mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-31 00:17:44 +00:00
1213375077
All the timestamps in vfat_create() and vfat_mkdir() come from fat_time_fat2unix() which ensures time granularity. We don't need to truncate them to fit FAT's format. Moreover, fat_truncate_crtime() and fat_timespec64_trunc_10ms() are also removed because there is no caller anymore. Link: https://lkml.kernel.org/r/20220503152536.2503003-4-cccheng@synology.com Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com> Acked-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
377 lines
10 KiB
C
377 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/fs/fat/misc.c
|
|
*
|
|
* Written 1992,1993 by Werner Almesberger
|
|
* 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
|
|
* and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
|
|
*/
|
|
|
|
#include "fat.h"
|
|
#include <linux/iversion.h>
|
|
|
|
/*
|
|
* fat_fs_error reports a file system problem that might indicate fa data
|
|
* corruption/inconsistency. Depending on 'errors' mount option the
|
|
* panic() is called, or error message is printed FAT and nothing is done,
|
|
* or filesystem is remounted read-only (default behavior).
|
|
* In case the file system is remounted read-only, it can be made writable
|
|
* again by remounting it.
|
|
*/
|
|
void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
|
|
{
|
|
struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
|
|
va_list args;
|
|
struct va_format vaf;
|
|
|
|
if (report) {
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
if (opts->errors == FAT_ERRORS_PANIC)
|
|
panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
|
|
else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
|
|
sb->s_flags |= SB_RDONLY;
|
|
fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fat_fs_error);
|
|
|
|
/**
|
|
* _fat_msg() - Print a preformatted FAT message based on a superblock.
|
|
* @sb: A pointer to a &struct super_block
|
|
* @level: A Kernel printk level constant
|
|
* @fmt: The printf-style format string to print.
|
|
*
|
|
* Everything that is not fat_fs_error() should be fat_msg().
|
|
*
|
|
* fat_msg() wraps _fat_msg() for printk indexing.
|
|
*/
|
|
void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
_printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
|
|
va_end(args);
|
|
}
|
|
|
|
/* Flushes the number of free clusters on FAT32 */
|
|
/* XXX: Need to write one per FSINFO block. Currently only writes 1 */
|
|
int fat_clusters_flush(struct super_block *sb)
|
|
{
|
|
struct msdos_sb_info *sbi = MSDOS_SB(sb);
|
|
struct buffer_head *bh;
|
|
struct fat_boot_fsinfo *fsinfo;
|
|
|
|
if (!is_fat32(sbi))
|
|
return 0;
|
|
|
|
bh = sb_bread(sb, sbi->fsinfo_sector);
|
|
if (bh == NULL) {
|
|
fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
|
|
return -EIO;
|
|
}
|
|
|
|
fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
|
|
/* Sanity check */
|
|
if (!IS_FSINFO(fsinfo)) {
|
|
fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
|
|
"0x%08x, 0x%08x (sector = %lu)",
|
|
le32_to_cpu(fsinfo->signature1),
|
|
le32_to_cpu(fsinfo->signature2),
|
|
sbi->fsinfo_sector);
|
|
} else {
|
|
if (sbi->free_clusters != -1)
|
|
fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
|
|
if (sbi->prev_free != -1)
|
|
fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
|
|
mark_buffer_dirty(bh);
|
|
}
|
|
brelse(bh);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* fat_chain_add() adds a new cluster to the chain of clusters represented
|
|
* by inode.
|
|
*/
|
|
int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct msdos_sb_info *sbi = MSDOS_SB(sb);
|
|
int ret, new_fclus, last;
|
|
|
|
/*
|
|
* We must locate the last cluster of the file to add this new
|
|
* one (new_dclus) to the end of the link list (the FAT).
|
|
*/
|
|
last = new_fclus = 0;
|
|
if (MSDOS_I(inode)->i_start) {
|
|
int fclus, dclus;
|
|
|
|
ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
|
|
if (ret < 0)
|
|
return ret;
|
|
new_fclus = fclus + 1;
|
|
last = dclus;
|
|
}
|
|
|
|
/* add new one to the last of the cluster chain */
|
|
if (last) {
|
|
struct fat_entry fatent;
|
|
|
|
fatent_init(&fatent);
|
|
ret = fat_ent_read(inode, &fatent, last);
|
|
if (ret >= 0) {
|
|
int wait = inode_needs_sync(inode);
|
|
ret = fat_ent_write(inode, &fatent, new_dclus, wait);
|
|
fatent_brelse(&fatent);
|
|
}
|
|
if (ret < 0)
|
|
return ret;
|
|
/*
|
|
* FIXME:Although we can add this cache, fat_cache_add() is
|
|
* assuming to be called after linear search with fat_cache_id.
|
|
*/
|
|
// fat_cache_add(inode, new_fclus, new_dclus);
|
|
} else {
|
|
MSDOS_I(inode)->i_start = new_dclus;
|
|
MSDOS_I(inode)->i_logstart = new_dclus;
|
|
/*
|
|
* Since generic_write_sync() synchronizes regular files later,
|
|
* we sync here only directories.
|
|
*/
|
|
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
|
|
ret = fat_sync_inode(inode);
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
mark_inode_dirty(inode);
|
|
}
|
|
if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
|
|
fat_fs_error(sb, "clusters badly computed (%d != %llu)",
|
|
new_fclus,
|
|
(llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
|
|
fat_cache_inval_inode(inode);
|
|
}
|
|
inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The epoch of FAT timestamp is 1980.
|
|
* : bits : value
|
|
* date: 0 - 4: day (1 - 31)
|
|
* date: 5 - 8: month (1 - 12)
|
|
* date: 9 - 15: year (0 - 127) from 1980
|
|
* time: 0 - 4: sec (0 - 29) 2sec counts
|
|
* time: 5 - 10: min (0 - 59)
|
|
* time: 11 - 15: hour (0 - 23)
|
|
*/
|
|
#define SECS_PER_MIN 60
|
|
#define SECS_PER_HOUR (60 * 60)
|
|
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
|
|
/* days between 1.1.70 and 1.1.80 (2 leap days) */
|
|
#define DAYS_DELTA (365 * 10 + 2)
|
|
/* 120 (2100 - 1980) isn't leap year */
|
|
#define YEAR_2100 120
|
|
#define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
|
|
|
|
/* Linear day numbers of the respective 1sts in non-leap years. */
|
|
static long days_in_year[] = {
|
|
/* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
|
|
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
|
|
};
|
|
|
|
static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
|
|
{
|
|
return (sbi->options.tz_set ?
|
|
-sbi->options.time_offset :
|
|
sys_tz.tz_minuteswest) * SECS_PER_MIN;
|
|
}
|
|
|
|
/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
|
|
void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
|
|
__le16 __time, __le16 __date, u8 time_cs)
|
|
{
|
|
u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
|
|
time64_t second;
|
|
long day, leap_day, month, year;
|
|
|
|
year = date >> 9;
|
|
month = max(1, (date >> 5) & 0xf);
|
|
day = max(1, date & 0x1f) - 1;
|
|
|
|
leap_day = (year + 3) / 4;
|
|
if (year > YEAR_2100) /* 2100 isn't leap year */
|
|
leap_day--;
|
|
if (IS_LEAP_YEAR(year) && month > 2)
|
|
leap_day++;
|
|
|
|
second = (time & 0x1f) << 1;
|
|
second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
|
|
second += (time >> 11) * SECS_PER_HOUR;
|
|
second += (time64_t)(year * 365 + leap_day
|
|
+ days_in_year[month] + day
|
|
+ DAYS_DELTA) * SECS_PER_DAY;
|
|
|
|
second += fat_tz_offset(sbi);
|
|
|
|
if (time_cs) {
|
|
ts->tv_sec = second + (time_cs / 100);
|
|
ts->tv_nsec = (time_cs % 100) * 10000000;
|
|
} else {
|
|
ts->tv_sec = second;
|
|
ts->tv_nsec = 0;
|
|
}
|
|
}
|
|
|
|
/* Export fat_time_fat2unix() for the fat_test KUnit tests. */
|
|
EXPORT_SYMBOL_GPL(fat_time_fat2unix);
|
|
|
|
/* Convert linear UNIX date to a FAT time/date pair. */
|
|
void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
|
|
__le16 *time, __le16 *date, u8 *time_cs)
|
|
{
|
|
struct tm tm;
|
|
time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
|
|
|
|
/* FAT can only support year between 1980 to 2107 */
|
|
if (tm.tm_year < 1980 - 1900) {
|
|
*time = 0;
|
|
*date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
|
|
if (time_cs)
|
|
*time_cs = 0;
|
|
return;
|
|
}
|
|
if (tm.tm_year > 2107 - 1900) {
|
|
*time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
|
|
*date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
|
|
if (time_cs)
|
|
*time_cs = 199;
|
|
return;
|
|
}
|
|
|
|
/* from 1900 -> from 1980 */
|
|
tm.tm_year -= 80;
|
|
/* 0~11 -> 1~12 */
|
|
tm.tm_mon++;
|
|
/* 0~59 -> 0~29(2sec counts) */
|
|
tm.tm_sec >>= 1;
|
|
|
|
*time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
|
|
*date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
|
|
if (time_cs)
|
|
*time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fat_time_unix2fat);
|
|
|
|
static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
|
|
{
|
|
return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
|
|
}
|
|
|
|
/*
|
|
* truncate atime to 24 hour granularity (00:00:00 in local timezone)
|
|
*/
|
|
struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
|
|
const struct timespec64 *ts)
|
|
{
|
|
/* to localtime */
|
|
time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
|
|
s32 remainder;
|
|
|
|
div_s64_rem(seconds, SECS_PER_DAY, &remainder);
|
|
/* to day boundary, and back to unix time */
|
|
seconds = seconds + fat_tz_offset(sbi) - remainder;
|
|
|
|
return (struct timespec64){ seconds, 0 };
|
|
}
|
|
|
|
/*
|
|
* truncate mtime to 2 second granularity
|
|
*/
|
|
struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
|
|
const struct timespec64 *ts)
|
|
{
|
|
return fat_timespec64_trunc_2secs(*ts);
|
|
}
|
|
|
|
/*
|
|
* truncate the various times with appropriate granularity:
|
|
* all times in root node are always 0
|
|
*/
|
|
int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
|
|
{
|
|
struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
|
|
struct timespec64 ts;
|
|
|
|
if (inode->i_ino == MSDOS_ROOT_INO)
|
|
return 0;
|
|
|
|
if (now == NULL) {
|
|
now = &ts;
|
|
ts = current_time(inode);
|
|
}
|
|
|
|
if (flags & S_ATIME)
|
|
inode->i_atime = fat_truncate_atime(sbi, now);
|
|
/*
|
|
* ctime and mtime share the same on-disk field, and should be
|
|
* identical in memory. all mtime updates will be applied to ctime,
|
|
* but ctime updates are ignored.
|
|
*/
|
|
if (flags & S_MTIME)
|
|
inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fat_truncate_time);
|
|
|
|
int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
|
|
{
|
|
int dirty_flags = 0;
|
|
|
|
if (inode->i_ino == MSDOS_ROOT_INO)
|
|
return 0;
|
|
|
|
if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
|
|
fat_truncate_time(inode, now, flags);
|
|
if (inode->i_sb->s_flags & SB_LAZYTIME)
|
|
dirty_flags |= I_DIRTY_TIME;
|
|
else
|
|
dirty_flags |= I_DIRTY_SYNC;
|
|
}
|
|
|
|
if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
|
|
dirty_flags |= I_DIRTY_SYNC;
|
|
|
|
__mark_inode_dirty(inode, dirty_flags);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fat_update_time);
|
|
|
|
int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
|
|
{
|
|
int i, err = 0;
|
|
|
|
for (i = 0; i < nr_bhs; i++)
|
|
write_dirty_buffer(bhs[i], 0);
|
|
|
|
for (i = 0; i < nr_bhs; i++) {
|
|
wait_on_buffer(bhs[i]);
|
|
if (!err && !buffer_uptodate(bhs[i]))
|
|
err = -EIO;
|
|
}
|
|
return err;
|
|
}
|