linux-stable/arch/um/drivers/chan_kern.c
Johannes Berg 5877390da9 um: line: Use separate IRQs per line
[ Upstream commit d5a9597d69 ]

Today, all possible serial lines (ssl*=) as well as all
possible consoles (con*=) each share a single interrupt
(with a fixed number) with others of the same type.

Now, if you have two lines, say ssl0 and ssl1, and one
of them is connected to an fd you cannot read (e.g. a
file), but the other gets a read interrupt, then both
of them get the interrupt since it's shared. Then, the
read() call will return EOF, since it's a file being
written and there's nothing to read (at least not at
the current offset, at the end).

Unfortunately, this is treated as a read error, and we
close this line, losing all the possible output.

It might be possible to work around this and make the
IRQ sharing work, however, now that we have dynamically
allocated IRQs that are easy to use, simply use that to
achieve separating between the events; then there's no
interrupt for that line and we never attempt the read
in the first place, thus not closing the line.

This manifested itself in the wifi hostap/hwsim tests
where the parallel script communicates via one serial
console and the kernel messages go to another (a file)
and sending data on the communication console caused
the kernel messages to stop flowing into the file.

Reported-by: Jouni Malinen <j@w1.fi>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-By: anton ivanov <anton.ivanov@cambridgegreys.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-14 18:36:23 +02:00

570 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{linux.intel,addtoit}.com)
*/
#include <linux/slab.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include "chan.h"
#include <os.h>
#include <irq_kern.h>
#ifdef CONFIG_NOCONFIG_CHAN
static void *not_configged_init(char *str, int device,
const struct chan_opts *opts)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return NULL;
}
static int not_configged_open(int input, int output, int primary, void *data,
char **dev_out)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return -ENODEV;
}
static void not_configged_close(int fd, void *data)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
}
static int not_configged_read(int fd, char *c_out, void *data)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_write(int fd, const char *buf, int len, void *data)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_console_write(int fd, const char *buf, int len)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return -EIO;
}
static int not_configged_window_size(int fd, void *data, unsigned short *rows,
unsigned short *cols)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
return -ENODEV;
}
static void not_configged_free(void *data)
{
printk(KERN_ERR "Using a channel type which is configured out of "
"UML\n");
}
static const struct chan_ops not_configged_ops = {
.init = not_configged_init,
.open = not_configged_open,
.close = not_configged_close,
.read = not_configged_read,
.write = not_configged_write,
.console_write = not_configged_console_write,
.window_size = not_configged_window_size,
.free = not_configged_free,
.winch = 0,
};
#endif /* CONFIG_NOCONFIG_CHAN */
static int open_one_chan(struct chan *chan)
{
int fd, err;
if (chan->opened)
return 0;
if (chan->ops->open == NULL)
fd = 0;
else fd = (*chan->ops->open)(chan->input, chan->output, chan->primary,
chan->data, &chan->dev);
if (fd < 0)
return fd;
err = os_set_fd_block(fd, 0);
if (err) {
(*chan->ops->close)(fd, chan->data);
return err;
}
chan->fd = fd;
chan->opened = 1;
return 0;
}
static int open_chan(struct list_head *chans)
{
struct list_head *ele;
struct chan *chan;
int ret, err = 0;
list_for_each(ele, chans) {
chan = list_entry(ele, struct chan, list);
ret = open_one_chan(chan);
if (chan->primary)
err = ret;
}
return err;
}
void chan_enable_winch(struct chan *chan, struct tty_port *port)
{
if (chan && chan->primary && chan->ops->winch)
register_winch(chan->fd, port);
}
static void line_timer_cb(struct work_struct *work)
{
struct line *line = container_of(work, struct line, task.work);
if (!line->throttled)
chan_interrupt(line, line->read_irq);
}
int enable_chan(struct line *line)
{
struct list_head *ele;
struct chan *chan;
int err;
INIT_DELAYED_WORK(&line->task, line_timer_cb);
list_for_each(ele, &line->chan_list) {
chan = list_entry(ele, struct chan, list);
err = open_one_chan(chan);
if (err) {
if (chan->primary)
goto out_close;
continue;
}
if (chan->enabled)
continue;
err = line_setup_irq(chan->fd, chan->input, chan->output, line,
chan);
if (err)
goto out_close;
chan->enabled = 1;
}
return 0;
out_close:
close_chan(line);
return err;
}
/* Items are added in IRQ context, when free_irq can't be called, and
* removed in process context, when it can.
* This handles interrupt sources which disappear, and which need to
* be permanently disabled. This is discovered in IRQ context, but
* the freeing of the IRQ must be done later.
*/
static DEFINE_SPINLOCK(irqs_to_free_lock);
static LIST_HEAD(irqs_to_free);
void free_irqs(void)
{
struct chan *chan;
LIST_HEAD(list);
struct list_head *ele;
unsigned long flags;
spin_lock_irqsave(&irqs_to_free_lock, flags);
list_splice_init(&irqs_to_free, &list);
spin_unlock_irqrestore(&irqs_to_free_lock, flags);
list_for_each(ele, &list) {
chan = list_entry(ele, struct chan, free_list);
if (chan->input && chan->enabled)
um_free_irq(chan->line->read_irq, chan);
if (chan->output && chan->enabled)
um_free_irq(chan->line->write_irq, chan);
chan->enabled = 0;
}
}
static void close_one_chan(struct chan *chan, int delay_free_irq)
{
unsigned long flags;
if (!chan->opened)
return;
if (delay_free_irq) {
spin_lock_irqsave(&irqs_to_free_lock, flags);
list_add(&chan->free_list, &irqs_to_free);
spin_unlock_irqrestore(&irqs_to_free_lock, flags);
} else {
if (chan->input && chan->enabled)
um_free_irq(chan->line->read_irq, chan);
if (chan->output && chan->enabled)
um_free_irq(chan->line->write_irq, chan);
chan->enabled = 0;
}
if (chan->ops->close != NULL)
(*chan->ops->close)(chan->fd, chan->data);
chan->opened = 0;
chan->fd = -1;
}
void close_chan(struct line *line)
{
struct chan *chan;
/* Close in reverse order as open in case more than one of them
* refers to the same device and they save and restore that device's
* state. Then, the first one opened will have the original state,
* so it must be the last closed.
*/
list_for_each_entry_reverse(chan, &line->chan_list, list) {
close_one_chan(chan, 0);
}
}
void deactivate_chan(struct chan *chan, int irq)
{
if (chan && chan->enabled)
deactivate_fd(chan->fd, irq);
}
int write_chan(struct chan *chan, const char *buf, int len,
int write_irq)
{
int n, ret = 0;
if (len == 0 || !chan || !chan->ops->write)
return 0;
n = chan->ops->write(chan->fd, buf, len, chan->data);
if (chan->primary) {
ret = n;
}
return ret;
}
int console_write_chan(struct chan *chan, const char *buf, int len)
{
int n, ret = 0;
if (!chan || !chan->ops->console_write)
return 0;
n = chan->ops->console_write(chan->fd, buf, len);
if (chan->primary)
ret = n;
return ret;
}
int console_open_chan(struct line *line, struct console *co)
{
int err;
err = open_chan(&line->chan_list);
if (err)
return err;
printk(KERN_INFO "Console initialized on /dev/%s%d\n", co->name,
co->index);
return 0;
}
int chan_window_size(struct line *line, unsigned short *rows_out,
unsigned short *cols_out)
{
struct chan *chan;
chan = line->chan_in;
if (chan && chan->primary) {
if (chan->ops->window_size == NULL)
return 0;
return chan->ops->window_size(chan->fd, chan->data,
rows_out, cols_out);
}
chan = line->chan_out;
if (chan && chan->primary) {
if (chan->ops->window_size == NULL)
return 0;
return chan->ops->window_size(chan->fd, chan->data,
rows_out, cols_out);
}
return 0;
}
static void free_one_chan(struct chan *chan)
{
list_del(&chan->list);
close_one_chan(chan, 0);
if (chan->ops->free != NULL)
(*chan->ops->free)(chan->data);
if (chan->primary && chan->output)
ignore_sigio_fd(chan->fd);
kfree(chan);
}
static void free_chan(struct list_head *chans)
{
struct list_head *ele, *next;
struct chan *chan;
list_for_each_safe(ele, next, chans) {
chan = list_entry(ele, struct chan, list);
free_one_chan(chan);
}
}
static int one_chan_config_string(struct chan *chan, char *str, int size,
char **error_out)
{
int n = 0;
if (chan == NULL) {
CONFIG_CHUNK(str, size, n, "none", 1);
return n;
}
CONFIG_CHUNK(str, size, n, chan->ops->type, 0);
if (chan->dev == NULL) {
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
CONFIG_CHUNK(str, size, n, ":", 0);
CONFIG_CHUNK(str, size, n, chan->dev, 0);
return n;
}
static int chan_pair_config_string(struct chan *in, struct chan *out,
char *str, int size, char **error_out)
{
int n;
n = one_chan_config_string(in, str, size, error_out);
str += n;
size -= n;
if (in == out) {
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
CONFIG_CHUNK(str, size, n, ",", 1);
n = one_chan_config_string(out, str, size, error_out);
str += n;
size -= n;
CONFIG_CHUNK(str, size, n, "", 1);
return n;
}
int chan_config_string(struct line *line, char *str, int size,
char **error_out)
{
struct chan *in = line->chan_in, *out = line->chan_out;
if (in && !in->primary)
in = NULL;
if (out && !out->primary)
out = NULL;
return chan_pair_config_string(in, out, str, size, error_out);
}
struct chan_type {
char *key;
const struct chan_ops *ops;
};
static const struct chan_type chan_table[] = {
{ "fd", &fd_ops },
#ifdef CONFIG_NULL_CHAN
{ "null", &null_ops },
#else
{ "null", &not_configged_ops },
#endif
#ifdef CONFIG_PORT_CHAN
{ "port", &port_ops },
#else
{ "port", &not_configged_ops },
#endif
#ifdef CONFIG_PTY_CHAN
{ "pty", &pty_ops },
{ "pts", &pts_ops },
#else
{ "pty", &not_configged_ops },
{ "pts", &not_configged_ops },
#endif
#ifdef CONFIG_TTY_CHAN
{ "tty", &tty_ops },
#else
{ "tty", &not_configged_ops },
#endif
#ifdef CONFIG_XTERM_CHAN
{ "xterm", &xterm_ops },
#else
{ "xterm", &not_configged_ops },
#endif
};
static struct chan *parse_chan(struct line *line, char *str, int device,
const struct chan_opts *opts, char **error_out)
{
const struct chan_type *entry;
const struct chan_ops *ops;
struct chan *chan;
void *data;
int i;
ops = NULL;
data = NULL;
for(i = 0; i < ARRAY_SIZE(chan_table); i++) {
entry = &chan_table[i];
if (!strncmp(str, entry->key, strlen(entry->key))) {
ops = entry->ops;
str += strlen(entry->key);
break;
}
}
if (ops == NULL) {
*error_out = "No match for configured backends";
return NULL;
}
data = (*ops->init)(str, device, opts);
if (data == NULL) {
*error_out = "Configuration failed";
return NULL;
}
chan = kmalloc(sizeof(*chan), GFP_ATOMIC);
if (chan == NULL) {
*error_out = "Memory allocation failed";
return NULL;
}
*chan = ((struct chan) { .list = LIST_HEAD_INIT(chan->list),
.free_list =
LIST_HEAD_INIT(chan->free_list),
.line = line,
.primary = 1,
.input = 0,
.output = 0,
.opened = 0,
.enabled = 0,
.fd = -1,
.ops = ops,
.data = data });
return chan;
}
int parse_chan_pair(char *str, struct line *line, int device,
const struct chan_opts *opts, char **error_out)
{
struct list_head *chans = &line->chan_list;
struct chan *new;
char *in, *out;
if (!list_empty(chans)) {
line->chan_in = line->chan_out = NULL;
free_chan(chans);
INIT_LIST_HEAD(chans);
}
if (!str)
return 0;
out = strchr(str, ',');
if (out != NULL) {
in = str;
*out = '\0';
out++;
new = parse_chan(line, in, device, opts, error_out);
if (new == NULL)
return -1;
new->input = 1;
list_add(&new->list, chans);
line->chan_in = new;
new = parse_chan(line, out, device, opts, error_out);
if (new == NULL)
return -1;
list_add(&new->list, chans);
new->output = 1;
line->chan_out = new;
}
else {
new = parse_chan(line, str, device, opts, error_out);
if (new == NULL)
return -1;
list_add(&new->list, chans);
new->input = 1;
new->output = 1;
line->chan_in = line->chan_out = new;
}
return 0;
}
void chan_interrupt(struct line *line, int irq)
{
struct tty_port *port = &line->port;
struct chan *chan = line->chan_in;
int err;
char c;
if (!chan || !chan->ops->read)
goto out;
do {
if (!tty_buffer_request_room(port, 1)) {
schedule_delayed_work(&line->task, 1);
goto out;
}
err = chan->ops->read(chan->fd, &c, chan->data);
if (err > 0)
tty_insert_flip_char(port, c, TTY_NORMAL);
} while (err > 0);
if (err == -EIO) {
if (chan->primary) {
tty_port_tty_hangup(&line->port, false);
if (line->chan_out != chan)
close_one_chan(line->chan_out, 1);
}
close_one_chan(chan, 1);
if (chan->primary)
return;
}
out:
tty_flip_buffer_push(port);
}