linux-stable/fs/xfs/xfs_mount.c
David Sterba 45c51b9994 xfs: cleanup duplicate initializations
follow these guidelines:
- leave initialization in the declaration block if it fits the line
- move to the code where it's more suitable ('for' init block)

The last chunk was modified from David's original to be a correct
fix for what appeared to be a duplicate initialization.

Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2011-04-28 13:25:29 -05:00

2594 lines
67 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_rtalloc.h"
#include "xfs_bmap.h"
#include "xfs_error.h"
#include "xfs_rw.h"
#include "xfs_quota.h"
#include "xfs_fsops.h"
#include "xfs_utils.h"
#include "xfs_trace.h"
STATIC void xfs_unmountfs_wait(xfs_mount_t *);
#ifdef HAVE_PERCPU_SB
STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
int);
STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
int);
STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
#else
#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
#endif
static const struct {
short offset;
short type; /* 0 = integer
* 1 = binary / string (no translation)
*/
} xfs_sb_info[] = {
{ offsetof(xfs_sb_t, sb_magicnum), 0 },
{ offsetof(xfs_sb_t, sb_blocksize), 0 },
{ offsetof(xfs_sb_t, sb_dblocks), 0 },
{ offsetof(xfs_sb_t, sb_rblocks), 0 },
{ offsetof(xfs_sb_t, sb_rextents), 0 },
{ offsetof(xfs_sb_t, sb_uuid), 1 },
{ offsetof(xfs_sb_t, sb_logstart), 0 },
{ offsetof(xfs_sb_t, sb_rootino), 0 },
{ offsetof(xfs_sb_t, sb_rbmino), 0 },
{ offsetof(xfs_sb_t, sb_rsumino), 0 },
{ offsetof(xfs_sb_t, sb_rextsize), 0 },
{ offsetof(xfs_sb_t, sb_agblocks), 0 },
{ offsetof(xfs_sb_t, sb_agcount), 0 },
{ offsetof(xfs_sb_t, sb_rbmblocks), 0 },
{ offsetof(xfs_sb_t, sb_logblocks), 0 },
{ offsetof(xfs_sb_t, sb_versionnum), 0 },
{ offsetof(xfs_sb_t, sb_sectsize), 0 },
{ offsetof(xfs_sb_t, sb_inodesize), 0 },
{ offsetof(xfs_sb_t, sb_inopblock), 0 },
{ offsetof(xfs_sb_t, sb_fname[0]), 1 },
{ offsetof(xfs_sb_t, sb_blocklog), 0 },
{ offsetof(xfs_sb_t, sb_sectlog), 0 },
{ offsetof(xfs_sb_t, sb_inodelog), 0 },
{ offsetof(xfs_sb_t, sb_inopblog), 0 },
{ offsetof(xfs_sb_t, sb_agblklog), 0 },
{ offsetof(xfs_sb_t, sb_rextslog), 0 },
{ offsetof(xfs_sb_t, sb_inprogress), 0 },
{ offsetof(xfs_sb_t, sb_imax_pct), 0 },
{ offsetof(xfs_sb_t, sb_icount), 0 },
{ offsetof(xfs_sb_t, sb_ifree), 0 },
{ offsetof(xfs_sb_t, sb_fdblocks), 0 },
{ offsetof(xfs_sb_t, sb_frextents), 0 },
{ offsetof(xfs_sb_t, sb_uquotino), 0 },
{ offsetof(xfs_sb_t, sb_gquotino), 0 },
{ offsetof(xfs_sb_t, sb_qflags), 0 },
{ offsetof(xfs_sb_t, sb_flags), 0 },
{ offsetof(xfs_sb_t, sb_shared_vn), 0 },
{ offsetof(xfs_sb_t, sb_inoalignmt), 0 },
{ offsetof(xfs_sb_t, sb_unit), 0 },
{ offsetof(xfs_sb_t, sb_width), 0 },
{ offsetof(xfs_sb_t, sb_dirblklog), 0 },
{ offsetof(xfs_sb_t, sb_logsectlog), 0 },
{ offsetof(xfs_sb_t, sb_logsectsize),0 },
{ offsetof(xfs_sb_t, sb_logsunit), 0 },
{ offsetof(xfs_sb_t, sb_features2), 0 },
{ offsetof(xfs_sb_t, sb_bad_features2), 0 },
{ sizeof(xfs_sb_t), 0 }
};
static DEFINE_MUTEX(xfs_uuid_table_mutex);
static int xfs_uuid_table_size;
static uuid_t *xfs_uuid_table;
/*
* See if the UUID is unique among mounted XFS filesystems.
* Mount fails if UUID is nil or a FS with the same UUID is already mounted.
*/
STATIC int
xfs_uuid_mount(
struct xfs_mount *mp)
{
uuid_t *uuid = &mp->m_sb.sb_uuid;
int hole, i;
if (mp->m_flags & XFS_MOUNT_NOUUID)
return 0;
if (uuid_is_nil(uuid)) {
xfs_warn(mp, "Filesystem has nil UUID - can't mount");
return XFS_ERROR(EINVAL);
}
mutex_lock(&xfs_uuid_table_mutex);
for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
if (uuid_is_nil(&xfs_uuid_table[i])) {
hole = i;
continue;
}
if (uuid_equal(uuid, &xfs_uuid_table[i]))
goto out_duplicate;
}
if (hole < 0) {
xfs_uuid_table = kmem_realloc(xfs_uuid_table,
(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
xfs_uuid_table_size * sizeof(*xfs_uuid_table),
KM_SLEEP);
hole = xfs_uuid_table_size++;
}
xfs_uuid_table[hole] = *uuid;
mutex_unlock(&xfs_uuid_table_mutex);
return 0;
out_duplicate:
mutex_unlock(&xfs_uuid_table_mutex);
xfs_warn(mp, "Filesystem has duplicate UUID - can't mount");
return XFS_ERROR(EINVAL);
}
STATIC void
xfs_uuid_unmount(
struct xfs_mount *mp)
{
uuid_t *uuid = &mp->m_sb.sb_uuid;
int i;
if (mp->m_flags & XFS_MOUNT_NOUUID)
return;
mutex_lock(&xfs_uuid_table_mutex);
for (i = 0; i < xfs_uuid_table_size; i++) {
if (uuid_is_nil(&xfs_uuid_table[i]))
continue;
if (!uuid_equal(uuid, &xfs_uuid_table[i]))
continue;
memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
break;
}
ASSERT(i < xfs_uuid_table_size);
mutex_unlock(&xfs_uuid_table_mutex);
}
/*
* Reference counting access wrappers to the perag structures.
* Because we never free per-ag structures, the only thing we
* have to protect against changes is the tree structure itself.
*/
struct xfs_perag *
xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
{
struct xfs_perag *pag;
int ref = 0;
rcu_read_lock();
pag = radix_tree_lookup(&mp->m_perag_tree, agno);
if (pag) {
ASSERT(atomic_read(&pag->pag_ref) >= 0);
ref = atomic_inc_return(&pag->pag_ref);
}
rcu_read_unlock();
trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
return pag;
}
/*
* search from @first to find the next perag with the given tag set.
*/
struct xfs_perag *
xfs_perag_get_tag(
struct xfs_mount *mp,
xfs_agnumber_t first,
int tag)
{
struct xfs_perag *pag;
int found;
int ref;
rcu_read_lock();
found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
(void **)&pag, first, 1, tag);
if (found <= 0) {
rcu_read_unlock();
return NULL;
}
ref = atomic_inc_return(&pag->pag_ref);
rcu_read_unlock();
trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
return pag;
}
void
xfs_perag_put(struct xfs_perag *pag)
{
int ref;
ASSERT(atomic_read(&pag->pag_ref) > 0);
ref = atomic_dec_return(&pag->pag_ref);
trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
}
STATIC void
__xfs_free_perag(
struct rcu_head *head)
{
struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
ASSERT(atomic_read(&pag->pag_ref) == 0);
kmem_free(pag);
}
/*
* Free up the per-ag resources associated with the mount structure.
*/
STATIC void
xfs_free_perag(
xfs_mount_t *mp)
{
xfs_agnumber_t agno;
struct xfs_perag *pag;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
spin_lock(&mp->m_perag_lock);
pag = radix_tree_delete(&mp->m_perag_tree, agno);
spin_unlock(&mp->m_perag_lock);
ASSERT(pag);
ASSERT(atomic_read(&pag->pag_ref) == 0);
call_rcu(&pag->rcu_head, __xfs_free_perag);
}
}
/*
* Check size of device based on the (data/realtime) block count.
* Note: this check is used by the growfs code as well as mount.
*/
int
xfs_sb_validate_fsb_count(
xfs_sb_t *sbp,
__uint64_t nblocks)
{
ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
ASSERT(sbp->sb_blocklog >= BBSHIFT);
#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
return EFBIG;
#else /* Limited by UINT_MAX of sectors */
if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
return EFBIG;
#endif
return 0;
}
/*
* Check the validity of the SB found.
*/
STATIC int
xfs_mount_validate_sb(
xfs_mount_t *mp,
xfs_sb_t *sbp,
int flags)
{
int loud = !(flags & XFS_MFSI_QUIET);
/*
* If the log device and data device have the
* same device number, the log is internal.
* Consequently, the sb_logstart should be non-zero. If
* we have a zero sb_logstart in this case, we may be trying to mount
* a volume filesystem in a non-volume manner.
*/
if (sbp->sb_magicnum != XFS_SB_MAGIC) {
if (loud)
xfs_warn(mp, "bad magic number");
return XFS_ERROR(EWRONGFS);
}
if (!xfs_sb_good_version(sbp)) {
if (loud)
xfs_warn(mp, "bad version");
return XFS_ERROR(EWRONGFS);
}
if (unlikely(
sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
if (loud)
xfs_warn(mp,
"filesystem is marked as having an external log; "
"specify logdev on the mount command line.");
return XFS_ERROR(EINVAL);
}
if (unlikely(
sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
if (loud)
xfs_warn(mp,
"filesystem is marked as having an internal log; "
"do not specify logdev on the mount command line.");
return XFS_ERROR(EINVAL);
}
/*
* More sanity checking. These were stolen directly from
* xfs_repair.
*/
if (unlikely(
sbp->sb_agcount <= 0 ||
sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
(sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
(sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
(sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
(sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
if (loud)
xfs_warn(mp, "SB sanity check 1 failed");
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Sanity check AG count, size fields against data size field
*/
if (unlikely(
sbp->sb_dblocks == 0 ||
sbp->sb_dblocks >
(xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
if (loud)
xfs_warn(mp, "SB sanity check 2 failed");
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Until this is fixed only page-sized or smaller data blocks work.
*/
if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
if (loud) {
xfs_warn(mp,
"File system with blocksize %d bytes. "
"Only pagesize (%ld) or less will currently work.",
sbp->sb_blocksize, PAGE_SIZE);
}
return XFS_ERROR(ENOSYS);
}
/*
* Currently only very few inode sizes are supported.
*/
switch (sbp->sb_inodesize) {
case 256:
case 512:
case 1024:
case 2048:
break;
default:
if (loud)
xfs_warn(mp, "inode size of %d bytes not supported",
sbp->sb_inodesize);
return XFS_ERROR(ENOSYS);
}
if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
if (loud)
xfs_warn(mp,
"file system too large to be mounted on this system.");
return XFS_ERROR(EFBIG);
}
if (unlikely(sbp->sb_inprogress)) {
if (loud)
xfs_warn(mp, "file system busy");
return XFS_ERROR(EFSCORRUPTED);
}
/*
* Version 1 directory format has never worked on Linux.
*/
if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
if (loud)
xfs_warn(mp,
"file system using version 1 directory format");
return XFS_ERROR(ENOSYS);
}
return 0;
}
int
xfs_initialize_perag(
xfs_mount_t *mp,
xfs_agnumber_t agcount,
xfs_agnumber_t *maxagi)
{
xfs_agnumber_t index, max_metadata;
xfs_agnumber_t first_initialised = 0;
xfs_perag_t *pag;
xfs_agino_t agino;
xfs_ino_t ino;
xfs_sb_t *sbp = &mp->m_sb;
int error = -ENOMEM;
/*
* Walk the current per-ag tree so we don't try to initialise AGs
* that already exist (growfs case). Allocate and insert all the
* AGs we don't find ready for initialisation.
*/
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
if (pag) {
xfs_perag_put(pag);
continue;
}
if (!first_initialised)
first_initialised = index;
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
if (!pag)
goto out_unwind;
pag->pag_agno = index;
pag->pag_mount = mp;
spin_lock_init(&pag->pag_ici_lock);
mutex_init(&pag->pag_ici_reclaim_lock);
INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
spin_lock_init(&pag->pag_buf_lock);
pag->pag_buf_tree = RB_ROOT;
if (radix_tree_preload(GFP_NOFS))
goto out_unwind;
spin_lock(&mp->m_perag_lock);
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
BUG();
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
error = -EEXIST;
goto out_unwind;
}
spin_unlock(&mp->m_perag_lock);
radix_tree_preload_end();
}
/*
* If we mount with the inode64 option, or no inode overflows
* the legacy 32-bit address space clear the inode32 option.
*/
agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
mp->m_flags |= XFS_MOUNT_32BITINODES;
else
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage.
*/
if (mp->m_maxicount) {
__uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
for (index = 0; index < agcount; index++) {
ino = XFS_AGINO_TO_INO(mp, index, agino);
if (ino > XFS_MAXINUMBER_32) {
index++;
break;
}
pag = xfs_perag_get(mp, index);
pag->pagi_inodeok = 1;
if (index < max_metadata)
pag->pagf_metadata = 1;
xfs_perag_put(pag);
}
} else {
for (index = 0; index < agcount; index++) {
pag = xfs_perag_get(mp, index);
pag->pagi_inodeok = 1;
xfs_perag_put(pag);
}
}
if (maxagi)
*maxagi = index;
return 0;
out_unwind:
kmem_free(pag);
for (; index > first_initialised; index--) {
pag = radix_tree_delete(&mp->m_perag_tree, index);
kmem_free(pag);
}
return error;
}
void
xfs_sb_from_disk(
xfs_sb_t *to,
xfs_dsb_t *from)
{
to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
to->sb_rextents = be64_to_cpu(from->sb_rextents);
memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
to->sb_logstart = be64_to_cpu(from->sb_logstart);
to->sb_rootino = be64_to_cpu(from->sb_rootino);
to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
to->sb_agcount = be32_to_cpu(from->sb_agcount);
to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
to->sb_blocklog = from->sb_blocklog;
to->sb_sectlog = from->sb_sectlog;
to->sb_inodelog = from->sb_inodelog;
to->sb_inopblog = from->sb_inopblog;
to->sb_agblklog = from->sb_agblklog;
to->sb_rextslog = from->sb_rextslog;
to->sb_inprogress = from->sb_inprogress;
to->sb_imax_pct = from->sb_imax_pct;
to->sb_icount = be64_to_cpu(from->sb_icount);
to->sb_ifree = be64_to_cpu(from->sb_ifree);
to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
to->sb_frextents = be64_to_cpu(from->sb_frextents);
to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
to->sb_qflags = be16_to_cpu(from->sb_qflags);
to->sb_flags = from->sb_flags;
to->sb_shared_vn = from->sb_shared_vn;
to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
to->sb_unit = be32_to_cpu(from->sb_unit);
to->sb_width = be32_to_cpu(from->sb_width);
to->sb_dirblklog = from->sb_dirblklog;
to->sb_logsectlog = from->sb_logsectlog;
to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
to->sb_features2 = be32_to_cpu(from->sb_features2);
to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
}
/*
* Copy in core superblock to ondisk one.
*
* The fields argument is mask of superblock fields to copy.
*/
void
xfs_sb_to_disk(
xfs_dsb_t *to,
xfs_sb_t *from,
__int64_t fields)
{
xfs_caddr_t to_ptr = (xfs_caddr_t)to;
xfs_caddr_t from_ptr = (xfs_caddr_t)from;
xfs_sb_field_t f;
int first;
int size;
ASSERT(fields);
if (!fields)
return;
while (fields) {
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
first = xfs_sb_info[f].offset;
size = xfs_sb_info[f + 1].offset - first;
ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
if (size == 1 || xfs_sb_info[f].type == 1) {
memcpy(to_ptr + first, from_ptr + first, size);
} else {
switch (size) {
case 2:
*(__be16 *)(to_ptr + first) =
cpu_to_be16(*(__u16 *)(from_ptr + first));
break;
case 4:
*(__be32 *)(to_ptr + first) =
cpu_to_be32(*(__u32 *)(from_ptr + first));
break;
case 8:
*(__be64 *)(to_ptr + first) =
cpu_to_be64(*(__u64 *)(from_ptr + first));
break;
default:
ASSERT(0);
}
}
fields &= ~(1LL << f);
}
}
/*
* xfs_readsb
*
* Does the initial read of the superblock.
*/
int
xfs_readsb(xfs_mount_t *mp, int flags)
{
unsigned int sector_size;
xfs_buf_t *bp;
int error;
int loud = !(flags & XFS_MFSI_QUIET);
ASSERT(mp->m_sb_bp == NULL);
ASSERT(mp->m_ddev_targp != NULL);
/*
* Allocate a (locked) buffer to hold the superblock.
* This will be kept around at all times to optimize
* access to the superblock.
*/
sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
reread:
bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
XFS_SB_DADDR, sector_size, 0);
if (!bp) {
if (loud)
xfs_warn(mp, "SB buffer read failed");
return EIO;
}
/*
* Initialize the mount structure from the superblock.
* But first do some basic consistency checking.
*/
xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
if (error) {
if (loud)
xfs_warn(mp, "SB validate failed");
goto release_buf;
}
/*
* We must be able to do sector-sized and sector-aligned IO.
*/
if (sector_size > mp->m_sb.sb_sectsize) {
if (loud)
xfs_warn(mp, "device supports %u byte sectors (not %u)",
sector_size, mp->m_sb.sb_sectsize);
error = ENOSYS;
goto release_buf;
}
/*
* If device sector size is smaller than the superblock size,
* re-read the superblock so the buffer is correctly sized.
*/
if (sector_size < mp->m_sb.sb_sectsize) {
xfs_buf_relse(bp);
sector_size = mp->m_sb.sb_sectsize;
goto reread;
}
/* Initialize per-cpu counters */
xfs_icsb_reinit_counters(mp);
mp->m_sb_bp = bp;
xfs_buf_unlock(bp);
return 0;
release_buf:
xfs_buf_relse(bp);
return error;
}
/*
* xfs_mount_common
*
* Mount initialization code establishing various mount
* fields from the superblock associated with the given
* mount structure
*/
STATIC void
xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
{
mp->m_agfrotor = mp->m_agirotor = 0;
spin_lock_init(&mp->m_agirotor_lock);
mp->m_maxagi = mp->m_sb.sb_agcount;
mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
mp->m_blockmask = sbp->sb_blocksize - 1;
mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
mp->m_blockwmask = mp->m_blockwsize - 1;
mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
sbp->sb_inopblock);
mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
}
/*
* xfs_initialize_perag_data
*
* Read in each per-ag structure so we can count up the number of
* allocated inodes, free inodes and used filesystem blocks as this
* information is no longer persistent in the superblock. Once we have
* this information, write it into the in-core superblock structure.
*/
STATIC int
xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_perag_t *pag;
xfs_sb_t *sbp = &mp->m_sb;
uint64_t ifree = 0;
uint64_t ialloc = 0;
uint64_t bfree = 0;
uint64_t bfreelst = 0;
uint64_t btree = 0;
int error;
for (index = 0; index < agcount; index++) {
/*
* read the agf, then the agi. This gets us
* all the information we need and populates the
* per-ag structures for us.
*/
error = xfs_alloc_pagf_init(mp, NULL, index, 0);
if (error)
return error;
error = xfs_ialloc_pagi_init(mp, NULL, index);
if (error)
return error;
pag = xfs_perag_get(mp, index);
ifree += pag->pagi_freecount;
ialloc += pag->pagi_count;
bfree += pag->pagf_freeblks;
bfreelst += pag->pagf_flcount;
btree += pag->pagf_btreeblks;
xfs_perag_put(pag);
}
/*
* Overwrite incore superblock counters with just-read data
*/
spin_lock(&mp->m_sb_lock);
sbp->sb_ifree = ifree;
sbp->sb_icount = ialloc;
sbp->sb_fdblocks = bfree + bfreelst + btree;
spin_unlock(&mp->m_sb_lock);
/* Fixup the per-cpu counters as well. */
xfs_icsb_reinit_counters(mp);
return 0;
}
/*
* Update alignment values based on mount options and sb values
*/
STATIC int
xfs_update_alignment(xfs_mount_t *mp)
{
xfs_sb_t *sbp = &(mp->m_sb);
if (mp->m_dalign) {
/*
* If stripe unit and stripe width are not multiples
* of the fs blocksize turn off alignment.
*/
if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
(BBTOB(mp->m_swidth) & mp->m_blockmask)) {
if (mp->m_flags & XFS_MOUNT_RETERR) {
xfs_warn(mp, "alignment check 1 failed");
return XFS_ERROR(EINVAL);
}
mp->m_dalign = mp->m_swidth = 0;
} else {
/*
* Convert the stripe unit and width to FSBs.
*/
mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
if (mp->m_flags & XFS_MOUNT_RETERR) {
return XFS_ERROR(EINVAL);
}
xfs_warn(mp,
"stripe alignment turned off: sunit(%d)/swidth(%d) "
"incompatible with agsize(%d)",
mp->m_dalign, mp->m_swidth,
sbp->sb_agblocks);
mp->m_dalign = 0;
mp->m_swidth = 0;
} else if (mp->m_dalign) {
mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
} else {
if (mp->m_flags & XFS_MOUNT_RETERR) {
xfs_warn(mp,
"stripe alignment turned off: sunit(%d) less than bsize(%d)",
mp->m_dalign,
mp->m_blockmask +1);
return XFS_ERROR(EINVAL);
}
mp->m_swidth = 0;
}
}
/*
* Update superblock with new values
* and log changes
*/
if (xfs_sb_version_hasdalign(sbp)) {
if (sbp->sb_unit != mp->m_dalign) {
sbp->sb_unit = mp->m_dalign;
mp->m_update_flags |= XFS_SB_UNIT;
}
if (sbp->sb_width != mp->m_swidth) {
sbp->sb_width = mp->m_swidth;
mp->m_update_flags |= XFS_SB_WIDTH;
}
}
} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
xfs_sb_version_hasdalign(&mp->m_sb)) {
mp->m_dalign = sbp->sb_unit;
mp->m_swidth = sbp->sb_width;
}
return 0;
}
/*
* Set the maximum inode count for this filesystem
*/
STATIC void
xfs_set_maxicount(xfs_mount_t *mp)
{
xfs_sb_t *sbp = &(mp->m_sb);
__uint64_t icount;
if (sbp->sb_imax_pct) {
/*
* Make sure the maximum inode count is a multiple
* of the units we allocate inodes in.
*/
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
do_div(icount, mp->m_ialloc_blks);
mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
sbp->sb_inopblog;
} else {
mp->m_maxicount = 0;
}
}
/*
* Set the default minimum read and write sizes unless
* already specified in a mount option.
* We use smaller I/O sizes when the file system
* is being used for NFS service (wsync mount option).
*/
STATIC void
xfs_set_rw_sizes(xfs_mount_t *mp)
{
xfs_sb_t *sbp = &(mp->m_sb);
int readio_log, writeio_log;
if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
if (mp->m_flags & XFS_MOUNT_WSYNC) {
readio_log = XFS_WSYNC_READIO_LOG;
writeio_log = XFS_WSYNC_WRITEIO_LOG;
} else {
readio_log = XFS_READIO_LOG_LARGE;
writeio_log = XFS_WRITEIO_LOG_LARGE;
}
} else {
readio_log = mp->m_readio_log;
writeio_log = mp->m_writeio_log;
}
if (sbp->sb_blocklog > readio_log) {
mp->m_readio_log = sbp->sb_blocklog;
} else {
mp->m_readio_log = readio_log;
}
mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
if (sbp->sb_blocklog > writeio_log) {
mp->m_writeio_log = sbp->sb_blocklog;
} else {
mp->m_writeio_log = writeio_log;
}
mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
}
/*
* precalculate the low space thresholds for dynamic speculative preallocation.
*/
void
xfs_set_low_space_thresholds(
struct xfs_mount *mp)
{
int i;
for (i = 0; i < XFS_LOWSP_MAX; i++) {
__uint64_t space = mp->m_sb.sb_dblocks;
do_div(space, 100);
mp->m_low_space[i] = space * (i + 1);
}
}
/*
* Set whether we're using inode alignment.
*/
STATIC void
xfs_set_inoalignment(xfs_mount_t *mp)
{
if (xfs_sb_version_hasalign(&mp->m_sb) &&
mp->m_sb.sb_inoalignmt >=
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
else
mp->m_inoalign_mask = 0;
/*
* If we are using stripe alignment, check whether
* the stripe unit is a multiple of the inode alignment
*/
if (mp->m_dalign && mp->m_inoalign_mask &&
!(mp->m_dalign & mp->m_inoalign_mask))
mp->m_sinoalign = mp->m_dalign;
else
mp->m_sinoalign = 0;
}
/*
* Check that the data (and log if separate) are an ok size.
*/
STATIC int
xfs_check_sizes(xfs_mount_t *mp)
{
xfs_buf_t *bp;
xfs_daddr_t d;
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
xfs_warn(mp, "filesystem size mismatch detected");
return XFS_ERROR(EFBIG);
}
bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
d - XFS_FSS_TO_BB(mp, 1),
BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
if (!bp) {
xfs_warn(mp, "last sector read failed");
return EIO;
}
xfs_buf_relse(bp);
if (mp->m_logdev_targp != mp->m_ddev_targp) {
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
xfs_warn(mp, "log size mismatch detected");
return XFS_ERROR(EFBIG);
}
bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
d - XFS_FSB_TO_BB(mp, 1),
XFS_FSB_TO_B(mp, 1), 0);
if (!bp) {
xfs_warn(mp, "log device read failed");
return EIO;
}
xfs_buf_relse(bp);
}
return 0;
}
/*
* Clear the quotaflags in memory and in the superblock.
*/
int
xfs_mount_reset_sbqflags(
struct xfs_mount *mp)
{
int error;
struct xfs_trans *tp;
mp->m_qflags = 0;
/*
* It is OK to look at sb_qflags here in mount path,
* without m_sb_lock.
*/
if (mp->m_sb.sb_qflags == 0)
return 0;
spin_lock(&mp->m_sb_lock);
mp->m_sb.sb_qflags = 0;
spin_unlock(&mp->m_sb_lock);
/*
* If the fs is readonly, let the incore superblock run
* with quotas off but don't flush the update out to disk
*/
if (mp->m_flags & XFS_MOUNT_RDONLY)
return 0;
#ifdef QUOTADEBUG
xfs_notice(mp, "Writing superblock quota changes");
#endif
tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
XFS_DEFAULT_LOG_COUNT);
if (error) {
xfs_trans_cancel(tp, 0);
xfs_alert(mp, "%s: Superblock update failed!", __func__);
return error;
}
xfs_mod_sb(tp, XFS_SB_QFLAGS);
return xfs_trans_commit(tp, 0);
}
__uint64_t
xfs_default_resblks(xfs_mount_t *mp)
{
__uint64_t resblks;
/*
* We default to 5% or 8192 fsbs of space reserved, whichever is
* smaller. This is intended to cover concurrent allocation
* transactions when we initially hit enospc. These each require a 4
* block reservation. Hence by default we cover roughly 2000 concurrent
* allocation reservations.
*/
resblks = mp->m_sb.sb_dblocks;
do_div(resblks, 20);
resblks = min_t(__uint64_t, resblks, 8192);
return resblks;
}
/*
* This function does the following on an initial mount of a file system:
* - reads the superblock from disk and init the mount struct
* - if we're a 32-bit kernel, do a size check on the superblock
* so we don't mount terabyte filesystems
* - init mount struct realtime fields
* - allocate inode hash table for fs
* - init directory manager
* - perform recovery and init the log manager
*/
int
xfs_mountfs(
xfs_mount_t *mp)
{
xfs_sb_t *sbp = &(mp->m_sb);
xfs_inode_t *rip;
__uint64_t resblks;
uint quotamount = 0;
uint quotaflags = 0;
int error = 0;
xfs_mount_common(mp, sbp);
/*
* Check for a mismatched features2 values. Older kernels
* read & wrote into the wrong sb offset for sb_features2
* on some platforms due to xfs_sb_t not being 64bit size aligned
* when sb_features2 was added, which made older superblock
* reading/writing routines swap it as a 64-bit value.
*
* For backwards compatibility, we make both slots equal.
*
* If we detect a mismatched field, we OR the set bits into the
* existing features2 field in case it has already been modified; we
* don't want to lose any features. We then update the bad location
* with the ORed value so that older kernels will see any features2
* flags, and mark the two fields as needing updates once the
* transaction subsystem is online.
*/
if (xfs_sb_has_mismatched_features2(sbp)) {
xfs_warn(mp, "correcting sb_features alignment problem");
sbp->sb_features2 |= sbp->sb_bad_features2;
sbp->sb_bad_features2 = sbp->sb_features2;
mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
/*
* Re-check for ATTR2 in case it was found in bad_features2
* slot.
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
}
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
(mp->m_flags & XFS_MOUNT_NOATTR2)) {
xfs_sb_version_removeattr2(&mp->m_sb);
mp->m_update_flags |= XFS_SB_FEATURES2;
/* update sb_versionnum for the clearing of the morebits */
if (!sbp->sb_features2)
mp->m_update_flags |= XFS_SB_VERSIONNUM;
}
/*
* Check if sb_agblocks is aligned at stripe boundary
* If sb_agblocks is NOT aligned turn off m_dalign since
* allocator alignment is within an ag, therefore ag has
* to be aligned at stripe boundary.
*/
error = xfs_update_alignment(mp);
if (error)
goto out;
xfs_alloc_compute_maxlevels(mp);
xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
xfs_ialloc_compute_maxlevels(mp);
xfs_set_maxicount(mp);
mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
error = xfs_uuid_mount(mp);
if (error)
goto out;
/*
* Set the minimum read and write sizes
*/
xfs_set_rw_sizes(mp);
/* set the low space thresholds for dynamic preallocation */
xfs_set_low_space_thresholds(mp);
/*
* Set the inode cluster size.
* This may still be overridden by the file system
* block size if it is larger than the chosen cluster size.
*/
mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
/*
* Set inode alignment fields
*/
xfs_set_inoalignment(mp);
/*
* Check that the data (and log if separate) are an ok size.
*/
error = xfs_check_sizes(mp);
if (error)
goto out_remove_uuid;
/*
* Initialize realtime fields in the mount structure
*/
error = xfs_rtmount_init(mp);
if (error) {
xfs_warn(mp, "RT mount failed");
goto out_remove_uuid;
}
/*
* Copies the low order bits of the timestamp and the randomly
* set "sequence" number out of a UUID.
*/
uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
mp->m_dmevmask = 0; /* not persistent; set after each mount */
xfs_dir_mount(mp);
/*
* Initialize the attribute manager's entries.
*/
mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
/*
* Initialize the precomputed transaction reservations values.
*/
xfs_trans_init(mp);
/*
* Allocate and initialize the per-ag data.
*/
spin_lock_init(&mp->m_perag_lock);
INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
if (error) {
xfs_warn(mp, "Failed per-ag init: %d", error);
goto out_remove_uuid;
}
if (!sbp->sb_logblocks) {
xfs_warn(mp, "no log defined");
XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
error = XFS_ERROR(EFSCORRUPTED);
goto out_free_perag;
}
/*
* log's mount-time initialization. Perform 1st part recovery if needed
*/
error = xfs_log_mount(mp, mp->m_logdev_targp,
XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
if (error) {
xfs_warn(mp, "log mount failed");
goto out_free_perag;
}
/*
* Now the log is mounted, we know if it was an unclean shutdown or
* not. If it was, with the first phase of recovery has completed, we
* have consistent AG blocks on disk. We have not recovered EFIs yet,
* but they are recovered transactionally in the second recovery phase
* later.
*
* Hence we can safely re-initialise incore superblock counters from
* the per-ag data. These may not be correct if the filesystem was not
* cleanly unmounted, so we need to wait for recovery to finish before
* doing this.
*
* If the filesystem was cleanly unmounted, then we can trust the
* values in the superblock to be correct and we don't need to do
* anything here.
*
* If we are currently making the filesystem, the initialisation will
* fail as the perag data is in an undefined state.
*/
if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
!XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
!mp->m_sb.sb_inprogress) {
error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
if (error)
goto out_free_perag;
}
/*
* Get and sanity-check the root inode.
* Save the pointer to it in the mount structure.
*/
error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
if (error) {
xfs_warn(mp, "failed to read root inode");
goto out_log_dealloc;
}
ASSERT(rip != NULL);
if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
xfs_warn(mp, "corrupted root inode %llu: not a directory",
(unsigned long long)rip->i_ino);
xfs_iunlock(rip, XFS_ILOCK_EXCL);
XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
mp);
error = XFS_ERROR(EFSCORRUPTED);
goto out_rele_rip;
}
mp->m_rootip = rip; /* save it */
xfs_iunlock(rip, XFS_ILOCK_EXCL);
/*
* Initialize realtime inode pointers in the mount structure
*/
error = xfs_rtmount_inodes(mp);
if (error) {
/*
* Free up the root inode.
*/
xfs_warn(mp, "failed to read RT inodes");
goto out_rele_rip;
}
/*
* If this is a read-only mount defer the superblock updates until
* the next remount into writeable mode. Otherwise we would never
* perform the update e.g. for the root filesystem.
*/
if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
error = xfs_mount_log_sb(mp, mp->m_update_flags);
if (error) {
xfs_warn(mp, "failed to write sb changes");
goto out_rtunmount;
}
}
/*
* Initialise the XFS quota management subsystem for this mount
*/
if (XFS_IS_QUOTA_RUNNING(mp)) {
error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
if (error)
goto out_rtunmount;
} else {
ASSERT(!XFS_IS_QUOTA_ON(mp));
/*
* If a file system had quotas running earlier, but decided to
* mount without -o uquota/pquota/gquota options, revoke the
* quotachecked license.
*/
if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
xfs_notice(mp, "resetting quota flags");
error = xfs_mount_reset_sbqflags(mp);
if (error)
return error;
}
}
/*
* Finish recovering the file system. This part needed to be
* delayed until after the root and real-time bitmap inodes
* were consistently read in.
*/
error = xfs_log_mount_finish(mp);
if (error) {
xfs_warn(mp, "log mount finish failed");
goto out_rtunmount;
}
/*
* Complete the quota initialisation, post-log-replay component.
*/
if (quotamount) {
ASSERT(mp->m_qflags == 0);
mp->m_qflags = quotaflags;
xfs_qm_mount_quotas(mp);
}
/*
* Now we are mounted, reserve a small amount of unused space for
* privileged transactions. This is needed so that transaction
* space required for critical operations can dip into this pool
* when at ENOSPC. This is needed for operations like create with
* attr, unwritten extent conversion at ENOSPC, etc. Data allocations
* are not allowed to use this reserved space.
*
* This may drive us straight to ENOSPC on mount, but that implies
* we were already there on the last unmount. Warn if this occurs.
*/
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
resblks = xfs_default_resblks(mp);
error = xfs_reserve_blocks(mp, &resblks, NULL);
if (error)
xfs_warn(mp,
"Unable to allocate reserve blocks. Continuing without reserve pool.");
}
return 0;
out_rtunmount:
xfs_rtunmount_inodes(mp);
out_rele_rip:
IRELE(rip);
out_log_dealloc:
xfs_log_unmount(mp);
out_free_perag:
xfs_free_perag(mp);
out_remove_uuid:
xfs_uuid_unmount(mp);
out:
return error;
}
/*
* This flushes out the inodes,dquots and the superblock, unmounts the
* log and makes sure that incore structures are freed.
*/
void
xfs_unmountfs(
struct xfs_mount *mp)
{
__uint64_t resblks;
int error;
xfs_qm_unmount_quotas(mp);
xfs_rtunmount_inodes(mp);
IRELE(mp->m_rootip);
/*
* We can potentially deadlock here if we have an inode cluster
* that has been freed has its buffer still pinned in memory because
* the transaction is still sitting in a iclog. The stale inodes
* on that buffer will have their flush locks held until the
* transaction hits the disk and the callbacks run. the inode
* flush takes the flush lock unconditionally and with nothing to
* push out the iclog we will never get that unlocked. hence we
* need to force the log first.
*/
xfs_log_force(mp, XFS_LOG_SYNC);
/*
* Do a delwri reclaim pass first so that as many dirty inodes are
* queued up for IO as possible. Then flush the buffers before making
* a synchronous path to catch all the remaining inodes are reclaimed.
* This makes the reclaim process as quick as possible by avoiding
* synchronous writeout and blocking on inodes already in the delwri
* state as much as possible.
*/
xfs_reclaim_inodes(mp, 0);
XFS_bflush(mp->m_ddev_targp);
xfs_reclaim_inodes(mp, SYNC_WAIT);
xfs_qm_unmount(mp);
/*
* Flush out the log synchronously so that we know for sure
* that nothing is pinned. This is important because bflush()
* will skip pinned buffers.
*/
xfs_log_force(mp, XFS_LOG_SYNC);
xfs_binval(mp->m_ddev_targp);
if (mp->m_rtdev_targp) {
xfs_binval(mp->m_rtdev_targp);
}
/*
* Unreserve any blocks we have so that when we unmount we don't account
* the reserved free space as used. This is really only necessary for
* lazy superblock counting because it trusts the incore superblock
* counters to be absolutely correct on clean unmount.
*
* We don't bother correcting this elsewhere for lazy superblock
* counting because on mount of an unclean filesystem we reconstruct the
* correct counter value and this is irrelevant.
*
* For non-lazy counter filesystems, this doesn't matter at all because
* we only every apply deltas to the superblock and hence the incore
* value does not matter....
*/
resblks = 0;
error = xfs_reserve_blocks(mp, &resblks, NULL);
if (error)
xfs_warn(mp, "Unable to free reserved block pool. "
"Freespace may not be correct on next mount.");
error = xfs_log_sbcount(mp, 1);
if (error)
xfs_warn(mp, "Unable to update superblock counters. "
"Freespace may not be correct on next mount.");
xfs_unmountfs_writesb(mp);
xfs_unmountfs_wait(mp); /* wait for async bufs */
xfs_log_unmount_write(mp);
xfs_log_unmount(mp);
xfs_uuid_unmount(mp);
#if defined(DEBUG)
xfs_errortag_clearall(mp, 0);
#endif
xfs_free_perag(mp);
}
STATIC void
xfs_unmountfs_wait(xfs_mount_t *mp)
{
if (mp->m_logdev_targp != mp->m_ddev_targp)
xfs_wait_buftarg(mp->m_logdev_targp);
if (mp->m_rtdev_targp)
xfs_wait_buftarg(mp->m_rtdev_targp);
xfs_wait_buftarg(mp->m_ddev_targp);
}
int
xfs_fs_writable(xfs_mount_t *mp)
{
return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
(mp->m_flags & XFS_MOUNT_RDONLY));
}
/*
* xfs_log_sbcount
*
* Called either periodically to keep the on disk superblock values
* roughly up to date or from unmount to make sure the values are
* correct on a clean unmount.
*
* Note this code can be called during the process of freezing, so
* we may need to use the transaction allocator which does not not
* block when the transaction subsystem is in its frozen state.
*/
int
xfs_log_sbcount(
xfs_mount_t *mp,
uint sync)
{
xfs_trans_t *tp;
int error;
if (!xfs_fs_writable(mp))
return 0;
xfs_icsb_sync_counters(mp, 0);
/*
* we don't need to do this if we are updating the superblock
* counters on every modification.
*/
if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
return 0;
tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
XFS_DEFAULT_LOG_COUNT);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
if (sync)
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp, 0);
return error;
}
int
xfs_unmountfs_writesb(xfs_mount_t *mp)
{
xfs_buf_t *sbp;
int error = 0;
/*
* skip superblock write if fs is read-only, or
* if we are doing a forced umount.
*/
if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
XFS_FORCED_SHUTDOWN(mp))) {
sbp = xfs_getsb(mp, 0);
XFS_BUF_UNDONE(sbp);
XFS_BUF_UNREAD(sbp);
XFS_BUF_UNDELAYWRITE(sbp);
XFS_BUF_WRITE(sbp);
XFS_BUF_UNASYNC(sbp);
ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
xfsbdstrat(mp, sbp);
error = xfs_buf_iowait(sbp);
if (error)
xfs_ioerror_alert("xfs_unmountfs_writesb",
mp, sbp, XFS_BUF_ADDR(sbp));
xfs_buf_relse(sbp);
}
return error;
}
/*
* xfs_mod_sb() can be used to copy arbitrary changes to the
* in-core superblock into the superblock buffer to be logged.
* It does not provide the higher level of locking that is
* needed to protect the in-core superblock from concurrent
* access.
*/
void
xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
{
xfs_buf_t *bp;
int first;
int last;
xfs_mount_t *mp;
xfs_sb_field_t f;
ASSERT(fields);
if (!fields)
return;
mp = tp->t_mountp;
bp = xfs_trans_getsb(tp, mp, 0);
first = sizeof(xfs_sb_t);
last = 0;
/* translate/copy */
xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
/* find modified range */
f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
ASSERT((1LL << f) & XFS_SB_MOD_BITS);
last = xfs_sb_info[f + 1].offset - 1;
f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
ASSERT((1LL << f) & XFS_SB_MOD_BITS);
first = xfs_sb_info[f].offset;
xfs_trans_log_buf(tp, bp, first, last);
}
/*
* xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
* a delta to a specified field in the in-core superblock. Simply
* switch on the field indicated and apply the delta to that field.
* Fields are not allowed to dip below zero, so if the delta would
* do this do not apply it and return EINVAL.
*
* The m_sb_lock must be held when this routine is called.
*/
STATIC int
xfs_mod_incore_sb_unlocked(
xfs_mount_t *mp,
xfs_sb_field_t field,
int64_t delta,
int rsvd)
{
int scounter; /* short counter for 32 bit fields */
long long lcounter; /* long counter for 64 bit fields */
long long res_used, rem;
/*
* With the in-core superblock spin lock held, switch
* on the indicated field. Apply the delta to the
* proper field. If the fields value would dip below
* 0, then do not apply the delta and return EINVAL.
*/
switch (field) {
case XFS_SBS_ICOUNT:
lcounter = (long long)mp->m_sb.sb_icount;
lcounter += delta;
if (lcounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_icount = lcounter;
return 0;
case XFS_SBS_IFREE:
lcounter = (long long)mp->m_sb.sb_ifree;
lcounter += delta;
if (lcounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_ifree = lcounter;
return 0;
case XFS_SBS_FDBLOCKS:
lcounter = (long long)
mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
if (delta > 0) { /* Putting blocks back */
if (res_used > delta) {
mp->m_resblks_avail += delta;
} else {
rem = delta - res_used;
mp->m_resblks_avail = mp->m_resblks;
lcounter += rem;
}
} else { /* Taking blocks away */
lcounter += delta;
if (lcounter >= 0) {
mp->m_sb.sb_fdblocks = lcounter +
XFS_ALLOC_SET_ASIDE(mp);
return 0;
}
/*
* We are out of blocks, use any available reserved
* blocks if were allowed to.
*/
if (!rsvd)
return XFS_ERROR(ENOSPC);
lcounter = (long long)mp->m_resblks_avail + delta;
if (lcounter >= 0) {
mp->m_resblks_avail = lcounter;
return 0;
}
printk_once(KERN_WARNING
"Filesystem \"%s\": reserve blocks depleted! "
"Consider increasing reserve pool size.",
mp->m_fsname);
return XFS_ERROR(ENOSPC);
}
mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
return 0;
case XFS_SBS_FREXTENTS:
lcounter = (long long)mp->m_sb.sb_frextents;
lcounter += delta;
if (lcounter < 0) {
return XFS_ERROR(ENOSPC);
}
mp->m_sb.sb_frextents = lcounter;
return 0;
case XFS_SBS_DBLOCKS:
lcounter = (long long)mp->m_sb.sb_dblocks;
lcounter += delta;
if (lcounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_dblocks = lcounter;
return 0;
case XFS_SBS_AGCOUNT:
scounter = mp->m_sb.sb_agcount;
scounter += delta;
if (scounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_agcount = scounter;
return 0;
case XFS_SBS_IMAX_PCT:
scounter = mp->m_sb.sb_imax_pct;
scounter += delta;
if (scounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_imax_pct = scounter;
return 0;
case XFS_SBS_REXTSIZE:
scounter = mp->m_sb.sb_rextsize;
scounter += delta;
if (scounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_rextsize = scounter;
return 0;
case XFS_SBS_RBMBLOCKS:
scounter = mp->m_sb.sb_rbmblocks;
scounter += delta;
if (scounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_rbmblocks = scounter;
return 0;
case XFS_SBS_RBLOCKS:
lcounter = (long long)mp->m_sb.sb_rblocks;
lcounter += delta;
if (lcounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_rblocks = lcounter;
return 0;
case XFS_SBS_REXTENTS:
lcounter = (long long)mp->m_sb.sb_rextents;
lcounter += delta;
if (lcounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_rextents = lcounter;
return 0;
case XFS_SBS_REXTSLOG:
scounter = mp->m_sb.sb_rextslog;
scounter += delta;
if (scounter < 0) {
ASSERT(0);
return XFS_ERROR(EINVAL);
}
mp->m_sb.sb_rextslog = scounter;
return 0;
default:
ASSERT(0);
return XFS_ERROR(EINVAL);
}
}
/*
* xfs_mod_incore_sb() is used to change a field in the in-core
* superblock structure by the specified delta. This modification
* is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
* routine to do the work.
*/
int
xfs_mod_incore_sb(
struct xfs_mount *mp,
xfs_sb_field_t field,
int64_t delta,
int rsvd)
{
int status;
#ifdef HAVE_PERCPU_SB
ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
#endif
spin_lock(&mp->m_sb_lock);
status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
spin_unlock(&mp->m_sb_lock);
return status;
}
/*
* Change more than one field in the in-core superblock structure at a time.
*
* The fields and changes to those fields are specified in the array of
* xfs_mod_sb structures passed in. Either all of the specified deltas
* will be applied or none of them will. If any modified field dips below 0,
* then all modifications will be backed out and EINVAL will be returned.
*
* Note that this function may not be used for the superblock values that
* are tracked with the in-memory per-cpu counters - a direct call to
* xfs_icsb_modify_counters is required for these.
*/
int
xfs_mod_incore_sb_batch(
struct xfs_mount *mp,
xfs_mod_sb_t *msb,
uint nmsb,
int rsvd)
{
xfs_mod_sb_t *msbp;
int error = 0;
/*
* Loop through the array of mod structures and apply each individually.
* If any fail, then back out all those which have already been applied.
* Do all of this within the scope of the m_sb_lock so that all of the
* changes will be atomic.
*/
spin_lock(&mp->m_sb_lock);
for (msbp = msb; msbp < (msb + nmsb); msbp++) {
ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
msbp->msb_field > XFS_SBS_FDBLOCKS);
error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
msbp->msb_delta, rsvd);
if (error)
goto unwind;
}
spin_unlock(&mp->m_sb_lock);
return 0;
unwind:
while (--msbp >= msb) {
error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
-msbp->msb_delta, rsvd);
ASSERT(error == 0);
}
spin_unlock(&mp->m_sb_lock);
return error;
}
/*
* xfs_getsb() is called to obtain the buffer for the superblock.
* The buffer is returned locked and read in from disk.
* The buffer should be released with a call to xfs_brelse().
*
* If the flags parameter is BUF_TRYLOCK, then we'll only return
* the superblock buffer if it can be locked without sleeping.
* If it can't then we'll return NULL.
*/
xfs_buf_t *
xfs_getsb(
xfs_mount_t *mp,
int flags)
{
xfs_buf_t *bp;
ASSERT(mp->m_sb_bp != NULL);
bp = mp->m_sb_bp;
if (flags & XBF_TRYLOCK) {
if (!XFS_BUF_CPSEMA(bp)) {
return NULL;
}
} else {
XFS_BUF_PSEMA(bp, PRIBIO);
}
XFS_BUF_HOLD(bp);
ASSERT(XFS_BUF_ISDONE(bp));
return bp;
}
/*
* Used to free the superblock along various error paths.
*/
void
xfs_freesb(
struct xfs_mount *mp)
{
struct xfs_buf *bp = mp->m_sb_bp;
xfs_buf_lock(bp);
mp->m_sb_bp = NULL;
xfs_buf_relse(bp);
}
/*
* Used to log changes to the superblock unit and width fields which could
* be altered by the mount options, as well as any potential sb_features2
* fixup. Only the first superblock is updated.
*/
int
xfs_mount_log_sb(
xfs_mount_t *mp,
__int64_t fields)
{
xfs_trans_t *tp;
int error;
ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
XFS_SB_VERSIONNUM));
tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
XFS_DEFAULT_LOG_COUNT);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
xfs_mod_sb(tp, fields);
error = xfs_trans_commit(tp, 0);
return error;
}
/*
* If the underlying (data/log/rt) device is readonly, there are some
* operations that cannot proceed.
*/
int
xfs_dev_is_read_only(
struct xfs_mount *mp,
char *message)
{
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
xfs_readonly_buftarg(mp->m_logdev_targp) ||
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
xfs_notice(mp, "%s required on read-only device.", message);
xfs_notice(mp, "write access unavailable, cannot proceed.");
return EROFS;
}
return 0;
}
#ifdef HAVE_PERCPU_SB
/*
* Per-cpu incore superblock counters
*
* Simple concept, difficult implementation
*
* Basically, replace the incore superblock counters with a distributed per cpu
* counter for contended fields (e.g. free block count).
*
* Difficulties arise in that the incore sb is used for ENOSPC checking, and
* hence needs to be accurately read when we are running low on space. Hence
* there is a method to enable and disable the per-cpu counters based on how
* much "stuff" is available in them.
*
* Basically, a counter is enabled if there is enough free resource to justify
* running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
* ENOSPC), then we disable the counters to synchronise all callers and
* re-distribute the available resources.
*
* If, once we redistributed the available resources, we still get a failure,
* we disable the per-cpu counter and go through the slow path.
*
* The slow path is the current xfs_mod_incore_sb() function. This means that
* when we disable a per-cpu counter, we need to drain its resources back to
* the global superblock. We do this after disabling the counter to prevent
* more threads from queueing up on the counter.
*
* Essentially, this means that we still need a lock in the fast path to enable
* synchronisation between the global counters and the per-cpu counters. This
* is not a problem because the lock will be local to a CPU almost all the time
* and have little contention except when we get to ENOSPC conditions.
*
* Basically, this lock becomes a barrier that enables us to lock out the fast
* path while we do things like enabling and disabling counters and
* synchronising the counters.
*
* Locking rules:
*
* 1. m_sb_lock before picking up per-cpu locks
* 2. per-cpu locks always picked up via for_each_online_cpu() order
* 3. accurate counter sync requires m_sb_lock + per cpu locks
* 4. modifying per-cpu counters requires holding per-cpu lock
* 5. modifying global counters requires holding m_sb_lock
* 6. enabling or disabling a counter requires holding the m_sb_lock
* and _none_ of the per-cpu locks.
*
* Disabled counters are only ever re-enabled by a balance operation
* that results in more free resources per CPU than a given threshold.
* To ensure counters don't remain disabled, they are rebalanced when
* the global resource goes above a higher threshold (i.e. some hysteresis
* is present to prevent thrashing).
*/
#ifdef CONFIG_HOTPLUG_CPU
/*
* hot-plug CPU notifier support.
*
* We need a notifier per filesystem as we need to be able to identify
* the filesystem to balance the counters out. This is achieved by
* having a notifier block embedded in the xfs_mount_t and doing pointer
* magic to get the mount pointer from the notifier block address.
*/
STATIC int
xfs_icsb_cpu_notify(
struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
xfs_icsb_cnts_t *cntp;
xfs_mount_t *mp;
mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
cntp = (xfs_icsb_cnts_t *)
per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
/* Easy Case - initialize the area and locks, and
* then rebalance when online does everything else for us. */
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
xfs_icsb_lock(mp);
xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
xfs_icsb_unlock(mp);
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
/* Disable all the counters, then fold the dead cpu's
* count into the total on the global superblock and
* re-enable the counters. */
xfs_icsb_lock(mp);
spin_lock(&mp->m_sb_lock);
xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
mp->m_sb.sb_icount += cntp->icsb_icount;
mp->m_sb.sb_ifree += cntp->icsb_ifree;
mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
spin_unlock(&mp->m_sb_lock);
xfs_icsb_unlock(mp);
break;
}
return NOTIFY_OK;
}
#endif /* CONFIG_HOTPLUG_CPU */
int
xfs_icsb_init_counters(
xfs_mount_t *mp)
{
xfs_icsb_cnts_t *cntp;
int i;
mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
if (mp->m_sb_cnts == NULL)
return -ENOMEM;
#ifdef CONFIG_HOTPLUG_CPU
mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
mp->m_icsb_notifier.priority = 0;
register_hotcpu_notifier(&mp->m_icsb_notifier);
#endif /* CONFIG_HOTPLUG_CPU */
for_each_online_cpu(i) {
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
}
mutex_init(&mp->m_icsb_mutex);
/*
* start with all counters disabled so that the
* initial balance kicks us off correctly
*/
mp->m_icsb_counters = -1;
return 0;
}
void
xfs_icsb_reinit_counters(
xfs_mount_t *mp)
{
xfs_icsb_lock(mp);
/*
* start with all counters disabled so that the
* initial balance kicks us off correctly
*/
mp->m_icsb_counters = -1;
xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
xfs_icsb_unlock(mp);
}
void
xfs_icsb_destroy_counters(
xfs_mount_t *mp)
{
if (mp->m_sb_cnts) {
unregister_hotcpu_notifier(&mp->m_icsb_notifier);
free_percpu(mp->m_sb_cnts);
}
mutex_destroy(&mp->m_icsb_mutex);
}
STATIC void
xfs_icsb_lock_cntr(
xfs_icsb_cnts_t *icsbp)
{
while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
ndelay(1000);
}
}
STATIC void
xfs_icsb_unlock_cntr(
xfs_icsb_cnts_t *icsbp)
{
clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
}
STATIC void
xfs_icsb_lock_all_counters(
xfs_mount_t *mp)
{
xfs_icsb_cnts_t *cntp;
int i;
for_each_online_cpu(i) {
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
xfs_icsb_lock_cntr(cntp);
}
}
STATIC void
xfs_icsb_unlock_all_counters(
xfs_mount_t *mp)
{
xfs_icsb_cnts_t *cntp;
int i;
for_each_online_cpu(i) {
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
xfs_icsb_unlock_cntr(cntp);
}
}
STATIC void
xfs_icsb_count(
xfs_mount_t *mp,
xfs_icsb_cnts_t *cnt,
int flags)
{
xfs_icsb_cnts_t *cntp;
int i;
memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
if (!(flags & XFS_ICSB_LAZY_COUNT))
xfs_icsb_lock_all_counters(mp);
for_each_online_cpu(i) {
cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
cnt->icsb_icount += cntp->icsb_icount;
cnt->icsb_ifree += cntp->icsb_ifree;
cnt->icsb_fdblocks += cntp->icsb_fdblocks;
}
if (!(flags & XFS_ICSB_LAZY_COUNT))
xfs_icsb_unlock_all_counters(mp);
}
STATIC int
xfs_icsb_counter_disabled(
xfs_mount_t *mp,
xfs_sb_field_t field)
{
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
return test_bit(field, &mp->m_icsb_counters);
}
STATIC void
xfs_icsb_disable_counter(
xfs_mount_t *mp,
xfs_sb_field_t field)
{
xfs_icsb_cnts_t cnt;
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
/*
* If we are already disabled, then there is nothing to do
* here. We check before locking all the counters to avoid
* the expensive lock operation when being called in the
* slow path and the counter is already disabled. This is
* safe because the only time we set or clear this state is under
* the m_icsb_mutex.
*/
if (xfs_icsb_counter_disabled(mp, field))
return;
xfs_icsb_lock_all_counters(mp);
if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
/* drain back to superblock */
xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
switch(field) {
case XFS_SBS_ICOUNT:
mp->m_sb.sb_icount = cnt.icsb_icount;
break;
case XFS_SBS_IFREE:
mp->m_sb.sb_ifree = cnt.icsb_ifree;
break;
case XFS_SBS_FDBLOCKS:
mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
break;
default:
BUG();
}
}
xfs_icsb_unlock_all_counters(mp);
}
STATIC void
xfs_icsb_enable_counter(
xfs_mount_t *mp,
xfs_sb_field_t field,
uint64_t count,
uint64_t resid)
{
xfs_icsb_cnts_t *cntp;
int i;
ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
xfs_icsb_lock_all_counters(mp);
for_each_online_cpu(i) {
cntp = per_cpu_ptr(mp->m_sb_cnts, i);
switch (field) {
case XFS_SBS_ICOUNT:
cntp->icsb_icount = count + resid;
break;
case XFS_SBS_IFREE:
cntp->icsb_ifree = count + resid;
break;
case XFS_SBS_FDBLOCKS:
cntp->icsb_fdblocks = count + resid;
break;
default:
BUG();
break;
}
resid = 0;
}
clear_bit(field, &mp->m_icsb_counters);
xfs_icsb_unlock_all_counters(mp);
}
void
xfs_icsb_sync_counters_locked(
xfs_mount_t *mp,
int flags)
{
xfs_icsb_cnts_t cnt;
xfs_icsb_count(mp, &cnt, flags);
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
mp->m_sb.sb_icount = cnt.icsb_icount;
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
mp->m_sb.sb_ifree = cnt.icsb_ifree;
if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
}
/*
* Accurate update of per-cpu counters to incore superblock
*/
void
xfs_icsb_sync_counters(
xfs_mount_t *mp,
int flags)
{
spin_lock(&mp->m_sb_lock);
xfs_icsb_sync_counters_locked(mp, flags);
spin_unlock(&mp->m_sb_lock);
}
/*
* Balance and enable/disable counters as necessary.
*
* Thresholds for re-enabling counters are somewhat magic. inode counts are
* chosen to be the same number as single on disk allocation chunk per CPU, and
* free blocks is something far enough zero that we aren't going thrash when we
* get near ENOSPC. We also need to supply a minimum we require per cpu to
* prevent looping endlessly when xfs_alloc_space asks for more than will
* be distributed to a single CPU but each CPU has enough blocks to be
* reenabled.
*
* Note that we can be called when counters are already disabled.
* xfs_icsb_disable_counter() optimises the counter locking in this case to
* prevent locking every per-cpu counter needlessly.
*/
#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
STATIC void
xfs_icsb_balance_counter_locked(
xfs_mount_t *mp,
xfs_sb_field_t field,
int min_per_cpu)
{
uint64_t count, resid;
int weight = num_online_cpus();
uint64_t min = (uint64_t)min_per_cpu;
/* disable counter and sync counter */
xfs_icsb_disable_counter(mp, field);
/* update counters - first CPU gets residual*/
switch (field) {
case XFS_SBS_ICOUNT:
count = mp->m_sb.sb_icount;
resid = do_div(count, weight);
if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
return;
break;
case XFS_SBS_IFREE:
count = mp->m_sb.sb_ifree;
resid = do_div(count, weight);
if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
return;
break;
case XFS_SBS_FDBLOCKS:
count = mp->m_sb.sb_fdblocks;
resid = do_div(count, weight);
if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
return;
break;
default:
BUG();
count = resid = 0; /* quiet, gcc */
break;
}
xfs_icsb_enable_counter(mp, field, count, resid);
}
STATIC void
xfs_icsb_balance_counter(
xfs_mount_t *mp,
xfs_sb_field_t fields,
int min_per_cpu)
{
spin_lock(&mp->m_sb_lock);
xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
spin_unlock(&mp->m_sb_lock);
}
int
xfs_icsb_modify_counters(
xfs_mount_t *mp,
xfs_sb_field_t field,
int64_t delta,
int rsvd)
{
xfs_icsb_cnts_t *icsbp;
long long lcounter; /* long counter for 64 bit fields */
int ret = 0;
might_sleep();
again:
preempt_disable();
icsbp = this_cpu_ptr(mp->m_sb_cnts);
/*
* if the counter is disabled, go to slow path
*/
if (unlikely(xfs_icsb_counter_disabled(mp, field)))
goto slow_path;
xfs_icsb_lock_cntr(icsbp);
if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
xfs_icsb_unlock_cntr(icsbp);
goto slow_path;
}
switch (field) {
case XFS_SBS_ICOUNT:
lcounter = icsbp->icsb_icount;
lcounter += delta;
if (unlikely(lcounter < 0))
goto balance_counter;
icsbp->icsb_icount = lcounter;
break;
case XFS_SBS_IFREE:
lcounter = icsbp->icsb_ifree;
lcounter += delta;
if (unlikely(lcounter < 0))
goto balance_counter;
icsbp->icsb_ifree = lcounter;
break;
case XFS_SBS_FDBLOCKS:
BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
lcounter += delta;
if (unlikely(lcounter < 0))
goto balance_counter;
icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
break;
default:
BUG();
break;
}
xfs_icsb_unlock_cntr(icsbp);
preempt_enable();
return 0;
slow_path:
preempt_enable();
/*
* serialise with a mutex so we don't burn lots of cpu on
* the superblock lock. We still need to hold the superblock
* lock, however, when we modify the global structures.
*/
xfs_icsb_lock(mp);
/*
* Now running atomically.
*
* If the counter is enabled, someone has beaten us to rebalancing.
* Drop the lock and try again in the fast path....
*/
if (!(xfs_icsb_counter_disabled(mp, field))) {
xfs_icsb_unlock(mp);
goto again;
}
/*
* The counter is currently disabled. Because we are
* running atomically here, we know a rebalance cannot
* be in progress. Hence we can go straight to operating
* on the global superblock. We do not call xfs_mod_incore_sb()
* here even though we need to get the m_sb_lock. Doing so
* will cause us to re-enter this function and deadlock.
* Hence we get the m_sb_lock ourselves and then call
* xfs_mod_incore_sb_unlocked() as the unlocked path operates
* directly on the global counters.
*/
spin_lock(&mp->m_sb_lock);
ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
spin_unlock(&mp->m_sb_lock);
/*
* Now that we've modified the global superblock, we
* may be able to re-enable the distributed counters
* (e.g. lots of space just got freed). After that
* we are done.
*/
if (ret != ENOSPC)
xfs_icsb_balance_counter(mp, field, 0);
xfs_icsb_unlock(mp);
return ret;
balance_counter:
xfs_icsb_unlock_cntr(icsbp);
preempt_enable();
/*
* We may have multiple threads here if multiple per-cpu
* counters run dry at the same time. This will mean we can
* do more balances than strictly necessary but it is not
* the common slowpath case.
*/
xfs_icsb_lock(mp);
/*
* running atomically.
*
* This will leave the counter in the correct state for future
* accesses. After the rebalance, we simply try again and our retry
* will either succeed through the fast path or slow path without
* another balance operation being required.
*/
xfs_icsb_balance_counter(mp, field, delta);
xfs_icsb_unlock(mp);
goto again;
}
#endif