linux-stable/sound/soc/sunxi/sun4i-i2s.c
Maxime Ripard b2b7b56f71 ASoC: sunxi: i2s: Implement set_sysclk
In our i2s driver, we were previously trying to guess which oversample the
user wanted to use by looking at the rate and trying to max it.

However, the cards, and especially simple-card with its mclk-fs property
will already provide the expected oversample ratio by using the set_sysclk
callback.

We can thus implement it and remove the logic to deal with the runtime
guess.

Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2016-11-09 14:01:08 +00:00

770 lines
19 KiB
C

/*
* Copyright (C) 2015 Andrea Venturi
* Andrea Venturi <be17068@iperbole.bo.it>
*
* Copyright (C) 2016 Maxime Ripard
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#define SUN4I_I2S_CTRL_REG 0x00
#define SUN4I_I2S_CTRL_SDO_EN_MASK GENMASK(11, 8)
#define SUN4I_I2S_CTRL_SDO_EN(sdo) BIT(8 + (sdo))
#define SUN4I_I2S_CTRL_MODE_MASK BIT(5)
#define SUN4I_I2S_CTRL_MODE_SLAVE (1 << 5)
#define SUN4I_I2S_CTRL_MODE_MASTER (0 << 5)
#define SUN4I_I2S_CTRL_TX_EN BIT(2)
#define SUN4I_I2S_CTRL_RX_EN BIT(1)
#define SUN4I_I2S_CTRL_GL_EN BIT(0)
#define SUN4I_I2S_FMT0_REG 0x04
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK BIT(7)
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED (1 << 7)
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL (0 << 7)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_MASK BIT(6)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED (1 << 6)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL (0 << 6)
#define SUN4I_I2S_FMT0_SR_MASK GENMASK(5, 4)
#define SUN4I_I2S_FMT0_SR(sr) ((sr) << 4)
#define SUN4I_I2S_FMT0_WSS_MASK GENMASK(3, 2)
#define SUN4I_I2S_FMT0_WSS(wss) ((wss) << 2)
#define SUN4I_I2S_FMT0_FMT_MASK GENMASK(1, 0)
#define SUN4I_I2S_FMT0_FMT_RIGHT_J (2 << 0)
#define SUN4I_I2S_FMT0_FMT_LEFT_J (1 << 0)
#define SUN4I_I2S_FMT0_FMT_I2S (0 << 0)
#define SUN4I_I2S_FMT1_REG 0x08
#define SUN4I_I2S_FIFO_TX_REG 0x0c
#define SUN4I_I2S_FIFO_RX_REG 0x10
#define SUN4I_I2S_FIFO_CTRL_REG 0x14
#define SUN4I_I2S_FIFO_CTRL_FLUSH_TX BIT(25)
#define SUN4I_I2S_FIFO_CTRL_FLUSH_RX BIT(24)
#define SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK BIT(2)
#define SUN4I_I2S_FIFO_CTRL_TX_MODE(mode) ((mode) << 2)
#define SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK GENMASK(1, 0)
#define SUN4I_I2S_FIFO_CTRL_RX_MODE(mode) (mode)
#define SUN4I_I2S_FIFO_STA_REG 0x18
#define SUN4I_I2S_DMA_INT_CTRL_REG 0x1c
#define SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN BIT(7)
#define SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN BIT(3)
#define SUN4I_I2S_INT_STA_REG 0x20
#define SUN4I_I2S_CLK_DIV_REG 0x24
#define SUN4I_I2S_CLK_DIV_MCLK_EN BIT(7)
#define SUN4I_I2S_CLK_DIV_BCLK_MASK GENMASK(6, 4)
#define SUN4I_I2S_CLK_DIV_BCLK(bclk) ((bclk) << 4)
#define SUN4I_I2S_CLK_DIV_MCLK_MASK GENMASK(3, 0)
#define SUN4I_I2S_CLK_DIV_MCLK(mclk) ((mclk) << 0)
#define SUN4I_I2S_RX_CNT_REG 0x28
#define SUN4I_I2S_TX_CNT_REG 0x2c
#define SUN4I_I2S_TX_CHAN_SEL_REG 0x30
#define SUN4I_I2S_TX_CHAN_SEL(num_chan) (((num_chan) - 1) << 0)
#define SUN4I_I2S_TX_CHAN_MAP_REG 0x34
#define SUN4I_I2S_TX_CHAN_MAP(chan, sample) ((sample) << (chan << 2))
#define SUN4I_I2S_RX_CHAN_SEL_REG 0x38
#define SUN4I_I2S_RX_CHAN_MAP_REG 0x3c
struct sun4i_i2s {
struct clk *bus_clk;
struct clk *mod_clk;
struct regmap *regmap;
unsigned int mclk_freq;
struct snd_dmaengine_dai_dma_data capture_dma_data;
struct snd_dmaengine_dai_dma_data playback_dma_data;
};
struct sun4i_i2s_clk_div {
u8 div;
u8 val;
};
static const struct sun4i_i2s_clk_div sun4i_i2s_bclk_div[] = {
{ .div = 2, .val = 0 },
{ .div = 4, .val = 1 },
{ .div = 6, .val = 2 },
{ .div = 8, .val = 3 },
{ .div = 12, .val = 4 },
{ .div = 16, .val = 5 },
};
static const struct sun4i_i2s_clk_div sun4i_i2s_mclk_div[] = {
{ .div = 1, .val = 0 },
{ .div = 2, .val = 1 },
{ .div = 4, .val = 2 },
{ .div = 6, .val = 3 },
{ .div = 8, .val = 4 },
{ .div = 12, .val = 5 },
{ .div = 16, .val = 6 },
{ .div = 24, .val = 7 },
};
static int sun4i_i2s_get_bclk_div(struct sun4i_i2s *i2s,
unsigned int oversample_rate,
unsigned int word_size)
{
int div = oversample_rate / word_size / 2;
int i;
for (i = 0; i < ARRAY_SIZE(sun4i_i2s_bclk_div); i++) {
const struct sun4i_i2s_clk_div *bdiv = &sun4i_i2s_bclk_div[i];
if (bdiv->div == div)
return bdiv->val;
}
return -EINVAL;
}
static int sun4i_i2s_get_mclk_div(struct sun4i_i2s *i2s,
unsigned int oversample_rate,
unsigned int module_rate,
unsigned int sampling_rate)
{
int div = module_rate / sampling_rate / oversample_rate;
int i;
for (i = 0; i < ARRAY_SIZE(sun4i_i2s_mclk_div); i++) {
const struct sun4i_i2s_clk_div *mdiv = &sun4i_i2s_mclk_div[i];
if (mdiv->div == div)
return mdiv->val;
}
return -EINVAL;
}
static int sun4i_i2s_oversample_rates[] = { 128, 192, 256, 384, 512, 768 };
static bool sun4i_i2s_oversample_is_valid(unsigned int oversample)
{
int i;
for (i = 0; i < ARRAY_SIZE(sun4i_i2s_oversample_rates); i++)
if (sun4i_i2s_oversample_rates[i] == oversample)
return true;
return false;
}
static int sun4i_i2s_set_clk_rate(struct sun4i_i2s *i2s,
unsigned int rate,
unsigned int word_size)
{
unsigned int oversample_rate, clk_rate;
int bclk_div, mclk_div;
int ret;
switch (rate) {
case 176400:
case 88200:
case 44100:
case 22050:
case 11025:
clk_rate = 22579200;
break;
case 192000:
case 128000:
case 96000:
case 64000:
case 48000:
case 32000:
case 24000:
case 16000:
case 12000:
case 8000:
clk_rate = 24576000;
break;
default:
return -EINVAL;
}
ret = clk_set_rate(i2s->mod_clk, clk_rate);
if (ret)
return ret;
oversample_rate = i2s->mclk_freq / rate;
if (!sun4i_i2s_oversample_is_valid(oversample_rate))
return -EINVAL;
bclk_div = sun4i_i2s_get_bclk_div(i2s, oversample_rate,
word_size);
if (bclk_div < 0)
return -EINVAL;
mclk_div = sun4i_i2s_get_mclk_div(i2s, oversample_rate,
clk_rate, rate);
if (mclk_div < 0)
return -EINVAL;
regmap_write(i2s->regmap, SUN4I_I2S_CLK_DIV_REG,
SUN4I_I2S_CLK_DIV_BCLK(bclk_div) |
SUN4I_I2S_CLK_DIV_MCLK(mclk_div) |
SUN4I_I2S_CLK_DIV_MCLK_EN);
return 0;
}
static int sun4i_i2s_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
int sr, wss;
u32 width;
if (params_channels(params) != 2)
return -EINVAL;
switch (params_physical_width(params)) {
case 16:
width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
default:
return -EINVAL;
}
i2s->playback_dma_data.addr_width = width;
switch (params_width(params)) {
case 16:
sr = 0;
wss = 0;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_WSS_MASK | SUN4I_I2S_FMT0_SR_MASK,
SUN4I_I2S_FMT0_WSS(wss) | SUN4I_I2S_FMT0_SR(sr));
return sun4i_i2s_set_clk_rate(i2s, params_rate(params),
params_width(params));
}
static int sun4i_i2s_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
u32 val;
/* DAI Mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
val = SUN4I_I2S_FMT0_FMT_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
val = SUN4I_I2S_FMT0_FMT_LEFT_J;
break;
case SND_SOC_DAIFMT_RIGHT_J:
val = SUN4I_I2S_FMT0_FMT_RIGHT_J;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_FMT_MASK,
val);
/* DAI clock polarity */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED;
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
val = SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL;
break;
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL |
SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_BCLK_POLARITY_MASK |
SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK,
val);
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* BCLK and LRCLK master */
val = SUN4I_I2S_CTRL_MODE_MASTER;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* BCLK and LRCLK slave */
val = SUN4I_I2S_CTRL_MODE_SLAVE;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_MODE_MASK,
val);
/* Set significant bits in our FIFOs */
regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG,
SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK |
SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK,
SUN4I_I2S_FIFO_CTRL_TX_MODE(1) |
SUN4I_I2S_FIFO_CTRL_RX_MODE(1));
return 0;
}
static void sun4i_i2s_start_capture(struct sun4i_i2s *i2s)
{
/* Flush RX FIFO */
regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG,
SUN4I_I2S_FIFO_CTRL_FLUSH_RX,
SUN4I_I2S_FIFO_CTRL_FLUSH_RX);
/* Clear RX counter */
regmap_write(i2s->regmap, SUN4I_I2S_RX_CNT_REG, 0);
/* Enable RX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_RX_EN,
SUN4I_I2S_CTRL_RX_EN);
/* Enable RX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN,
SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN);
}
static void sun4i_i2s_start_playback(struct sun4i_i2s *i2s)
{
/* Flush TX FIFO */
regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG,
SUN4I_I2S_FIFO_CTRL_FLUSH_TX,
SUN4I_I2S_FIFO_CTRL_FLUSH_TX);
/* Clear TX counter */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CNT_REG, 0);
/* Enable TX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_TX_EN,
SUN4I_I2S_CTRL_TX_EN);
/* Enable TX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN);
}
static void sun4i_i2s_stop_capture(struct sun4i_i2s *i2s)
{
/* Disable RX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_RX_EN,
0);
/* Disable RX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN,
0);
}
static void sun4i_i2s_stop_playback(struct sun4i_i2s *i2s)
{
/* Disable TX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_TX_EN,
0);
/* Disable TX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN,
0);
}
static int sun4i_i2s_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
sun4i_i2s_start_playback(i2s);
else
sun4i_i2s_start_capture(i2s);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
sun4i_i2s_stop_playback(i2s);
else
sun4i_i2s_stop_capture(i2s);
break;
default:
return -EINVAL;
}
return 0;
}
static int sun4i_i2s_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
/* Enable the whole hardware block */
regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_GL_EN);
/* Enable the first output line */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_SDO_EN_MASK,
SUN4I_I2S_CTRL_SDO_EN(0));
/* Enable the first two channels */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_SEL_REG,
SUN4I_I2S_TX_CHAN_SEL(2));
/* Map them to the two first samples coming in */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_MAP_REG,
SUN4I_I2S_TX_CHAN_MAP(0, 0) | SUN4I_I2S_TX_CHAN_MAP(1, 1));
return clk_prepare_enable(i2s->mod_clk);
}
static void sun4i_i2s_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
clk_disable_unprepare(i2s->mod_clk);
/* Disable our output lines */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_SDO_EN_MASK, 0);
/* Disable the whole hardware block */
regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG, 0);
}
static int sun4i_i2s_set_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
if (clk_id != 0)
return -EINVAL;
i2s->mclk_freq = freq;
return 0;
}
static const struct snd_soc_dai_ops sun4i_i2s_dai_ops = {
.hw_params = sun4i_i2s_hw_params,
.set_fmt = sun4i_i2s_set_fmt,
.set_sysclk = sun4i_i2s_set_sysclk,
.shutdown = sun4i_i2s_shutdown,
.startup = sun4i_i2s_startup,
.trigger = sun4i_i2s_trigger,
};
static int sun4i_i2s_dai_probe(struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai,
&i2s->playback_dma_data,
&i2s->capture_dma_data);
snd_soc_dai_set_drvdata(dai, i2s);
return 0;
}
static struct snd_soc_dai_driver sun4i_i2s_dai = {
.probe = sun4i_i2s_dai_probe,
.capture = {
.stream_name = "Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &sun4i_i2s_dai_ops,
.symmetric_rates = 1,
};
static const struct snd_soc_component_driver sun4i_i2s_component = {
.name = "sun4i-dai",
};
static bool sun4i_i2s_rd_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_TX_REG:
return false;
default:
return true;
}
}
static bool sun4i_i2s_wr_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_RX_REG:
case SUN4I_I2S_FIFO_STA_REG:
return false;
default:
return true;
}
}
static bool sun4i_i2s_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_RX_REG:
case SUN4I_I2S_INT_STA_REG:
case SUN4I_I2S_RX_CNT_REG:
case SUN4I_I2S_TX_CNT_REG:
return true;
default:
return false;
}
}
static const struct reg_default sun4i_i2s_reg_defaults[] = {
{ SUN4I_I2S_CTRL_REG, 0x00000000 },
{ SUN4I_I2S_FMT0_REG, 0x0000000c },
{ SUN4I_I2S_FMT1_REG, 0x00004020 },
{ SUN4I_I2S_FIFO_CTRL_REG, 0x000400f0 },
{ SUN4I_I2S_DMA_INT_CTRL_REG, 0x00000000 },
{ SUN4I_I2S_CLK_DIV_REG, 0x00000000 },
{ SUN4I_I2S_TX_CHAN_SEL_REG, 0x00000001 },
{ SUN4I_I2S_TX_CHAN_MAP_REG, 0x76543210 },
{ SUN4I_I2S_RX_CHAN_SEL_REG, 0x00000001 },
{ SUN4I_I2S_RX_CHAN_MAP_REG, 0x00003210 },
};
static const struct regmap_config sun4i_i2s_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SUN4I_I2S_RX_CHAN_MAP_REG,
.cache_type = REGCACHE_FLAT,
.reg_defaults = sun4i_i2s_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(sun4i_i2s_reg_defaults),
.writeable_reg = sun4i_i2s_wr_reg,
.readable_reg = sun4i_i2s_rd_reg,
.volatile_reg = sun4i_i2s_volatile_reg,
};
static int sun4i_i2s_runtime_resume(struct device *dev)
{
struct sun4i_i2s *i2s = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(i2s->bus_clk);
if (ret) {
dev_err(dev, "Failed to enable bus clock\n");
return ret;
}
regcache_cache_only(i2s->regmap, false);
regcache_mark_dirty(i2s->regmap);
ret = regcache_sync(i2s->regmap);
if (ret) {
dev_err(dev, "Failed to sync regmap cache\n");
goto err_disable_clk;
}
return 0;
err_disable_clk:
clk_disable_unprepare(i2s->bus_clk);
return ret;
}
static int sun4i_i2s_runtime_suspend(struct device *dev)
{
struct sun4i_i2s *i2s = dev_get_drvdata(dev);
regcache_cache_only(i2s->regmap, true);
clk_disable_unprepare(i2s->bus_clk);
return 0;
}
static int sun4i_i2s_probe(struct platform_device *pdev)
{
struct sun4i_i2s *i2s;
struct resource *res;
void __iomem *regs;
int irq, ret;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s)
return -ENOMEM;
platform_set_drvdata(pdev, i2s);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Can't retrieve our interrupt\n");
return irq;
}
i2s->bus_clk = devm_clk_get(&pdev->dev, "apb");
if (IS_ERR(i2s->bus_clk)) {
dev_err(&pdev->dev, "Can't get our bus clock\n");
return PTR_ERR(i2s->bus_clk);
}
i2s->regmap = devm_regmap_init_mmio(&pdev->dev, regs,
&sun4i_i2s_regmap_config);
if (IS_ERR(i2s->regmap)) {
dev_err(&pdev->dev, "Regmap initialisation failed\n");
return PTR_ERR(i2s->regmap);
}
i2s->mod_clk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(i2s->mod_clk)) {
dev_err(&pdev->dev, "Can't get our mod clock\n");
return PTR_ERR(i2s->mod_clk);
}
i2s->playback_dma_data.addr = res->start + SUN4I_I2S_FIFO_TX_REG;
i2s->playback_dma_data.maxburst = 4;
i2s->capture_dma_data.addr = res->start + SUN4I_I2S_FIFO_RX_REG;
i2s->capture_dma_data.maxburst = 4;
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = sun4i_i2s_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
ret = devm_snd_soc_register_component(&pdev->dev,
&sun4i_i2s_component,
&sun4i_i2s_dai, 1);
if (ret) {
dev_err(&pdev->dev, "Could not register DAI\n");
goto err_suspend;
}
ret = snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (ret) {
dev_err(&pdev->dev, "Could not register PCM\n");
goto err_suspend;
}
return 0;
err_suspend:
if (!pm_runtime_status_suspended(&pdev->dev))
sun4i_i2s_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
return ret;
}
static int sun4i_i2s_remove(struct platform_device *pdev)
{
snd_dmaengine_pcm_unregister(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
sun4i_i2s_runtime_suspend(&pdev->dev);
return 0;
}
static const struct of_device_id sun4i_i2s_match[] = {
{ .compatible = "allwinner,sun4i-a10-i2s", },
{}
};
MODULE_DEVICE_TABLE(of, sun4i_i2s_match);
static const struct dev_pm_ops sun4i_i2s_pm_ops = {
.runtime_resume = sun4i_i2s_runtime_resume,
.runtime_suspend = sun4i_i2s_runtime_suspend,
};
static struct platform_driver sun4i_i2s_driver = {
.probe = sun4i_i2s_probe,
.remove = sun4i_i2s_remove,
.driver = {
.name = "sun4i-i2s",
.of_match_table = sun4i_i2s_match,
.pm = &sun4i_i2s_pm_ops,
},
};
module_platform_driver(sun4i_i2s_driver);
MODULE_AUTHOR("Andrea Venturi <be17068@iperbole.bo.it>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 I2S driver");
MODULE_LICENSE("GPL");