affected by the intel_power_domains_enable()/disable() calls. The purpose
* of these function is to keep the rest of power wells enabled until the end
* of display HW readout (which will acquire the power references reflecting
* the current HW state).
*/
void intel_power_domains_enable(struct drm_i915_private *i915)
{
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&i915->power_domains.init_wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_disable - disable toggling of display power wells
* @i915: i915 device instance
*
* Disable the ondemand enabling/disabling of the display power wells. See
* intel_power_domains_enable() for which power wells this call controls.
*/
void intel_power_domains_disable(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
intel_power_domains_verify_state(i915);
}
/**
* intel_power_domains_suspend - suspend power domain state
* @i915: i915 device instance
* @suspend_mode: specifies the target suspend state (idle, mem, hibernation)
*
* This function prepares the hardware power domain state before entering
* system suspend.
*
* It must be called with power domains already disabled (after a call to
* intel_power_domains_disable()) and paired with intel_power_domains_resume().
*/
void intel_power_domains_suspend(struct drm_i915_private *i915,
enum i915_drm_suspend_mode suspend_mode)
{
struct i915_power_domains *power_domains = &i915->power_domains;
intel_wakeref_t wakeref __maybe_unused =
fetch_and_zero(&power_domains->init_wakeref);
intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
/*
* In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
* support don't manually deinit the power domains. This also means the
* DMC firmware will stay active, it will power down any HW
* resources as required and also enable deeper system power states
* that would be blocked if the firmware was inactive.
*/
if (!(i915->dmc.allowed_dc_mask & DC_STATE_EN_DC9) &&
suspend_mode == I915_DRM_SUSPEND_IDLE &&
intel_dmc_has_payload(i915)) {
intel_display_power_flush_work(i915);
intel_power_domains_verify_state(i915);
return;
}
/*
* Even if power well support was disabled we still want to disable
* power wells if power domains must be deinitialized for suspend.
*/
if (!i915->params.disable_power_well)
intel_display_power_put(i915, POWER_DOMAIN_INIT,
fetch_and_zero(&i915->power_domains.disable_wakeref));
intel_display_power_flush_work(i915);
intel_power_domains_verify_state(i915);
if (DISPLAY_VER(i915) >= 11)
icl_display_core_uninit(i915);
else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
bxt_display_core_uninit(i915);
else if (DISPLAY_VER(i915) == 9)
skl_display_core_uninit(i915);
power_domains->display_core_suspended = true;
}
/**
* intel_power_domains_resume - resume power domain state
* @i915: i915 device instance
*
* This function resume the hardware power domain state during system resume.
*
* It will return with power domain support disabled (to be enabled later by
* intel_power_domains_enable()) and must be paired with
* intel_power_domains_suspend().
*/
void intel_power_domains_resume(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
if (power_domains->display_core_suspended) {
intel_power_domains_init_hw(i915, true);
power_domains->display_core_suspended = false;
} else {
drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
power_domains->init_wakeref =
intel_display_power_get(i915, POWER_DOMAIN_INIT);
}
intel_power_domains_verify_state(i915);
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
static void intel_power_domains_dump_info(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
drm_dbg(&i915->drm, "%-25s %d\n",
power_well->desc->name, power_well->count);
for_each_power_domain(domain, power_well->desc->domains)
drm_dbg(&i915->drm, " %-23s %d\n",
intel_display_power_domain_str(domain),
power_domains->domain_use_count[domain]);
}
}
/**
* intel_power_domains_verify_state - verify the HW/SW state for all power wells
* @i915: i915 device instance
*
* Verify if the reference count of each power well matches its HW enabled
* state and the total refcount of the domains it belongs to. This must be
* called after modeset HW state sanitization, which is responsible for
* acquiring reference counts for any power wells in use and disabling the
* ones left on by BIOS but not required by any active output.
*/
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
struct i915_power_domains *power_domains = &i915->power_domains;
struct i915_power_well *power_well;
bool dump_domain_info;
mutex_lock(&power_domains->lock);
verify_async_put_domains_state(power_domains);
dump_domain_info = false;
for_each_power_well(i915, power_well) {
enum intel_display_power_domain domain;
int domains_count;
bool enabled;
enabled = power_well->desc->ops->is_enabled(i915, power_well);
if ((power_well->count || power_well->desc->always_on) !=
enabled)
drm_err(&i915->drm,
"power well %s state mismatch (refcount %d/enabled %d)",
power_well->desc->name,
power_well->count, enabled);
domains_count = 0;
for_each_power_domain(domain, power_well->desc->domains)
domains_count += power_domains->domain_use_count[domain];
if (power_well->count != domains_count) {
drm_err(&i915->drm,
"power well %s refcount/domain refcount mismatch "
"(refcount %d/domains refcount %d)\n",
power_well->desc->name, power_well->count,
domains_count);
dump_domain_info = true;
}
}
if (dump_domain_info) {
static bool dumped;
if (!dumped) {
intel_power_domains_dump_info(i915);
dumped = true;
}
}
mutex_unlock(&power_domains->lock);
}
#else
static void intel_power_domains_verify_state(struct drm_i915_private *i915)
{
}
#endif
void intel_display_power_suspend_late(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
IS_BROXTON(i915)) {
bxt_enable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_enable_pc8(i915);
}
/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
}
void intel_display_power_resume_early(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
IS_BROXTON(i915)) {
gen9_sanitize_dc_state(i915);
bxt_disable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_disable_pc8(i915);
}
/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
}
void intel_display_power_suspend(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11) {
icl_display_core_uninit(i915);
bxt_enable_dc9(i915);
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_display_core_uninit(i915);
bxt_enable_dc9(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_enable_pc8(i915);
}
}
void intel_display_power_resume(struct drm_i915_private *i915)
{
if (DISPLAY_VER(i915) >= 11) {
bxt_disable_dc9(i915);
icl_display_core_init(i915, true);
if (intel_dmc_has_payload(i915)) {
if (i915->dmc.allowed_dc_mask &
DC_STATE_EN_UPTO_DC6)
skl_enable_dc6(i915);
else if (i915->dmc.allowed_dc_mask &
DC_STATE_EN_UPTO_DC5)
gen9_enable_dc5(i915);
}
} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
bxt_disable_dc9(i915);
bxt_display_core_init(i915, true);
if (intel_dmc_has_payload(i915) &&
(i915->dmc.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
gen9_enable_dc5(i915);
} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
hsw_disable_pc8(i915);
}
}
void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
{
struct i915_power_domains *power_domains = &i915->power_domains;
int i;
mutex_lock(&power_domains->lock);
seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
for (i = 0; i < power_domains->power_well_count; i++) {
struct i915_power_well *power_well;
enum intel_display_power_domain power_domain;
power_well = &power_domains->power_wells[i];
seq_printf(m, "%-25s %d\n", power_well->desc->name,
power_well->count);
for_each_power_domain(power_domain, power_well->desc->domains)
seq_printf(m, " %-23s %d\n",
intel_display_power_domain_str(power_domain),
power_domains->domain_use_count[power_domain]);
}
mutex_unlock(&power_domains->lock);
}