linux-stable/drivers/tty/serial/stm32-usart.c
Erwan Le Ray c8a9d04394 serial: stm32: fix word length configuration
STM32 supports either:
- 8 and 9 bits word length (including parity bit) for stm32f4 compatible
  devices
- 7, 8 and 9 bits word length (including parity bit) for stm32f7 and
  stm32h7 compatible devices.

As a consequence STM32 supports the following termios configurations:
- CS7 with parity bit, and CS8 (with or without parity bit) for stm32f4
  compatible devices.
- CS6 with parity bit, CS7 and CS8 (with or without parity bit) for
  stm32f7 and stm32h7 compatible devices.

This patch is fixing word length by configuring correctly the SoC with
supported configurations.

Fixes: ada8618ff3 ("serial: stm32: adding support for stm32f7")
Signed-off-by: Erwan Le Ray <erwan.leray@st.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 09:58:28 +02:00

1325 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Maxime Coquelin 2015
* Copyright (C) STMicroelectronics SA 2017
* Authors: Maxime Coquelin <mcoquelin.stm32@gmail.com>
* Gerald Baeza <gerald.baeza@st.com>
*
* Inspired by st-asc.c from STMicroelectronics (c)
*/
#if defined(CONFIG_SERIAL_STM32_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/clk.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeirq.h>
#include <linux/serial_core.h>
#include <linux/serial.h>
#include <linux/spinlock.h>
#include <linux/sysrq.h>
#include <linux/tty_flip.h>
#include <linux/tty.h>
#include "stm32-usart.h"
static void stm32_stop_tx(struct uart_port *port);
static void stm32_transmit_chars(struct uart_port *port);
static inline struct stm32_port *to_stm32_port(struct uart_port *port)
{
return container_of(port, struct stm32_port, port);
}
static void stm32_set_bits(struct uart_port *port, u32 reg, u32 bits)
{
u32 val;
val = readl_relaxed(port->membase + reg);
val |= bits;
writel_relaxed(val, port->membase + reg);
}
static void stm32_clr_bits(struct uart_port *port, u32 reg, u32 bits)
{
u32 val;
val = readl_relaxed(port->membase + reg);
val &= ~bits;
writel_relaxed(val, port->membase + reg);
}
static void stm32_config_reg_rs485(u32 *cr1, u32 *cr3, u32 delay_ADE,
u32 delay_DDE, u32 baud)
{
u32 rs485_deat_dedt;
u32 rs485_deat_dedt_max = (USART_CR1_DEAT_MASK >> USART_CR1_DEAT_SHIFT);
bool over8;
*cr3 |= USART_CR3_DEM;
over8 = *cr1 & USART_CR1_OVER8;
if (over8)
rs485_deat_dedt = delay_ADE * baud * 8;
else
rs485_deat_dedt = delay_ADE * baud * 16;
rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000);
rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ?
rs485_deat_dedt_max : rs485_deat_dedt;
rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEAT_SHIFT) &
USART_CR1_DEAT_MASK;
*cr1 |= rs485_deat_dedt;
if (over8)
rs485_deat_dedt = delay_DDE * baud * 8;
else
rs485_deat_dedt = delay_DDE * baud * 16;
rs485_deat_dedt = DIV_ROUND_CLOSEST(rs485_deat_dedt, 1000);
rs485_deat_dedt = rs485_deat_dedt > rs485_deat_dedt_max ?
rs485_deat_dedt_max : rs485_deat_dedt;
rs485_deat_dedt = (rs485_deat_dedt << USART_CR1_DEDT_SHIFT) &
USART_CR1_DEDT_MASK;
*cr1 |= rs485_deat_dedt;
}
static int stm32_config_rs485(struct uart_port *port,
struct serial_rs485 *rs485conf)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
u32 usartdiv, baud, cr1, cr3;
bool over8;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
stm32_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
port->rs485 = *rs485conf;
rs485conf->flags |= SER_RS485_RX_DURING_TX;
if (rs485conf->flags & SER_RS485_ENABLED) {
cr1 = readl_relaxed(port->membase + ofs->cr1);
cr3 = readl_relaxed(port->membase + ofs->cr3);
usartdiv = readl_relaxed(port->membase + ofs->brr);
usartdiv = usartdiv & GENMASK(15, 0);
over8 = cr1 & USART_CR1_OVER8;
if (over8)
usartdiv = usartdiv | (usartdiv & GENMASK(4, 0))
<< USART_BRR_04_R_SHIFT;
baud = DIV_ROUND_CLOSEST(port->uartclk, usartdiv);
stm32_config_reg_rs485(&cr1, &cr3,
rs485conf->delay_rts_before_send,
rs485conf->delay_rts_after_send, baud);
if (rs485conf->flags & SER_RS485_RTS_ON_SEND) {
cr3 &= ~USART_CR3_DEP;
rs485conf->flags &= ~SER_RS485_RTS_AFTER_SEND;
} else {
cr3 |= USART_CR3_DEP;
rs485conf->flags |= SER_RS485_RTS_AFTER_SEND;
}
writel_relaxed(cr3, port->membase + ofs->cr3);
writel_relaxed(cr1, port->membase + ofs->cr1);
} else {
stm32_clr_bits(port, ofs->cr3, USART_CR3_DEM | USART_CR3_DEP);
stm32_clr_bits(port, ofs->cr1,
USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK);
}
stm32_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
spin_unlock_irqrestore(&port->lock, flags);
return 0;
}
static int stm32_init_rs485(struct uart_port *port,
struct platform_device *pdev)
{
struct serial_rs485 *rs485conf = &port->rs485;
rs485conf->flags = 0;
rs485conf->delay_rts_before_send = 0;
rs485conf->delay_rts_after_send = 0;
if (!pdev->dev.of_node)
return -ENODEV;
uart_get_rs485_mode(&pdev->dev, rs485conf);
return 0;
}
static int stm32_pending_rx(struct uart_port *port, u32 *sr, int *last_res,
bool threaded)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
enum dma_status status;
struct dma_tx_state state;
*sr = readl_relaxed(port->membase + ofs->isr);
if (threaded && stm32_port->rx_ch) {
status = dmaengine_tx_status(stm32_port->rx_ch,
stm32_port->rx_ch->cookie,
&state);
if ((status == DMA_IN_PROGRESS) &&
(*last_res != state.residue))
return 1;
else
return 0;
} else if (*sr & USART_SR_RXNE) {
return 1;
}
return 0;
}
static unsigned long
stm32_get_char(struct uart_port *port, u32 *sr, int *last_res)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
unsigned long c;
if (stm32_port->rx_ch) {
c = stm32_port->rx_buf[RX_BUF_L - (*last_res)--];
if ((*last_res) == 0)
*last_res = RX_BUF_L;
return c;
} else {
return readl_relaxed(port->membase + ofs->rdr);
}
}
static void stm32_receive_chars(struct uart_port *port, bool threaded)
{
struct tty_port *tport = &port->state->port;
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
unsigned long c;
u32 sr;
char flag;
if (irqd_is_wakeup_set(irq_get_irq_data(port->irq)))
pm_wakeup_event(tport->tty->dev, 0);
while (stm32_pending_rx(port, &sr, &stm32_port->last_res, threaded)) {
sr |= USART_SR_DUMMY_RX;
c = stm32_get_char(port, &sr, &stm32_port->last_res);
flag = TTY_NORMAL;
port->icount.rx++;
if (sr & USART_SR_ERR_MASK) {
if (sr & USART_SR_LBD) {
port->icount.brk++;
if (uart_handle_break(port))
continue;
} else if (sr & USART_SR_ORE) {
if (ofs->icr != UNDEF_REG)
writel_relaxed(USART_ICR_ORECF,
port->membase +
ofs->icr);
port->icount.overrun++;
} else if (sr & USART_SR_PE) {
port->icount.parity++;
} else if (sr & USART_SR_FE) {
port->icount.frame++;
}
sr &= port->read_status_mask;
if (sr & USART_SR_LBD)
flag = TTY_BREAK;
else if (sr & USART_SR_PE)
flag = TTY_PARITY;
else if (sr & USART_SR_FE)
flag = TTY_FRAME;
}
if (uart_handle_sysrq_char(port, c))
continue;
uart_insert_char(port, sr, USART_SR_ORE, c, flag);
}
spin_unlock(&port->lock);
tty_flip_buffer_push(tport);
spin_lock(&port->lock);
}
static void stm32_tx_dma_complete(void *arg)
{
struct uart_port *port = arg;
struct stm32_port *stm32port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32port->info->ofs;
unsigned int isr;
int ret;
ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr,
isr,
(isr & USART_SR_TC),
10, 100000);
if (ret)
dev_err(port->dev, "terminal count not set\n");
if (ofs->icr == UNDEF_REG)
stm32_clr_bits(port, ofs->isr, USART_SR_TC);
else
stm32_set_bits(port, ofs->icr, USART_CR_TC);
stm32_clr_bits(port, ofs->cr3, USART_CR3_DMAT);
stm32port->tx_dma_busy = false;
/* Let's see if we have pending data to send */
stm32_transmit_chars(port);
}
static void stm32_transmit_chars_pio(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct circ_buf *xmit = &port->state->xmit;
unsigned int isr;
int ret;
if (stm32_port->tx_dma_busy) {
stm32_clr_bits(port, ofs->cr3, USART_CR3_DMAT);
stm32_port->tx_dma_busy = false;
}
ret = readl_relaxed_poll_timeout_atomic(port->membase + ofs->isr,
isr,
(isr & USART_SR_TXE),
10, 100000);
if (ret)
dev_err(port->dev, "tx empty not set\n");
stm32_set_bits(port, ofs->cr1, USART_CR1_TXEIE);
writel_relaxed(xmit->buf[xmit->tail], port->membase + ofs->tdr);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
}
static void stm32_transmit_chars_dma(struct uart_port *port)
{
struct stm32_port *stm32port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32port->info->ofs;
struct circ_buf *xmit = &port->state->xmit;
struct dma_async_tx_descriptor *desc = NULL;
dma_cookie_t cookie;
unsigned int count, i;
if (stm32port->tx_dma_busy)
return;
stm32port->tx_dma_busy = true;
count = uart_circ_chars_pending(xmit);
if (count > TX_BUF_L)
count = TX_BUF_L;
if (xmit->tail < xmit->head) {
memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], count);
} else {
size_t one = UART_XMIT_SIZE - xmit->tail;
size_t two;
if (one > count)
one = count;
two = count - one;
memcpy(&stm32port->tx_buf[0], &xmit->buf[xmit->tail], one);
if (two)
memcpy(&stm32port->tx_buf[one], &xmit->buf[0], two);
}
desc = dmaengine_prep_slave_single(stm32port->tx_ch,
stm32port->tx_dma_buf,
count,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT);
if (!desc) {
for (i = count; i > 0; i--)
stm32_transmit_chars_pio(port);
return;
}
desc->callback = stm32_tx_dma_complete;
desc->callback_param = port;
/* Push current DMA TX transaction in the pending queue */
cookie = dmaengine_submit(desc);
/* Issue pending DMA TX requests */
dma_async_issue_pending(stm32port->tx_ch);
stm32_clr_bits(port, ofs->isr, USART_SR_TC);
stm32_set_bits(port, ofs->cr3, USART_CR3_DMAT);
xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
port->icount.tx += count;
}
static void stm32_transmit_chars(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct circ_buf *xmit = &port->state->xmit;
if (port->x_char) {
if (stm32_port->tx_dma_busy)
stm32_clr_bits(port, ofs->cr3, USART_CR3_DMAT);
writel_relaxed(port->x_char, port->membase + ofs->tdr);
port->x_char = 0;
port->icount.tx++;
if (stm32_port->tx_dma_busy)
stm32_set_bits(port, ofs->cr3, USART_CR3_DMAT);
return;
}
if (uart_tx_stopped(port)) {
stm32_stop_tx(port);
return;
}
if (uart_circ_empty(xmit)) {
stm32_stop_tx(port);
return;
}
if (stm32_port->tx_ch)
stm32_transmit_chars_dma(port);
else
stm32_transmit_chars_pio(port);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
if (uart_circ_empty(xmit))
stm32_stop_tx(port);
}
static irqreturn_t stm32_interrupt(int irq, void *ptr)
{
struct uart_port *port = ptr;
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
u32 sr;
spin_lock(&port->lock);
sr = readl_relaxed(port->membase + ofs->isr);
if ((sr & USART_SR_WUF) && (ofs->icr != UNDEF_REG))
writel_relaxed(USART_ICR_WUCF,
port->membase + ofs->icr);
if ((sr & USART_SR_RXNE) && !(stm32_port->rx_ch))
stm32_receive_chars(port, false);
if ((sr & USART_SR_TXE) && !(stm32_port->tx_ch))
stm32_transmit_chars(port);
spin_unlock(&port->lock);
if (stm32_port->rx_ch)
return IRQ_WAKE_THREAD;
else
return IRQ_HANDLED;
}
static irqreturn_t stm32_threaded_interrupt(int irq, void *ptr)
{
struct uart_port *port = ptr;
struct stm32_port *stm32_port = to_stm32_port(port);
spin_lock(&port->lock);
if (stm32_port->rx_ch)
stm32_receive_chars(port, true);
spin_unlock(&port->lock);
return IRQ_HANDLED;
}
static unsigned int stm32_tx_empty(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
return readl_relaxed(port->membase + ofs->isr) & USART_SR_TXE;
}
static void stm32_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
if ((mctrl & TIOCM_RTS) && (port->status & UPSTAT_AUTORTS))
stm32_set_bits(port, ofs->cr3, USART_CR3_RTSE);
else
stm32_clr_bits(port, ofs->cr3, USART_CR3_RTSE);
}
static unsigned int stm32_get_mctrl(struct uart_port *port)
{
/* This routine is used to get signals of: DCD, DSR, RI, and CTS */
return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
}
/* Transmit stop */
static void stm32_stop_tx(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
stm32_clr_bits(port, ofs->cr1, USART_CR1_TXEIE);
}
/* There are probably characters waiting to be transmitted. */
static void stm32_start_tx(struct uart_port *port)
{
struct circ_buf *xmit = &port->state->xmit;
if (uart_circ_empty(xmit))
return;
stm32_transmit_chars(port);
}
/* Throttle the remote when input buffer is about to overflow. */
static void stm32_throttle(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
stm32_clr_bits(port, ofs->cr1, USART_CR1_RXNEIE);
spin_unlock_irqrestore(&port->lock, flags);
}
/* Unthrottle the remote, the input buffer can now accept data. */
static void stm32_unthrottle(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
unsigned long flags;
spin_lock_irqsave(&port->lock, flags);
stm32_set_bits(port, ofs->cr1, USART_CR1_RXNEIE);
spin_unlock_irqrestore(&port->lock, flags);
}
/* Receive stop */
static void stm32_stop_rx(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
stm32_clr_bits(port, ofs->cr1, USART_CR1_RXNEIE);
}
/* Handle breaks - ignored by us */
static void stm32_break_ctl(struct uart_port *port, int break_state)
{
}
static int stm32_startup(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
const char *name = to_platform_device(port->dev)->name;
u32 val;
int ret;
ret = request_threaded_irq(port->irq, stm32_interrupt,
stm32_threaded_interrupt,
IRQF_NO_SUSPEND, name, port);
if (ret)
return ret;
if (cfg->has_wakeup && stm32_port->wakeirq >= 0) {
ret = dev_pm_set_dedicated_wake_irq(port->dev,
stm32_port->wakeirq);
if (ret) {
free_irq(port->irq, port);
return ret;
}
}
val = USART_CR1_RXNEIE | USART_CR1_TE | USART_CR1_RE;
if (stm32_port->fifoen)
val |= USART_CR1_FIFOEN;
stm32_set_bits(port, ofs->cr1, val);
return 0;
}
static void stm32_shutdown(struct uart_port *port)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
u32 val;
val = USART_CR1_TXEIE | USART_CR1_RXNEIE | USART_CR1_TE | USART_CR1_RE;
val |= BIT(cfg->uart_enable_bit);
if (stm32_port->fifoen)
val |= USART_CR1_FIFOEN;
stm32_clr_bits(port, ofs->cr1, val);
dev_pm_clear_wake_irq(port->dev);
free_irq(port->irq, port);
}
unsigned int stm32_get_databits(struct ktermios *termios)
{
unsigned int bits;
tcflag_t cflag = termios->c_cflag;
switch (cflag & CSIZE) {
/*
* CSIZE settings are not necessarily supported in hardware.
* CSIZE unsupported configurations are handled here to set word length
* to 8 bits word as default configuration and to print debug message.
*/
case CS5:
bits = 5;
break;
case CS6:
bits = 6;
break;
case CS7:
bits = 7;
break;
/* default including CS8 */
default:
bits = 8;
break;
}
return bits;
}
static void stm32_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
struct serial_rs485 *rs485conf = &port->rs485;
unsigned int baud, bits;
u32 usartdiv, mantissa, fraction, oversampling;
tcflag_t cflag = termios->c_cflag;
u32 cr1, cr2, cr3;
unsigned long flags;
if (!stm32_port->hw_flow_control)
cflag &= ~CRTSCTS;
baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 8);
spin_lock_irqsave(&port->lock, flags);
/* Stop serial port and reset value */
writel_relaxed(0, port->membase + ofs->cr1);
cr1 = USART_CR1_TE | USART_CR1_RE | USART_CR1_RXNEIE;
if (stm32_port->fifoen)
cr1 |= USART_CR1_FIFOEN;
cr2 = 0;
cr3 = 0;
if (cflag & CSTOPB)
cr2 |= USART_CR2_STOP_2B;
bits = stm32_get_databits(termios);
if (cflag & PARENB) {
bits++;
cr1 |= USART_CR1_PCE;
}
/*
* Word length configuration:
* CS8 + parity, 9 bits word aka [M1:M0] = 0b01
* CS7 or (CS6 + parity), 7 bits word aka [M1:M0] = 0b10
* CS8 or (CS7 + parity), 8 bits word aka [M1:M0] = 0b00
* M0 and M1 already cleared by cr1 initialization.
*/
if (bits == 9)
cr1 |= USART_CR1_M0;
else if ((bits == 7) && cfg->has_7bits_data)
cr1 |= USART_CR1_M1;
else if (bits != 8)
dev_dbg(port->dev, "Unsupported data bits config: %u bits\n"
, bits);
if (cflag & PARODD)
cr1 |= USART_CR1_PS;
port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
if (cflag & CRTSCTS) {
port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
cr3 |= USART_CR3_CTSE | USART_CR3_RTSE;
}
usartdiv = DIV_ROUND_CLOSEST(port->uartclk, baud);
/*
* The USART supports 16 or 8 times oversampling.
* By default we prefer 16 times oversampling, so that the receiver
* has a better tolerance to clock deviations.
* 8 times oversampling is only used to achieve higher speeds.
*/
if (usartdiv < 16) {
oversampling = 8;
cr1 |= USART_CR1_OVER8;
stm32_set_bits(port, ofs->cr1, USART_CR1_OVER8);
} else {
oversampling = 16;
cr1 &= ~USART_CR1_OVER8;
stm32_clr_bits(port, ofs->cr1, USART_CR1_OVER8);
}
mantissa = (usartdiv / oversampling) << USART_BRR_DIV_M_SHIFT;
fraction = usartdiv % oversampling;
writel_relaxed(mantissa | fraction, port->membase + ofs->brr);
uart_update_timeout(port, cflag, baud);
port->read_status_mask = USART_SR_ORE;
if (termios->c_iflag & INPCK)
port->read_status_mask |= USART_SR_PE | USART_SR_FE;
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
port->read_status_mask |= USART_SR_LBD;
/* Characters to ignore */
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask = USART_SR_PE | USART_SR_FE;
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= USART_SR_LBD;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= USART_SR_ORE;
}
/* Ignore all characters if CREAD is not set */
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= USART_SR_DUMMY_RX;
if (stm32_port->rx_ch)
cr3 |= USART_CR3_DMAR;
if (rs485conf->flags & SER_RS485_ENABLED) {
stm32_config_reg_rs485(&cr1, &cr3,
rs485conf->delay_rts_before_send,
rs485conf->delay_rts_after_send, baud);
if (rs485conf->flags & SER_RS485_RTS_ON_SEND) {
cr3 &= ~USART_CR3_DEP;
rs485conf->flags &= ~SER_RS485_RTS_AFTER_SEND;
} else {
cr3 |= USART_CR3_DEP;
rs485conf->flags |= SER_RS485_RTS_AFTER_SEND;
}
} else {
cr3 &= ~(USART_CR3_DEM | USART_CR3_DEP);
cr1 &= ~(USART_CR1_DEDT_MASK | USART_CR1_DEAT_MASK);
}
writel_relaxed(cr3, port->membase + ofs->cr3);
writel_relaxed(cr2, port->membase + ofs->cr2);
writel_relaxed(cr1, port->membase + ofs->cr1);
stm32_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
spin_unlock_irqrestore(&port->lock, flags);
}
static const char *stm32_type(struct uart_port *port)
{
return (port->type == PORT_STM32) ? DRIVER_NAME : NULL;
}
static void stm32_release_port(struct uart_port *port)
{
}
static int stm32_request_port(struct uart_port *port)
{
return 0;
}
static void stm32_config_port(struct uart_port *port, int flags)
{
if (flags & UART_CONFIG_TYPE)
port->type = PORT_STM32;
}
static int
stm32_verify_port(struct uart_port *port, struct serial_struct *ser)
{
/* No user changeable parameters */
return -EINVAL;
}
static void stm32_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
struct stm32_port *stm32port = container_of(port,
struct stm32_port, port);
struct stm32_usart_offsets *ofs = &stm32port->info->ofs;
struct stm32_usart_config *cfg = &stm32port->info->cfg;
unsigned long flags = 0;
switch (state) {
case UART_PM_STATE_ON:
clk_prepare_enable(stm32port->clk);
break;
case UART_PM_STATE_OFF:
spin_lock_irqsave(&port->lock, flags);
stm32_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
spin_unlock_irqrestore(&port->lock, flags);
clk_disable_unprepare(stm32port->clk);
break;
}
}
static const struct uart_ops stm32_uart_ops = {
.tx_empty = stm32_tx_empty,
.set_mctrl = stm32_set_mctrl,
.get_mctrl = stm32_get_mctrl,
.stop_tx = stm32_stop_tx,
.start_tx = stm32_start_tx,
.throttle = stm32_throttle,
.unthrottle = stm32_unthrottle,
.stop_rx = stm32_stop_rx,
.break_ctl = stm32_break_ctl,
.startup = stm32_startup,
.shutdown = stm32_shutdown,
.set_termios = stm32_set_termios,
.pm = stm32_pm,
.type = stm32_type,
.release_port = stm32_release_port,
.request_port = stm32_request_port,
.config_port = stm32_config_port,
.verify_port = stm32_verify_port,
};
static int stm32_init_port(struct stm32_port *stm32port,
struct platform_device *pdev)
{
struct uart_port *port = &stm32port->port;
struct resource *res;
int ret;
port->iotype = UPIO_MEM;
port->flags = UPF_BOOT_AUTOCONF;
port->ops = &stm32_uart_ops;
port->dev = &pdev->dev;
port->irq = platform_get_irq(pdev, 0);
port->rs485_config = stm32_config_rs485;
stm32_init_rs485(port, pdev);
stm32port->wakeirq = platform_get_irq(pdev, 1);
stm32port->fifoen = stm32port->info->cfg.has_fifo;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
port->membase = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(port->membase))
return PTR_ERR(port->membase);
port->mapbase = res->start;
spin_lock_init(&port->lock);
stm32port->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(stm32port->clk))
return PTR_ERR(stm32port->clk);
/* Ensure that clk rate is correct by enabling the clk */
ret = clk_prepare_enable(stm32port->clk);
if (ret)
return ret;
stm32port->port.uartclk = clk_get_rate(stm32port->clk);
if (!stm32port->port.uartclk) {
clk_disable_unprepare(stm32port->clk);
ret = -EINVAL;
}
return ret;
}
static struct stm32_port *stm32_of_get_stm32_port(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int id;
if (!np)
return NULL;
id = of_alias_get_id(np, "serial");
if (id < 0) {
dev_err(&pdev->dev, "failed to get alias id, errno %d\n", id);
return NULL;
}
if (WARN_ON(id >= STM32_MAX_PORTS))
return NULL;
stm32_ports[id].hw_flow_control = of_property_read_bool(np,
"st,hw-flow-ctrl");
stm32_ports[id].port.line = id;
stm32_ports[id].last_res = RX_BUF_L;
return &stm32_ports[id];
}
#ifdef CONFIG_OF
static const struct of_device_id stm32_match[] = {
{ .compatible = "st,stm32-uart", .data = &stm32f4_info},
{ .compatible = "st,stm32f7-uart", .data = &stm32f7_info},
{ .compatible = "st,stm32h7-uart", .data = &stm32h7_info},
{},
};
MODULE_DEVICE_TABLE(of, stm32_match);
#endif
static int stm32_of_dma_rx_probe(struct stm32_port *stm32port,
struct platform_device *pdev)
{
struct stm32_usart_offsets *ofs = &stm32port->info->ofs;
struct uart_port *port = &stm32port->port;
struct device *dev = &pdev->dev;
struct dma_slave_config config;
struct dma_async_tx_descriptor *desc = NULL;
dma_cookie_t cookie;
int ret;
/* Request DMA RX channel */
stm32port->rx_ch = dma_request_slave_channel(dev, "rx");
if (!stm32port->rx_ch) {
dev_info(dev, "rx dma alloc failed\n");
return -ENODEV;
}
stm32port->rx_buf = dma_alloc_coherent(&pdev->dev, RX_BUF_L,
&stm32port->rx_dma_buf,
GFP_KERNEL);
if (!stm32port->rx_buf) {
ret = -ENOMEM;
goto alloc_err;
}
/* Configure DMA channel */
memset(&config, 0, sizeof(config));
config.src_addr = port->mapbase + ofs->rdr;
config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
ret = dmaengine_slave_config(stm32port->rx_ch, &config);
if (ret < 0) {
dev_err(dev, "rx dma channel config failed\n");
ret = -ENODEV;
goto config_err;
}
/* Prepare a DMA cyclic transaction */
desc = dmaengine_prep_dma_cyclic(stm32port->rx_ch,
stm32port->rx_dma_buf,
RX_BUF_L, RX_BUF_P, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "rx dma prep cyclic failed\n");
ret = -ENODEV;
goto config_err;
}
/* No callback as dma buffer is drained on usart interrupt */
desc->callback = NULL;
desc->callback_param = NULL;
/* Push current DMA transaction in the pending queue */
cookie = dmaengine_submit(desc);
/* Issue pending DMA requests */
dma_async_issue_pending(stm32port->rx_ch);
return 0;
config_err:
dma_free_coherent(&pdev->dev,
RX_BUF_L, stm32port->rx_buf,
stm32port->rx_dma_buf);
alloc_err:
dma_release_channel(stm32port->rx_ch);
stm32port->rx_ch = NULL;
return ret;
}
static int stm32_of_dma_tx_probe(struct stm32_port *stm32port,
struct platform_device *pdev)
{
struct stm32_usart_offsets *ofs = &stm32port->info->ofs;
struct uart_port *port = &stm32port->port;
struct device *dev = &pdev->dev;
struct dma_slave_config config;
int ret;
stm32port->tx_dma_busy = false;
/* Request DMA TX channel */
stm32port->tx_ch = dma_request_slave_channel(dev, "tx");
if (!stm32port->tx_ch) {
dev_info(dev, "tx dma alloc failed\n");
return -ENODEV;
}
stm32port->tx_buf = dma_alloc_coherent(&pdev->dev, TX_BUF_L,
&stm32port->tx_dma_buf,
GFP_KERNEL);
if (!stm32port->tx_buf) {
ret = -ENOMEM;
goto alloc_err;
}
/* Configure DMA channel */
memset(&config, 0, sizeof(config));
config.dst_addr = port->mapbase + ofs->tdr;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
ret = dmaengine_slave_config(stm32port->tx_ch, &config);
if (ret < 0) {
dev_err(dev, "tx dma channel config failed\n");
ret = -ENODEV;
goto config_err;
}
return 0;
config_err:
dma_free_coherent(&pdev->dev,
TX_BUF_L, stm32port->tx_buf,
stm32port->tx_dma_buf);
alloc_err:
dma_release_channel(stm32port->tx_ch);
stm32port->tx_ch = NULL;
return ret;
}
static int stm32_serial_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct stm32_port *stm32port;
int ret;
stm32port = stm32_of_get_stm32_port(pdev);
if (!stm32port)
return -ENODEV;
match = of_match_device(stm32_match, &pdev->dev);
if (match && match->data)
stm32port->info = (struct stm32_usart_info *)match->data;
else
return -EINVAL;
ret = stm32_init_port(stm32port, pdev);
if (ret)
return ret;
if (stm32port->info->cfg.has_wakeup && stm32port->wakeirq >= 0) {
ret = device_init_wakeup(&pdev->dev, true);
if (ret)
goto err_uninit;
}
ret = uart_add_one_port(&stm32_usart_driver, &stm32port->port);
if (ret)
goto err_nowup;
ret = stm32_of_dma_rx_probe(stm32port, pdev);
if (ret)
dev_info(&pdev->dev, "interrupt mode used for rx (no dma)\n");
ret = stm32_of_dma_tx_probe(stm32port, pdev);
if (ret)
dev_info(&pdev->dev, "interrupt mode used for tx (no dma)\n");
platform_set_drvdata(pdev, &stm32port->port);
return 0;
err_nowup:
if (stm32port->info->cfg.has_wakeup && stm32port->wakeirq >= 0)
device_init_wakeup(&pdev->dev, false);
err_uninit:
clk_disable_unprepare(stm32port->clk);
return ret;
}
static int stm32_serial_remove(struct platform_device *pdev)
{
struct uart_port *port = platform_get_drvdata(pdev);
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
stm32_clr_bits(port, ofs->cr3, USART_CR3_DMAR);
if (stm32_port->rx_ch)
dma_release_channel(stm32_port->rx_ch);
if (stm32_port->rx_dma_buf)
dma_free_coherent(&pdev->dev,
RX_BUF_L, stm32_port->rx_buf,
stm32_port->rx_dma_buf);
stm32_clr_bits(port, ofs->cr3, USART_CR3_DMAT);
if (stm32_port->tx_ch)
dma_release_channel(stm32_port->tx_ch);
if (stm32_port->tx_dma_buf)
dma_free_coherent(&pdev->dev,
TX_BUF_L, stm32_port->tx_buf,
stm32_port->tx_dma_buf);
if (cfg->has_wakeup && stm32_port->wakeirq >= 0)
device_init_wakeup(&pdev->dev, false);
clk_disable_unprepare(stm32_port->clk);
return uart_remove_one_port(&stm32_usart_driver, port);
}
#ifdef CONFIG_SERIAL_STM32_CONSOLE
static void stm32_console_putchar(struct uart_port *port, int ch)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
while (!(readl_relaxed(port->membase + ofs->isr) & USART_SR_TXE))
cpu_relax();
writel_relaxed(ch, port->membase + ofs->tdr);
}
static void stm32_console_write(struct console *co, const char *s, unsigned cnt)
{
struct uart_port *port = &stm32_ports[co->index].port;
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
unsigned long flags;
u32 old_cr1, new_cr1;
int locked = 1;
local_irq_save(flags);
if (port->sysrq)
locked = 0;
else if (oops_in_progress)
locked = spin_trylock(&port->lock);
else
spin_lock(&port->lock);
/* Save and disable interrupts, enable the transmitter */
old_cr1 = readl_relaxed(port->membase + ofs->cr1);
new_cr1 = old_cr1 & ~USART_CR1_IE_MASK;
new_cr1 |= USART_CR1_TE | BIT(cfg->uart_enable_bit);
writel_relaxed(new_cr1, port->membase + ofs->cr1);
uart_console_write(port, s, cnt, stm32_console_putchar);
/* Restore interrupt state */
writel_relaxed(old_cr1, port->membase + ofs->cr1);
if (locked)
spin_unlock(&port->lock);
local_irq_restore(flags);
}
static int stm32_console_setup(struct console *co, char *options)
{
struct stm32_port *stm32port;
int baud = 9600;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index >= STM32_MAX_PORTS)
return -ENODEV;
stm32port = &stm32_ports[co->index];
/*
* This driver does not support early console initialization
* (use ARM early printk support instead), so we only expect
* this to be called during the uart port registration when the
* driver gets probed and the port should be mapped at that point.
*/
if (stm32port->port.mapbase == 0 || stm32port->port.membase == NULL)
return -ENXIO;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(&stm32port->port, co, baud, parity, bits, flow);
}
static struct console stm32_console = {
.name = STM32_SERIAL_NAME,
.device = uart_console_device,
.write = stm32_console_write,
.setup = stm32_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &stm32_usart_driver,
};
#define STM32_SERIAL_CONSOLE (&stm32_console)
#else
#define STM32_SERIAL_CONSOLE NULL
#endif /* CONFIG_SERIAL_STM32_CONSOLE */
static struct uart_driver stm32_usart_driver = {
.driver_name = DRIVER_NAME,
.dev_name = STM32_SERIAL_NAME,
.major = 0,
.minor = 0,
.nr = STM32_MAX_PORTS,
.cons = STM32_SERIAL_CONSOLE,
};
#ifdef CONFIG_PM_SLEEP
static void stm32_serial_enable_wakeup(struct uart_port *port, bool enable)
{
struct stm32_port *stm32_port = to_stm32_port(port);
struct stm32_usart_offsets *ofs = &stm32_port->info->ofs;
struct stm32_usart_config *cfg = &stm32_port->info->cfg;
u32 val;
if (!cfg->has_wakeup || stm32_port->wakeirq < 0)
return;
if (enable) {
stm32_clr_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
stm32_set_bits(port, ofs->cr1, USART_CR1_UESM);
val = readl_relaxed(port->membase + ofs->cr3);
val &= ~USART_CR3_WUS_MASK;
/* Enable Wake up interrupt from low power on start bit */
val |= USART_CR3_WUS_START_BIT | USART_CR3_WUFIE;
writel_relaxed(val, port->membase + ofs->cr3);
stm32_set_bits(port, ofs->cr1, BIT(cfg->uart_enable_bit));
} else {
stm32_clr_bits(port, ofs->cr1, USART_CR1_UESM);
}
}
static int stm32_serial_suspend(struct device *dev)
{
struct uart_port *port = dev_get_drvdata(dev);
uart_suspend_port(&stm32_usart_driver, port);
if (device_may_wakeup(dev))
stm32_serial_enable_wakeup(port, true);
else
stm32_serial_enable_wakeup(port, false);
return 0;
}
static int stm32_serial_resume(struct device *dev)
{
struct uart_port *port = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
stm32_serial_enable_wakeup(port, false);
return uart_resume_port(&stm32_usart_driver, port);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops stm32_serial_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(stm32_serial_suspend, stm32_serial_resume)
};
static struct platform_driver stm32_serial_driver = {
.probe = stm32_serial_probe,
.remove = stm32_serial_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &stm32_serial_pm_ops,
.of_match_table = of_match_ptr(stm32_match),
},
};
static int __init usart_init(void)
{
static char banner[] __initdata = "STM32 USART driver initialized";
int ret;
pr_info("%s\n", banner);
ret = uart_register_driver(&stm32_usart_driver);
if (ret)
return ret;
ret = platform_driver_register(&stm32_serial_driver);
if (ret)
uart_unregister_driver(&stm32_usart_driver);
return ret;
}
static void __exit usart_exit(void)
{
platform_driver_unregister(&stm32_serial_driver);
uart_unregister_driver(&stm32_usart_driver);
}
module_init(usart_init);
module_exit(usart_exit);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 serial port driver");
MODULE_LICENSE("GPL v2");