linux-stable/mm/filemap.c
Linus Torvalds 8b0f9fa2e0 filemap: add a comment about FAULT_FLAG_RETRY_NOWAIT behavior
I thought Josef Bacik's patch to drop the mmap_sem was buggy, because
when looking at the error cases, there was one case where we returned
VM_FAULT_RETRY without actually dropping the mmap_sem.

Josef had to explain to me (using small words) that yes, that's actually
what we're supposed to do, and his patch was correct.  Which not only
convinced me he knew what he was doing and I should stop arguing with
him, but also that I should add a comment to the case I was confused
about.

Patiently-pointed-out-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-15 11:26:07 -07:00

3499 lines
95 KiB
C

/*
* linux/mm/filemap.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/export.h>
#include <linux/compiler.h>
#include <linux/dax.h>
#include <linux/fs.h>
#include <linux/sched/signal.h>
#include <linux/uaccess.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/cpuset.h>
#include <linux/hugetlb.h>
#include <linux/memcontrol.h>
#include <linux/cleancache.h>
#include <linux/shmem_fs.h>
#include <linux/rmap.h>
#include <linux/delayacct.h>
#include <linux/psi.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/filemap.h>
/*
* FIXME: remove all knowledge of the buffer layer from the core VM
*/
#include <linux/buffer_head.h> /* for try_to_free_buffers */
#include <asm/mman.h>
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.
*
* Shared mappings now work. 15.8.1995 Bruno.
*
* finished 'unifying' the page and buffer cache and SMP-threaded the
* page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
*
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
*/
/*
* Lock ordering:
*
* ->i_mmap_rwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->i_pages lock
*
* ->i_mutex
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
*
* ->mmap_sem
* ->i_mmap_rwsem
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
* ->i_mutex (generic_perform_write)
* ->mmap_sem (fault_in_pages_readable->do_page_fault)
*
* bdi->wb.list_lock
* sb_lock (fs/fs-writeback.c)
* ->i_pages lock (__sync_single_inode)
*
* ->i_mmap_rwsem
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
*
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->i_pages lock (try_to_unmap_one)
* ->pgdat->lru_lock (follow_page->mark_page_accessed)
* ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->i_pages lock (page_remove_rmap->set_page_dirty)
* bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
* ->inode->i_lock (page_remove_rmap->set_page_dirty)
* ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
* bdi.wb->list_lock (zap_pte_range->set_page_dirty)
* ->inode->i_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
* ->i_mmap_rwsem
* ->tasklist_lock (memory_failure, collect_procs_ao)
*/
static void page_cache_delete(struct address_space *mapping,
struct page *page, void *shadow)
{
XA_STATE(xas, &mapping->i_pages, page->index);
unsigned int nr = 1;
mapping_set_update(&xas, mapping);
/* hugetlb pages are represented by a single entry in the xarray */
if (!PageHuge(page)) {
xas_set_order(&xas, page->index, compound_order(page));
nr = 1U << compound_order(page);
}
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(nr != 1 && shadow, page);
xas_store(&xas, shadow);
xas_init_marks(&xas);
page->mapping = NULL;
/* Leave page->index set: truncation lookup relies upon it */
if (shadow) {
mapping->nrexceptional += nr;
/*
* Make sure the nrexceptional update is committed before
* the nrpages update so that final truncate racing
* with reclaim does not see both counters 0 at the
* same time and miss a shadow entry.
*/
smp_wmb();
}
mapping->nrpages -= nr;
}
static void unaccount_page_cache_page(struct address_space *mapping,
struct page *page)
{
int nr;
/*
* if we're uptodate, flush out into the cleancache, otherwise
* invalidate any existing cleancache entries. We can't leave
* stale data around in the cleancache once our page is gone
*/
if (PageUptodate(page) && PageMappedToDisk(page))
cleancache_put_page(page);
else
cleancache_invalidate_page(mapping, page);
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(page_mapped(page), page);
if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
int mapcount;
pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
dump_page(page, "still mapped when deleted");
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
mapcount = page_mapcount(page);
if (mapping_exiting(mapping) &&
page_count(page) >= mapcount + 2) {
/*
* All vmas have already been torn down, so it's
* a good bet that actually the page is unmapped,
* and we'd prefer not to leak it: if we're wrong,
* some other bad page check should catch it later.
*/
page_mapcount_reset(page);
page_ref_sub(page, mapcount);
}
}
/* hugetlb pages do not participate in page cache accounting. */
if (PageHuge(page))
return;
nr = hpage_nr_pages(page);
__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
if (PageSwapBacked(page)) {
__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
if (PageTransHuge(page))
__dec_node_page_state(page, NR_SHMEM_THPS);
} else {
VM_BUG_ON_PAGE(PageTransHuge(page), page);
}
/*
* At this point page must be either written or cleaned by
* truncate. Dirty page here signals a bug and loss of
* unwritten data.
*
* This fixes dirty accounting after removing the page entirely
* but leaves PageDirty set: it has no effect for truncated
* page and anyway will be cleared before returning page into
* buddy allocator.
*/
if (WARN_ON_ONCE(PageDirty(page)))
account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
}
/*
* Delete a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold the i_pages lock.
*/
void __delete_from_page_cache(struct page *page, void *shadow)
{
struct address_space *mapping = page->mapping;
trace_mm_filemap_delete_from_page_cache(page);
unaccount_page_cache_page(mapping, page);
page_cache_delete(mapping, page, shadow);
}
static void page_cache_free_page(struct address_space *mapping,
struct page *page)
{
void (*freepage)(struct page *);
freepage = mapping->a_ops->freepage;
if (freepage)
freepage(page);
if (PageTransHuge(page) && !PageHuge(page)) {
page_ref_sub(page, HPAGE_PMD_NR);
VM_BUG_ON_PAGE(page_count(page) <= 0, page);
} else {
put_page(page);
}
}
/**
* delete_from_page_cache - delete page from page cache
* @page: the page which the kernel is trying to remove from page cache
*
* This must be called only on pages that have been verified to be in the page
* cache and locked. It will never put the page into the free list, the caller
* has a reference on the page.
*/
void delete_from_page_cache(struct page *page)
{
struct address_space *mapping = page_mapping(page);
unsigned long flags;
BUG_ON(!PageLocked(page));
xa_lock_irqsave(&mapping->i_pages, flags);
__delete_from_page_cache(page, NULL);
xa_unlock_irqrestore(&mapping->i_pages, flags);
page_cache_free_page(mapping, page);
}
EXPORT_SYMBOL(delete_from_page_cache);
/*
* page_cache_delete_batch - delete several pages from page cache
* @mapping: the mapping to which pages belong
* @pvec: pagevec with pages to delete
*
* The function walks over mapping->i_pages and removes pages passed in @pvec
* from the mapping. The function expects @pvec to be sorted by page index.
* It tolerates holes in @pvec (mapping entries at those indices are not
* modified). The function expects only THP head pages to be present in the
* @pvec and takes care to delete all corresponding tail pages from the
* mapping as well.
*
* The function expects the i_pages lock to be held.
*/
static void page_cache_delete_batch(struct address_space *mapping,
struct pagevec *pvec)
{
XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
int total_pages = 0;
int i = 0, tail_pages = 0;
struct page *page;
mapping_set_update(&xas, mapping);
xas_for_each(&xas, page, ULONG_MAX) {
if (i >= pagevec_count(pvec) && !tail_pages)
break;
if (xa_is_value(page))
continue;
if (!tail_pages) {
/*
* Some page got inserted in our range? Skip it. We
* have our pages locked so they are protected from
* being removed.
*/
if (page != pvec->pages[i]) {
VM_BUG_ON_PAGE(page->index >
pvec->pages[i]->index, page);
continue;
}
WARN_ON_ONCE(!PageLocked(page));
if (PageTransHuge(page) && !PageHuge(page))
tail_pages = HPAGE_PMD_NR - 1;
page->mapping = NULL;
/*
* Leave page->index set: truncation lookup relies
* upon it
*/
i++;
} else {
VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
!= pvec->pages[i]->index, page);
tail_pages--;
}
xas_store(&xas, NULL);
total_pages++;
}
mapping->nrpages -= total_pages;
}
void delete_from_page_cache_batch(struct address_space *mapping,
struct pagevec *pvec)
{
int i;
unsigned long flags;
if (!pagevec_count(pvec))
return;
xa_lock_irqsave(&mapping->i_pages, flags);
for (i = 0; i < pagevec_count(pvec); i++) {
trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
unaccount_page_cache_page(mapping, pvec->pages[i]);
}
page_cache_delete_batch(mapping, pvec);
xa_unlock_irqrestore(&mapping->i_pages, flags);
for (i = 0; i < pagevec_count(pvec); i++)
page_cache_free_page(mapping, pvec->pages[i]);
}
int filemap_check_errors(struct address_space *mapping)
{
int ret = 0;
/* Check for outstanding write errors */
if (test_bit(AS_ENOSPC, &mapping->flags) &&
test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret = -ENOSPC;
if (test_bit(AS_EIO, &mapping->flags) &&
test_and_clear_bit(AS_EIO, &mapping->flags))
ret = -EIO;
return ret;
}
EXPORT_SYMBOL(filemap_check_errors);
static int filemap_check_and_keep_errors(struct address_space *mapping)
{
/* Check for outstanding write errors */
if (test_bit(AS_EIO, &mapping->flags))
return -EIO;
if (test_bit(AS_ENOSPC, &mapping->flags))
return -ENOSPC;
return 0;
}
/**
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
* @start: offset in bytes where the range starts
* @end: offset in bytes where the range ends (inclusive)
* @sync_mode: enable synchronous operation
*
* Start writeback against all of a mapping's dirty pages that lie
* within the byte offsets <start, end> inclusive.
*
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
* opposed to a regular memory cleansing writeback. The difference between
* these two operations is that if a dirty page/buffer is encountered, it must
* be waited upon, and not just skipped over.
*
* Return: %0 on success, negative error code otherwise.
*/
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end, int sync_mode)
{
int ret;
struct writeback_control wbc = {
.sync_mode = sync_mode,
.nr_to_write = LONG_MAX,
.range_start = start,
.range_end = end,
};
if (!mapping_cap_writeback_dirty(mapping))
return 0;
wbc_attach_fdatawrite_inode(&wbc, mapping->host);
ret = do_writepages(mapping, &wbc);
wbc_detach_inode(&wbc);
return ret;
}
static inline int __filemap_fdatawrite(struct address_space *mapping,
int sync_mode)
{
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}
int filemap_fdatawrite(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);
int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end)
{
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite_range);
/**
* filemap_flush - mostly a non-blocking flush
* @mapping: target address_space
*
* This is a mostly non-blocking flush. Not suitable for data-integrity
* purposes - I/O may not be started against all dirty pages.
*
* Return: %0 on success, negative error code otherwise.
*/
int filemap_flush(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);
/**
* filemap_range_has_page - check if a page exists in range.
* @mapping: address space within which to check
* @start_byte: offset in bytes where the range starts
* @end_byte: offset in bytes where the range ends (inclusive)
*
* Find at least one page in the range supplied, usually used to check if
* direct writing in this range will trigger a writeback.
*
* Return: %true if at least one page exists in the specified range,
* %false otherwise.
*/
bool filemap_range_has_page(struct address_space *mapping,
loff_t start_byte, loff_t end_byte)
{
struct page *page;
XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
pgoff_t max = end_byte >> PAGE_SHIFT;
if (end_byte < start_byte)
return false;
rcu_read_lock();
for (;;) {
page = xas_find(&xas, max);
if (xas_retry(&xas, page))
continue;
/* Shadow entries don't count */
if (xa_is_value(page))
continue;
/*
* We don't need to try to pin this page; we're about to
* release the RCU lock anyway. It is enough to know that
* there was a page here recently.
*/
break;
}
rcu_read_unlock();
return page != NULL;
}
EXPORT_SYMBOL(filemap_range_has_page);
static void __filemap_fdatawait_range(struct address_space *mapping,
loff_t start_byte, loff_t end_byte)
{
pgoff_t index = start_byte >> PAGE_SHIFT;
pgoff_t end = end_byte >> PAGE_SHIFT;
struct pagevec pvec;
int nr_pages;
if (end_byte < start_byte)
return;
pagevec_init(&pvec);
while (index <= end) {
unsigned i;
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
end, PAGECACHE_TAG_WRITEBACK);
if (!nr_pages)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
wait_on_page_writeback(page);
ClearPageError(page);
}
pagevec_release(&pvec);
cond_resched();
}
}
/**
* filemap_fdatawait_range - wait for writeback to complete
* @mapping: address space structure to wait for
* @start_byte: offset in bytes where the range starts
* @end_byte: offset in bytes where the range ends (inclusive)
*
* Walk the list of under-writeback pages of the given address space
* in the given range and wait for all of them. Check error status of
* the address space and return it.
*
* Since the error status of the address space is cleared by this function,
* callers are responsible for checking the return value and handling and/or
* reporting the error.
*
* Return: error status of the address space.
*/
int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
loff_t end_byte)
{
__filemap_fdatawait_range(mapping, start_byte, end_byte);
return filemap_check_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_range);
/**
* file_fdatawait_range - wait for writeback to complete
* @file: file pointing to address space structure to wait for
* @start_byte: offset in bytes where the range starts
* @end_byte: offset in bytes where the range ends (inclusive)
*
* Walk the list of under-writeback pages of the address space that file
* refers to, in the given range and wait for all of them. Check error
* status of the address space vs. the file->f_wb_err cursor and return it.
*
* Since the error status of the file is advanced by this function,
* callers are responsible for checking the return value and handling and/or
* reporting the error.
*
* Return: error status of the address space vs. the file->f_wb_err cursor.
*/
int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
{
struct address_space *mapping = file->f_mapping;
__filemap_fdatawait_range(mapping, start_byte, end_byte);
return file_check_and_advance_wb_err(file);
}
EXPORT_SYMBOL(file_fdatawait_range);
/**
* filemap_fdatawait_keep_errors - wait for writeback without clearing errors
* @mapping: address space structure to wait for
*
* Walk the list of under-writeback pages of the given address space
* and wait for all of them. Unlike filemap_fdatawait(), this function
* does not clear error status of the address space.
*
* Use this function if callers don't handle errors themselves. Expected
* call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
* fsfreeze(8)
*
* Return: error status of the address space.
*/
int filemap_fdatawait_keep_errors(struct address_space *mapping)
{
__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
return filemap_check_and_keep_errors(mapping);
}
EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
static bool mapping_needs_writeback(struct address_space *mapping)
{
return (!dax_mapping(mapping) && mapping->nrpages) ||
(dax_mapping(mapping) && mapping->nrexceptional);
}
int filemap_write_and_wait(struct address_space *mapping)
{
int err = 0;
if (mapping_needs_writeback(mapping)) {
err = filemap_fdatawrite(mapping);
/*
* Even if the above returned error, the pages may be
* written partially (e.g. -ENOSPC), so we wait for it.
* But the -EIO is special case, it may indicate the worst
* thing (e.g. bug) happened, so we avoid waiting for it.
*/
if (err != -EIO) {
int err2 = filemap_fdatawait(mapping);
if (!err)
err = err2;
} else {
/* Clear any previously stored errors */
filemap_check_errors(mapping);
}
} else {
err = filemap_check_errors(mapping);
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);
/**
* filemap_write_and_wait_range - write out & wait on a file range
* @mapping: the address_space for the pages
* @lstart: offset in bytes where the range starts
* @lend: offset in bytes where the range ends (inclusive)
*
* Write out and wait upon file offsets lstart->lend, inclusive.
*
* Note that @lend is inclusive (describes the last byte to be written) so
* that this function can be used to write to the very end-of-file (end = -1).
*
* Return: error status of the address space.
*/
int filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
int err = 0;
if (mapping_needs_writeback(mapping)) {
err = __filemap_fdatawrite_range(mapping, lstart, lend,
WB_SYNC_ALL);
/* See comment of filemap_write_and_wait() */
if (err != -EIO) {
int err2 = filemap_fdatawait_range(mapping,
lstart, lend);
if (!err)
err = err2;
} else {
/* Clear any previously stored errors */
filemap_check_errors(mapping);
}
} else {
err = filemap_check_errors(mapping);
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait_range);
void __filemap_set_wb_err(struct address_space *mapping, int err)
{
errseq_t eseq = errseq_set(&mapping->wb_err, err);
trace_filemap_set_wb_err(mapping, eseq);
}
EXPORT_SYMBOL(__filemap_set_wb_err);
/**
* file_check_and_advance_wb_err - report wb error (if any) that was previously
* and advance wb_err to current one
* @file: struct file on which the error is being reported
*
* When userland calls fsync (or something like nfsd does the equivalent), we
* want to report any writeback errors that occurred since the last fsync (or
* since the file was opened if there haven't been any).
*
* Grab the wb_err from the mapping. If it matches what we have in the file,
* then just quickly return 0. The file is all caught up.
*
* If it doesn't match, then take the mapping value, set the "seen" flag in
* it and try to swap it into place. If it works, or another task beat us
* to it with the new value, then update the f_wb_err and return the error
* portion. The error at this point must be reported via proper channels
* (a'la fsync, or NFS COMMIT operation, etc.).
*
* While we handle mapping->wb_err with atomic operations, the f_wb_err
* value is protected by the f_lock since we must ensure that it reflects
* the latest value swapped in for this file descriptor.
*
* Return: %0 on success, negative error code otherwise.
*/
int file_check_and_advance_wb_err(struct file *file)
{
int err = 0;
errseq_t old = READ_ONCE(file->f_wb_err);
struct address_space *mapping = file->f_mapping;
/* Locklessly handle the common case where nothing has changed */
if (errseq_check(&mapping->wb_err, old)) {
/* Something changed, must use slow path */
spin_lock(&file->f_lock);
old = file->f_wb_err;
err = errseq_check_and_advance(&mapping->wb_err,
&file->f_wb_err);
trace_file_check_and_advance_wb_err(file, old);
spin_unlock(&file->f_lock);
}
/*
* We're mostly using this function as a drop in replacement for
* filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
* that the legacy code would have had on these flags.
*/
clear_bit(AS_EIO, &mapping->flags);
clear_bit(AS_ENOSPC, &mapping->flags);
return err;
}
EXPORT_SYMBOL(file_check_and_advance_wb_err);
/**
* file_write_and_wait_range - write out & wait on a file range
* @file: file pointing to address_space with pages
* @lstart: offset in bytes where the range starts
* @lend: offset in bytes where the range ends (inclusive)
*
* Write out and wait upon file offsets lstart->lend, inclusive.
*
* Note that @lend is inclusive (describes the last byte to be written) so
* that this function can be used to write to the very end-of-file (end = -1).
*
* After writing out and waiting on the data, we check and advance the
* f_wb_err cursor to the latest value, and return any errors detected there.
*
* Return: %0 on success, negative error code otherwise.
*/
int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
{
int err = 0, err2;
struct address_space *mapping = file->f_mapping;
if (mapping_needs_writeback(mapping)) {
err = __filemap_fdatawrite_range(mapping, lstart, lend,
WB_SYNC_ALL);
/* See comment of filemap_write_and_wait() */
if (err != -EIO)
__filemap_fdatawait_range(mapping, lstart, lend);
}
err2 = file_check_and_advance_wb_err(file);
if (!err)
err = err2;
return err;
}
EXPORT_SYMBOL(file_write_and_wait_range);
/**
* replace_page_cache_page - replace a pagecache page with a new one
* @old: page to be replaced
* @new: page to replace with
* @gfp_mask: allocation mode
*
* This function replaces a page in the pagecache with a new one. On
* success it acquires the pagecache reference for the new page and
* drops it for the old page. Both the old and new pages must be
* locked. This function does not add the new page to the LRU, the
* caller must do that.
*
* The remove + add is atomic. This function cannot fail.
*
* Return: %0
*/
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
{
struct address_space *mapping = old->mapping;
void (*freepage)(struct page *) = mapping->a_ops->freepage;
pgoff_t offset = old->index;
XA_STATE(xas, &mapping->i_pages, offset);
unsigned long flags;
VM_BUG_ON_PAGE(!PageLocked(old), old);
VM_BUG_ON_PAGE(!PageLocked(new), new);
VM_BUG_ON_PAGE(new->mapping, new);
get_page(new);
new->mapping = mapping;
new->index = offset;
xas_lock_irqsave(&xas, flags);
xas_store(&xas, new);
old->mapping = NULL;
/* hugetlb pages do not participate in page cache accounting. */
if (!PageHuge(old))
__dec_node_page_state(new, NR_FILE_PAGES);
if (!PageHuge(new))
__inc_node_page_state(new, NR_FILE_PAGES);
if (PageSwapBacked(old))
__dec_node_page_state(new, NR_SHMEM);
if (PageSwapBacked(new))
__inc_node_page_state(new, NR_SHMEM);
xas_unlock_irqrestore(&xas, flags);
mem_cgroup_migrate(old, new);
if (freepage)
freepage(old);
put_page(old);
return 0;
}
EXPORT_SYMBOL_GPL(replace_page_cache_page);
static int __add_to_page_cache_locked(struct page *page,
struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask,
void **shadowp)
{
XA_STATE(xas, &mapping->i_pages, offset);
int huge = PageHuge(page);
struct mem_cgroup *memcg;
int error;
void *old;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageSwapBacked(page), page);
mapping_set_update(&xas, mapping);
if (!huge) {
error = mem_cgroup_try_charge(page, current->mm,
gfp_mask, &memcg, false);
if (error)
return error;
}
get_page(page);
page->mapping = mapping;
page->index = offset;
do {
xas_lock_irq(&xas);
old = xas_load(&xas);
if (old && !xa_is_value(old))
xas_set_err(&xas, -EEXIST);
xas_store(&xas, page);
if (xas_error(&xas))
goto unlock;
if (xa_is_value(old)) {
mapping->nrexceptional--;
if (shadowp)
*shadowp = old;
}
mapping->nrpages++;
/* hugetlb pages do not participate in page cache accounting */
if (!huge)
__inc_node_page_state(page, NR_FILE_PAGES);
unlock:
xas_unlock_irq(&xas);
} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
if (xas_error(&xas))
goto error;
if (!huge)
mem_cgroup_commit_charge(page, memcg, false, false);
trace_mm_filemap_add_to_page_cache(page);
return 0;
error:
page->mapping = NULL;
/* Leave page->index set: truncation relies upon it */
if (!huge)
mem_cgroup_cancel_charge(page, memcg, false);
put_page(page);
return xas_error(&xas);
}
/**
* add_to_page_cache_locked - add a locked page to the pagecache
* @page: page to add
* @mapping: the page's address_space
* @offset: page index
* @gfp_mask: page allocation mode
*
* This function is used to add a page to the pagecache. It must be locked.
* This function does not add the page to the LRU. The caller must do that.
*
* Return: %0 on success, negative error code otherwise.
*/
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
return __add_to_page_cache_locked(page, mapping, offset,
gfp_mask, NULL);
}
EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
void *shadow = NULL;
int ret;
__SetPageLocked(page);
ret = __add_to_page_cache_locked(page, mapping, offset,
gfp_mask, &shadow);
if (unlikely(ret))
__ClearPageLocked(page);
else {
/*
* The page might have been evicted from cache only
* recently, in which case it should be activated like
* any other repeatedly accessed page.
* The exception is pages getting rewritten; evicting other
* data from the working set, only to cache data that will
* get overwritten with something else, is a waste of memory.
*/
WARN_ON_ONCE(PageActive(page));
if (!(gfp_mask & __GFP_WRITE) && shadow)
workingset_refault(page, shadow);
lru_cache_add(page);
}
return ret;
}
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
int n;
struct page *page;
if (cpuset_do_page_mem_spread()) {
unsigned int cpuset_mems_cookie;
do {
cpuset_mems_cookie = read_mems_allowed_begin();
n = cpuset_mem_spread_node();
page = __alloc_pages_node(n, gfp, 0);
} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
return page;
}
return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
* waitqueues where the bucket discipline is to maintain all
* waiters on the same queue and wake all when any of the pages
* become available, and for the woken contexts to check to be
* sure the appropriate page became available, this saves space
* at a cost of "thundering herd" phenomena during rare hash
* collisions.
*/
#define PAGE_WAIT_TABLE_BITS 8
#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
static wait_queue_head_t *page_waitqueue(struct page *page)
{
return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
}
void __init pagecache_init(void)
{
int i;
for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
init_waitqueue_head(&page_wait_table[i]);
page_writeback_init();
}
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
struct wait_page_key {
struct page *page;
int bit_nr;
int page_match;
};
struct wait_page_queue {
struct page *page;
int bit_nr;
wait_queue_entry_t wait;
};
static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
{
struct wait_page_key *key = arg;
struct wait_page_queue *wait_page
= container_of(wait, struct wait_page_queue, wait);
if (wait_page->page != key->page)
return 0;
key->page_match = 1;
if (wait_page->bit_nr != key->bit_nr)
return 0;
/*
* Stop walking if it's locked.
* Is this safe if put_and_wait_on_page_locked() is in use?
* Yes: the waker must hold a reference to this page, and if PG_locked
* has now already been set by another task, that task must also hold
* a reference to the *same usage* of this page; so there is no need
* to walk on to wake even the put_and_wait_on_page_locked() callers.
*/
if (test_bit(key->bit_nr, &key->page->flags))
return -1;
return autoremove_wake_function(wait, mode, sync, key);
}
static void wake_up_page_bit(struct page *page, int bit_nr)
{
wait_queue_head_t *q = page_waitqueue(page);
struct wait_page_key key;
unsigned long flags;
wait_queue_entry_t bookmark;
key.page = page;
key.bit_nr = bit_nr;
key.page_match = 0;
bookmark.flags = 0;
bookmark.private = NULL;
bookmark.func = NULL;
INIT_LIST_HEAD(&bookmark.entry);
spin_lock_irqsave(&q->lock, flags);
__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
while (bookmark.flags & WQ_FLAG_BOOKMARK) {
/*
* Take a breather from holding the lock,
* allow pages that finish wake up asynchronously
* to acquire the lock and remove themselves
* from wait queue
*/
spin_unlock_irqrestore(&q->lock, flags);
cpu_relax();
spin_lock_irqsave(&q->lock, flags);
__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
}
/*
* It is possible for other pages to have collided on the waitqueue
* hash, so in that case check for a page match. That prevents a long-
* term waiter
*
* It is still possible to miss a case here, when we woke page waiters
* and removed them from the waitqueue, but there are still other
* page waiters.
*/
if (!waitqueue_active(q) || !key.page_match) {
ClearPageWaiters(page);
/*
* It's possible to miss clearing Waiters here, when we woke
* our page waiters, but the hashed waitqueue has waiters for
* other pages on it.
*
* That's okay, it's a rare case. The next waker will clear it.
*/
}
spin_unlock_irqrestore(&q->lock, flags);
}
static void wake_up_page(struct page *page, int bit)
{
if (!PageWaiters(page))
return;
wake_up_page_bit(page, bit);
}
/*
* A choice of three behaviors for wait_on_page_bit_common():
*/
enum behavior {
EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
* __lock_page() waiting on then setting PG_locked.
*/
SHARED, /* Hold ref to page and check the bit when woken, like
* wait_on_page_writeback() waiting on PG_writeback.
*/
DROP, /* Drop ref to page before wait, no check when woken,
* like put_and_wait_on_page_locked() on PG_locked.
*/
};
static inline int wait_on_page_bit_common(wait_queue_head_t *q,
struct page *page, int bit_nr, int state, enum behavior behavior)
{
struct wait_page_queue wait_page;
wait_queue_entry_t *wait = &wait_page.wait;
bool bit_is_set;
bool thrashing = false;
bool delayacct = false;
unsigned long pflags;
int ret = 0;
if (bit_nr == PG_locked &&
!PageUptodate(page) && PageWorkingset(page)) {
if (!PageSwapBacked(page)) {
delayacct_thrashing_start();
delayacct = true;
}
psi_memstall_enter(&pflags);
thrashing = true;
}
init_wait(wait);
wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
wait->func = wake_page_function;
wait_page.page = page;
wait_page.bit_nr = bit_nr;
for (;;) {
spin_lock_irq(&q->lock);
if (likely(list_empty(&wait->entry))) {
__add_wait_queue_entry_tail(q, wait);
SetPageWaiters(page);
}
set_current_state(state);
spin_unlock_irq(&q->lock);
bit_is_set = test_bit(bit_nr, &page->flags);
if (behavior == DROP)
put_page(page);
if (likely(bit_is_set))
io_schedule();
if (behavior == EXCLUSIVE) {
if (!test_and_set_bit_lock(bit_nr, &page->flags))
break;
} else if (behavior == SHARED) {
if (!test_bit(bit_nr, &page->flags))
break;
}
if (signal_pending_state(state, current)) {
ret = -EINTR;
break;
}
if (behavior == DROP) {
/*
* We can no longer safely access page->flags:
* even if CONFIG_MEMORY_HOTREMOVE is not enabled,
* there is a risk of waiting forever on a page reused
* for something that keeps it locked indefinitely.
* But best check for -EINTR above before breaking.
*/
break;
}
}
finish_wait(q, wait);
if (thrashing) {
if (delayacct)
delayacct_thrashing_end();
psi_memstall_leave(&pflags);
}
/*
* A signal could leave PageWaiters set. Clearing it here if
* !waitqueue_active would be possible (by open-coding finish_wait),
* but still fail to catch it in the case of wait hash collision. We
* already can fail to clear wait hash collision cases, so don't
* bother with signals either.
*/
return ret;
}
void wait_on_page_bit(struct page *page, int bit_nr)
{
wait_queue_head_t *q = page_waitqueue(page);
wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
}
EXPORT_SYMBOL(wait_on_page_bit);
int wait_on_page_bit_killable(struct page *page, int bit_nr)
{
wait_queue_head_t *q = page_waitqueue(page);
return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
}
EXPORT_SYMBOL(wait_on_page_bit_killable);
/**
* put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
* @page: The page to wait for.
*
* The caller should hold a reference on @page. They expect the page to
* become unlocked relatively soon, but do not wish to hold up migration
* (for example) by holding the reference while waiting for the page to
* come unlocked. After this function returns, the caller should not
* dereference @page.
*/
void put_and_wait_on_page_locked(struct page *page)
{
wait_queue_head_t *q;
page = compound_head(page);
q = page_waitqueue(page);
wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
}
/**
* add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
* @page: Page defining the wait queue of interest
* @waiter: Waiter to add to the queue
*
* Add an arbitrary @waiter to the wait queue for the nominated @page.
*/
void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
{
wait_queue_head_t *q = page_waitqueue(page);
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue_entry_tail(q, waiter);
SetPageWaiters(page);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(add_page_wait_queue);
#ifndef clear_bit_unlock_is_negative_byte
/*
* PG_waiters is the high bit in the same byte as PG_lock.
*
* On x86 (and on many other architectures), we can clear PG_lock and
* test the sign bit at the same time. But if the architecture does
* not support that special operation, we just do this all by hand
* instead.
*
* The read of PG_waiters has to be after (or concurrently with) PG_locked
* being cleared, but a memory barrier should be unneccssary since it is
* in the same byte as PG_locked.
*/
static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
{
clear_bit_unlock(nr, mem);
/* smp_mb__after_atomic(); */
return test_bit(PG_waiters, mem);
}
#endif
/**
* unlock_page - unlock a locked page
* @page: the page
*
* Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
* Also wakes sleepers in wait_on_page_writeback() because the wakeup
* mechanism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
* Note that this depends on PG_waiters being the sign bit in the byte
* that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
* clear the PG_locked bit and test PG_waiters at the same time fairly
* portably (architectures that do LL/SC can test any bit, while x86 can
* test the sign bit).
*/
void unlock_page(struct page *page)
{
BUILD_BUG_ON(PG_waiters != 7);
page = compound_head(page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
wake_up_page_bit(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
/**
* end_page_writeback - end writeback against a page
* @page: the page
*/
void end_page_writeback(struct page *page)
{
/*
* TestClearPageReclaim could be used here but it is an atomic
* operation and overkill in this particular case. Failing to
* shuffle a page marked for immediate reclaim is too mild to
* justify taking an atomic operation penalty at the end of
* ever page writeback.
*/
if (PageReclaim(page)) {
ClearPageReclaim(page);
rotate_reclaimable_page(page);
}
if (!test_clear_page_writeback(page))
BUG();
smp_mb__after_atomic();
wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);
/*
* After completing I/O on a page, call this routine to update the page
* flags appropriately
*/
void page_endio(struct page *page, bool is_write, int err)
{
if (!is_write) {
if (!err) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
} else {
if (err) {
struct address_space *mapping;
SetPageError(page);
mapping = page_mapping(page);
if (mapping)
mapping_set_error(mapping, err);
}
end_page_writeback(page);
}
}
EXPORT_SYMBOL_GPL(page_endio);
/**
* __lock_page - get a lock on the page, assuming we need to sleep to get it
* @__page: the page to lock
*/
void __lock_page(struct page *__page)
{
struct page *page = compound_head(__page);
wait_queue_head_t *q = page_waitqueue(page);
wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
EXCLUSIVE);
}
EXPORT_SYMBOL(__lock_page);
int __lock_page_killable(struct page *__page)
{
struct page *page = compound_head(__page);
wait_queue_head_t *q = page_waitqueue(page);
return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
EXCLUSIVE);
}
EXPORT_SYMBOL_GPL(__lock_page_killable);
/*
* Return values:
* 1 - page is locked; mmap_sem is still held.
* 0 - page is not locked.
* mmap_sem has been released (up_read()), unless flags had both
* FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
* which case mmap_sem is still held.
*
* If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
* with the page locked and the mmap_sem unperturbed.
*/
int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
if (flags & FAULT_FLAG_ALLOW_RETRY) {
/*
* CAUTION! In this case, mmap_sem is not released
* even though return 0.
*/
if (flags & FAULT_FLAG_RETRY_NOWAIT)
return 0;
up_read(&mm->mmap_sem);
if (flags & FAULT_FLAG_KILLABLE)
wait_on_page_locked_killable(page);
else
wait_on_page_locked(page);
return 0;
} else {
if (flags & FAULT_FLAG_KILLABLE) {
int ret;
ret = __lock_page_killable(page);
if (ret) {
up_read(&mm->mmap_sem);
return 0;
}
} else
__lock_page(page);
return 1;
}
}
/**
* page_cache_next_miss() - Find the next gap in the page cache.
* @mapping: Mapping.
* @index: Index.
* @max_scan: Maximum range to search.
*
* Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
* gap with the lowest index.
*
* This function may be called under the rcu_read_lock. However, this will
* not atomically search a snapshot of the cache at a single point in time.
* For example, if a gap is created at index 5, then subsequently a gap is
* created at index 10, page_cache_next_miss covering both indices may
* return 10 if called under the rcu_read_lock.
*
* Return: The index of the gap if found, otherwise an index outside the
* range specified (in which case 'return - index >= max_scan' will be true).
* In the rare case of index wrap-around, 0 will be returned.
*/
pgoff_t page_cache_next_miss(struct address_space *mapping,
pgoff_t index, unsigned long max_scan)
{
XA_STATE(xas, &mapping->i_pages, index);
while (max_scan--) {
void *entry = xas_next(&xas);
if (!entry || xa_is_value(entry))
break;
if (xas.xa_index == 0)
break;
}
return xas.xa_index;
}
EXPORT_SYMBOL(page_cache_next_miss);
/**
* page_cache_prev_miss() - Find the next gap in the page cache.
* @mapping: Mapping.
* @index: Index.
* @max_scan: Maximum range to search.
*
* Search the range [max(index - max_scan + 1, 0), index] for the
* gap with the highest index.
*
* This function may be called under the rcu_read_lock. However, this will
* not atomically search a snapshot of the cache at a single point in time.
* For example, if a gap is created at index 10, then subsequently a gap is
* created at index 5, page_cache_prev_miss() covering both indices may
* return 5 if called under the rcu_read_lock.
*
* Return: The index of the gap if found, otherwise an index outside the
* range specified (in which case 'index - return >= max_scan' will be true).
* In the rare case of wrap-around, ULONG_MAX will be returned.
*/
pgoff_t page_cache_prev_miss(struct address_space *mapping,
pgoff_t index, unsigned long max_scan)
{
XA_STATE(xas, &mapping->i_pages, index);
while (max_scan--) {
void *entry = xas_prev(&xas);
if (!entry || xa_is_value(entry))
break;
if (xas.xa_index == ULONG_MAX)
break;
}
return xas.xa_index;
}
EXPORT_SYMBOL(page_cache_prev_miss);
/**
* find_get_entry - find and get a page cache entry
* @mapping: the address_space to search
* @offset: the page cache index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned with an increased refcount.
*
* If the slot holds a shadow entry of a previously evicted page, or a
* swap entry from shmem/tmpfs, it is returned.
*
* Return: the found page or shadow entry, %NULL if nothing is found.
*/
struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
{
XA_STATE(xas, &mapping->i_pages, offset);
struct page *head, *page;
rcu_read_lock();
repeat:
xas_reset(&xas);
page = xas_load(&xas);
if (xas_retry(&xas, page))
goto repeat;
/*
* A shadow entry of a recently evicted page, or a swap entry from
* shmem/tmpfs. Return it without attempting to raise page count.
*/
if (!page || xa_is_value(page))
goto out;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto repeat;
/* The page was split under us? */
if (compound_head(page) != head) {
put_page(head);
goto repeat;
}
/*
* Has the page moved?
* This is part of the lockless pagecache protocol. See
* include/linux/pagemap.h for details.
*/
if (unlikely(page != xas_reload(&xas))) {
put_page(head);
goto repeat;
}
out:
rcu_read_unlock();
return page;
}
EXPORT_SYMBOL(find_get_entry);
/**
* find_lock_entry - locate, pin and lock a page cache entry
* @mapping: the address_space to search
* @offset: the page cache index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* If the slot holds a shadow entry of a previously evicted page, or a
* swap entry from shmem/tmpfs, it is returned.
*
* find_lock_entry() may sleep.
*
* Return: the found page or shadow entry, %NULL if nothing is found.
*/
struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
{
struct page *page;
repeat:
page = find_get_entry(mapping, offset);
if (page && !xa_is_value(page)) {
lock_page(page);
/* Has the page been truncated? */
if (unlikely(page_mapping(page) != mapping)) {
unlock_page(page);
put_page(page);
goto repeat;
}
VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
}
return page;
}
EXPORT_SYMBOL(find_lock_entry);
/**
* pagecache_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
* @fgp_flags: PCG flags
* @gfp_mask: gfp mask to use for the page cache data page allocation
*
* Looks up the page cache slot at @mapping & @offset.
*
* PCG flags modify how the page is returned.
*
* @fgp_flags can be:
*
* - FGP_ACCESSED: the page will be marked accessed
* - FGP_LOCK: Page is return locked
* - FGP_CREAT: If page is not present then a new page is allocated using
* @gfp_mask and added to the page cache and the VM's LRU
* list. The page is returned locked and with an increased
* refcount.
* - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
* its own locking dance if the page is already in cache, or unlock the page
* before returning if we had to add the page to pagecache.
*
* If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
* if the GFP flags specified for FGP_CREAT are atomic.
*
* If there is a page cache page, it is returned with an increased refcount.
*
* Return: the found page or %NULL otherwise.
*/
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
int fgp_flags, gfp_t gfp_mask)
{
struct page *page;
repeat:
page = find_get_entry(mapping, offset);
if (xa_is_value(page))
page = NULL;
if (!page)
goto no_page;
if (fgp_flags & FGP_LOCK) {
if (fgp_flags & FGP_NOWAIT) {
if (!trylock_page(page)) {
put_page(page);
return NULL;
}
} else {
lock_page(page);
}
/* Has the page been truncated? */
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
put_page(page);
goto repeat;
}
VM_BUG_ON_PAGE(page->index != offset, page);
}
if (fgp_flags & FGP_ACCESSED)
mark_page_accessed(page);
no_page:
if (!page && (fgp_flags & FGP_CREAT)) {
int err;
if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
gfp_mask |= __GFP_WRITE;
if (fgp_flags & FGP_NOFS)
gfp_mask &= ~__GFP_FS;
page = __page_cache_alloc(gfp_mask);
if (!page)
return NULL;
if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
fgp_flags |= FGP_LOCK;
/* Init accessed so avoid atomic mark_page_accessed later */
if (fgp_flags & FGP_ACCESSED)
__SetPageReferenced(page);
err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
if (unlikely(err)) {
put_page(page);
page = NULL;
if (err == -EEXIST)
goto repeat;
}
/*
* add_to_page_cache_lru locks the page, and for mmap we expect
* an unlocked page.
*/
if (page && (fgp_flags & FGP_FOR_MMAP))
unlock_page(page);
}
return page;
}
EXPORT_SYMBOL(pagecache_get_page);
/**
* find_get_entries - gang pagecache lookup
* @mapping: The address_space to search
* @start: The starting page cache index
* @nr_entries: The maximum number of entries
* @entries: Where the resulting entries are placed
* @indices: The cache indices corresponding to the entries in @entries
*
* find_get_entries() will search for and return a group of up to
* @nr_entries entries in the mapping. The entries are placed at
* @entries. find_get_entries() takes a reference against any actual
* pages it returns.
*
* The search returns a group of mapping-contiguous page cache entries
* with ascending indexes. There may be holes in the indices due to
* not-present pages.
*
* Any shadow entries of evicted pages, or swap entries from
* shmem/tmpfs, are included in the returned array.
*
* Return: the number of pages and shadow entries which were found.
*/
unsigned find_get_entries(struct address_space *mapping,
pgoff_t start, unsigned int nr_entries,
struct page **entries, pgoff_t *indices)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
unsigned int ret = 0;
if (!nr_entries)
return 0;
rcu_read_lock();
xas_for_each(&xas, page, ULONG_MAX) {
struct page *head;
if (xas_retry(&xas, page))
continue;
/*
* A shadow entry of a recently evicted page, a swap
* entry from shmem/tmpfs or a DAX entry. Return it
* without attempting to raise page count.
*/
if (xa_is_value(page))
goto export;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto retry;
/* The page was split under us? */
if (compound_head(page) != head)
goto put_page;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto put_page;
export:
indices[ret] = xas.xa_index;
entries[ret] = page;
if (++ret == nr_entries)
break;
continue;
put_page:
put_page(head);
retry:
xas_reset(&xas);
}
rcu_read_unlock();
return ret;
}
/**
* find_get_pages_range - gang pagecache lookup
* @mapping: The address_space to search
* @start: The starting page index
* @end: The final page index (inclusive)
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages_range() will search for and return a group of up to @nr_pages
* pages in the mapping starting at index @start and up to index @end
* (inclusive). The pages are placed at @pages. find_get_pages_range() takes
* a reference against the returned pages.
*
* The search returns a group of mapping-contiguous pages with ascending
* indexes. There may be holes in the indices due to not-present pages.
* We also update @start to index the next page for the traversal.
*
* Return: the number of pages which were found. If this number is
* smaller than @nr_pages, the end of specified range has been
* reached.
*/
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
pgoff_t end, unsigned int nr_pages,
struct page **pages)
{
XA_STATE(xas, &mapping->i_pages, *start);
struct page *page;
unsigned ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
xas_for_each(&xas, page, end) {
struct page *head;
if (xas_retry(&xas, page))
continue;
/* Skip over shadow, swap and DAX entries */
if (xa_is_value(page))
continue;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto retry;
/* The page was split under us? */
if (compound_head(page) != head)
goto put_page;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto put_page;
pages[ret] = page;
if (++ret == nr_pages) {
*start = xas.xa_index + 1;
goto out;
}
continue;
put_page:
put_page(head);
retry:
xas_reset(&xas);
}
/*
* We come here when there is no page beyond @end. We take care to not
* overflow the index @start as it confuses some of the callers. This
* breaks the iteration when there is a page at index -1 but that is
* already broken anyway.
*/
if (end == (pgoff_t)-1)
*start = (pgoff_t)-1;
else
*start = end + 1;
out:
rcu_read_unlock();
return ret;
}
/**
* find_get_pages_contig - gang contiguous pagecache lookup
* @mapping: The address_space to search
* @index: The starting page index
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages_contig() works exactly like find_get_pages(), except
* that the returned number of pages are guaranteed to be contiguous.
*
* Return: the number of pages which were found.
*/
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
unsigned int nr_pages, struct page **pages)
{
XA_STATE(xas, &mapping->i_pages, index);
struct page *page;
unsigned int ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
for (page = xas_load(&xas); page; page = xas_next(&xas)) {
struct page *head;
if (xas_retry(&xas, page))
continue;
/*
* If the entry has been swapped out, we can stop looking.
* No current caller is looking for DAX entries.
*/
if (xa_is_value(page))
break;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto retry;
/* The page was split under us? */
if (compound_head(page) != head)
goto put_page;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto put_page;
pages[ret] = page;
if (++ret == nr_pages)
break;
continue;
put_page:
put_page(head);
retry:
xas_reset(&xas);
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(find_get_pages_contig);
/**
* find_get_pages_range_tag - find and return pages in given range matching @tag
* @mapping: the address_space to search
* @index: the starting page index
* @end: The final page index (inclusive)
* @tag: the tag index
* @nr_pages: the maximum number of pages
* @pages: where the resulting pages are placed
*
* Like find_get_pages, except we only return pages which are tagged with
* @tag. We update @index to index the next page for the traversal.
*
* Return: the number of pages which were found.
*/
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
struct page **pages)
{
XA_STATE(xas, &mapping->i_pages, *index);
struct page *page;
unsigned ret = 0;
if (unlikely(!nr_pages))
return 0;
rcu_read_lock();
xas_for_each_marked(&xas, page, end, tag) {
struct page *head;
if (xas_retry(&xas, page))
continue;
/*
* Shadow entries should never be tagged, but this iteration
* is lockless so there is a window for page reclaim to evict
* a page we saw tagged. Skip over it.
*/
if (xa_is_value(page))
continue;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto retry;
/* The page was split under us? */
if (compound_head(page) != head)
goto put_page;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto put_page;
pages[ret] = page;
if (++ret == nr_pages) {
*index = xas.xa_index + 1;
goto out;
}
continue;
put_page:
put_page(head);
retry:
xas_reset(&xas);
}
/*
* We come here when we got to @end. We take care to not overflow the
* index @index as it confuses some of the callers. This breaks the
* iteration when there is a page at index -1 but that is already
* broken anyway.
*/
if (end == (pgoff_t)-1)
*index = (pgoff_t)-1;
else
*index = end + 1;
out:
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(find_get_pages_range_tag);
/**
* find_get_entries_tag - find and return entries that match @tag
* @mapping: the address_space to search
* @start: the starting page cache index
* @tag: the tag index
* @nr_entries: the maximum number of entries
* @entries: where the resulting entries are placed
* @indices: the cache indices corresponding to the entries in @entries
*
* Like find_get_entries, except we only return entries which are tagged with
* @tag.
*
* Return: the number of entries which were found.
*/
unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
xa_mark_t tag, unsigned int nr_entries,
struct page **entries, pgoff_t *indices)
{
XA_STATE(xas, &mapping->i_pages, start);
struct page *page;
unsigned int ret = 0;
if (!nr_entries)
return 0;
rcu_read_lock();
xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
struct page *head;
if (xas_retry(&xas, page))
continue;
/*
* A shadow entry of a recently evicted page, a swap
* entry from shmem/tmpfs or a DAX entry. Return it
* without attempting to raise page count.
*/
if (xa_is_value(page))
goto export;
head = compound_head(page);
if (!page_cache_get_speculative(head))
goto retry;
/* The page was split under us? */
if (compound_head(page) != head)
goto put_page;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto put_page;
export:
indices[ret] = xas.xa_index;
entries[ret] = page;
if (++ret == nr_entries)
break;
continue;
put_page:
put_page(head);
retry:
xas_reset(&xas);
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(find_get_entries_tag);
/*
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
* a _large_ part of the i/o request. Imagine the worst scenario:
*
* ---R__________________________________________B__________
* ^ reading here ^ bad block(assume 4k)
*
* read(R) => miss => readahead(R...B) => media error => frustrating retries
* => failing the whole request => read(R) => read(R+1) =>
* readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
* readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
* readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
*
* It is going insane. Fix it by quickly scaling down the readahead size.
*/
static void shrink_readahead_size_eio(struct file *filp,
struct file_ra_state *ra)
{
ra->ra_pages /= 4;
}
/**
* generic_file_buffered_read - generic file read routine
* @iocb: the iocb to read
* @iter: data destination
* @written: already copied
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
*
* This is really ugly. But the goto's actually try to clarify some
* of the logic when it comes to error handling etc.
*
* Return:
* * total number of bytes copied, including those the were already @written
* * negative error code if nothing was copied
*/
static ssize_t generic_file_buffered_read(struct kiocb *iocb,
struct iov_iter *iter, ssize_t written)
{
struct file *filp = iocb->ki_filp;
struct address_space *mapping = filp->f_mapping;
struct inode *inode = mapping->host;
struct file_ra_state *ra = &filp->f_ra;
loff_t *ppos = &iocb->ki_pos;
pgoff_t index;
pgoff_t last_index;
pgoff_t prev_index;
unsigned long offset; /* offset into pagecache page */
unsigned int prev_offset;
int error = 0;
if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
return 0;
iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
index = *ppos >> PAGE_SHIFT;
prev_index = ra->prev_pos >> PAGE_SHIFT;
prev_offset = ra->prev_pos & (PAGE_SIZE-1);
last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
offset = *ppos & ~PAGE_MASK;
for (;;) {
struct page *page;
pgoff_t end_index;
loff_t isize;
unsigned long nr, ret;
cond_resched();
find_page:
if (fatal_signal_pending(current)) {
error = -EINTR;
goto out;
}
page = find_get_page(mapping, index);
if (!page) {
if (iocb->ki_flags & IOCB_NOWAIT)
goto would_block;
page_cache_sync_readahead(mapping,
ra, filp,
index, last_index - index);
page = find_get_page(mapping, index);
if (unlikely(page == NULL))
goto no_cached_page;
}
if (PageReadahead(page)) {
page_cache_async_readahead(mapping,
ra, filp, page,
index, last_index - index);
}
if (!PageUptodate(page)) {
if (iocb->ki_flags & IOCB_NOWAIT) {
put_page(page);
goto would_block;
}
/*
* See comment in do_read_cache_page on why
* wait_on_page_locked is used to avoid unnecessarily
* serialisations and why it's safe.
*/
error = wait_on_page_locked_killable(page);
if (unlikely(error))
goto readpage_error;
if (PageUptodate(page))
goto page_ok;
if (inode->i_blkbits == PAGE_SHIFT ||
!mapping->a_ops->is_partially_uptodate)
goto page_not_up_to_date;
/* pipes can't handle partially uptodate pages */
if (unlikely(iov_iter_is_pipe(iter)))
goto page_not_up_to_date;
if (!trylock_page(page))
goto page_not_up_to_date;
/* Did it get truncated before we got the lock? */
if (!page->mapping)
goto page_not_up_to_date_locked;
if (!mapping->a_ops->is_partially_uptodate(page,
offset, iter->count))
goto page_not_up_to_date_locked;
unlock_page(page);
}
page_ok:
/*
* i_size must be checked after we know the page is Uptodate.
*
* Checking i_size after the check allows us to calculate
* the correct value for "nr", which means the zero-filled
* part of the page is not copied back to userspace (unless
* another truncate extends the file - this is desired though).
*/
isize = i_size_read(inode);
end_index = (isize - 1) >> PAGE_SHIFT;
if (unlikely(!isize || index > end_index)) {
put_page(page);
goto out;
}
/* nr is the maximum number of bytes to copy from this page */
nr = PAGE_SIZE;
if (index == end_index) {
nr = ((isize - 1) & ~PAGE_MASK) + 1;
if (nr <= offset) {
put_page(page);
goto out;
}
}
nr = nr - offset;
/* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
/*
* When a sequential read accesses a page several times,
* only mark it as accessed the first time.
*/
if (prev_index != index || offset != prev_offset)
mark_page_accessed(page);
prev_index = index;
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*/
ret = copy_page_to_iter(page, offset, nr, iter);
offset += ret;
index += offset >> PAGE_SHIFT;
offset &= ~PAGE_MASK;
prev_offset = offset;
put_page(page);
written += ret;
if (!iov_iter_count(iter))
goto out;
if (ret < nr) {
error = -EFAULT;
goto out;
}
continue;
page_not_up_to_date:
/* Get exclusive access to the page ... */
error = lock_page_killable(page);
if (unlikely(error))
goto readpage_error;
page_not_up_to_date_locked:
/* Did it get truncated before we got the lock? */
if (!page->mapping) {
unlock_page(page);
put_page(page);
continue;
}
/* Did somebody else fill it already? */
if (PageUptodate(page)) {
unlock_page(page);
goto page_ok;
}
readpage:
/*
* A previous I/O error may have been due to temporary
* failures, eg. multipath errors.
* PG_error will be set again if readpage fails.
*/
ClearPageError(page);
/* Start the actual read. The read will unlock the page. */
error = mapping->a_ops->readpage(filp, page);
if (unlikely(error)) {
if (error == AOP_TRUNCATED_PAGE) {
put_page(page);
error = 0;
goto find_page;
}
goto readpage_error;
}
if (!PageUptodate(page)) {
error = lock_page_killable(page);
if (unlikely(error))
goto readpage_error;
if (!PageUptodate(page)) {
if (page->mapping == NULL) {
/*
* invalidate_mapping_pages got it
*/
unlock_page(page);
put_page(page);
goto find_page;
}
unlock_page(page);
shrink_readahead_size_eio(filp, ra);
error = -EIO;
goto readpage_error;
}
unlock_page(page);
}
goto page_ok;
readpage_error:
/* UHHUH! A synchronous read error occurred. Report it */
put_page(page);
goto out;
no_cached_page:
/*
* Ok, it wasn't cached, so we need to create a new
* page..
*/
page = page_cache_alloc(mapping);
if (!page) {
error = -ENOMEM;
goto out;
}
error = add_to_page_cache_lru(page, mapping, index,
mapping_gfp_constraint(mapping, GFP_KERNEL));
if (error) {
put_page(page);
if (error == -EEXIST) {
error = 0;
goto find_page;
}
goto out;
}
goto readpage;
}
would_block:
error = -EAGAIN;
out:
ra->prev_pos = prev_index;
ra->prev_pos <<= PAGE_SHIFT;
ra->prev_pos |= prev_offset;
*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
file_accessed(filp);
return written ? written : error;
}
/**
* generic_file_read_iter - generic filesystem read routine
* @iocb: kernel I/O control block
* @iter: destination for the data read
*
* This is the "read_iter()" routine for all filesystems
* that can use the page cache directly.
* Return:
* * number of bytes copied, even for partial reads
* * negative error code if nothing was read
*/
ssize_t
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
size_t count = iov_iter_count(iter);
ssize_t retval = 0;
if (!count)
goto out; /* skip atime */
if (iocb->ki_flags & IOCB_DIRECT) {
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
loff_t size;
size = i_size_read(inode);
if (iocb->ki_flags & IOCB_NOWAIT) {
if (filemap_range_has_page(mapping, iocb->ki_pos,
iocb->ki_pos + count - 1))
return -EAGAIN;
} else {
retval = filemap_write_and_wait_range(mapping,
iocb->ki_pos,
iocb->ki_pos + count - 1);
if (retval < 0)
goto out;
}
file_accessed(file);
retval = mapping->a_ops->direct_IO(iocb, iter);
if (retval >= 0) {
iocb->ki_pos += retval;
count -= retval;
}
iov_iter_revert(iter, count - iov_iter_count(iter));
/*
* Btrfs can have a short DIO read if we encounter
* compressed extents, so if there was an error, or if
* we've already read everything we wanted to, or if
* there was a short read because we hit EOF, go ahead
* and return. Otherwise fallthrough to buffered io for
* the rest of the read. Buffered reads will not work for
* DAX files, so don't bother trying.
*/
if (retval < 0 || !count || iocb->ki_pos >= size ||
IS_DAX(inode))
goto out;
}
retval = generic_file_buffered_read(iocb, iter, retval);
out:
return retval;
}
EXPORT_SYMBOL(generic_file_read_iter);
#ifdef CONFIG_MMU
#define MMAP_LOTSAMISS (100)
static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
struct file *fpin)
{
int flags = vmf->flags;
if (fpin)
return fpin;
/*
* FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
* anything, so we only pin the file and drop the mmap_sem if only
* FAULT_FLAG_ALLOW_RETRY is set.
*/
if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
FAULT_FLAG_ALLOW_RETRY) {
fpin = get_file(vmf->vma->vm_file);
up_read(&vmf->vma->vm_mm->mmap_sem);
}
return fpin;
}
/*
* lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
* @vmf - the vm_fault for this fault.
* @page - the page to lock.
* @fpin - the pointer to the file we may pin (or is already pinned).
*
* This works similar to lock_page_or_retry in that it can drop the mmap_sem.
* It differs in that it actually returns the page locked if it returns 1 and 0
* if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
* will point to the pinned file and needs to be fput()'ed at a later point.
*/
static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
struct file **fpin)
{
if (trylock_page(page))
return 1;
/*
* NOTE! This will make us return with VM_FAULT_RETRY, but with
* the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
* is supposed to work. We have way too many special cases..
*/
if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
return 0;
*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
if (vmf->flags & FAULT_FLAG_KILLABLE) {
if (__lock_page_killable(page)) {
/*
* We didn't have the right flags to drop the mmap_sem,
* but all fault_handlers only check for fatal signals
* if we return VM_FAULT_RETRY, so we need to drop the
* mmap_sem here and return 0 if we don't have a fpin.
*/
if (*fpin == NULL)
up_read(&vmf->vma->vm_mm->mmap_sem);
return 0;
}
} else
__lock_page(page);
return 1;
}
/*
* Synchronous readahead happens when we don't even find a page in the page
* cache at all. We don't want to perform IO under the mmap sem, so if we have
* to drop the mmap sem we return the file that was pinned in order for us to do
* that. If we didn't pin a file then we return NULL. The file that is
* returned needs to be fput()'ed when we're done with it.
*/
static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
{
struct file *file = vmf->vma->vm_file;
struct file_ra_state *ra = &file->f_ra;
struct address_space *mapping = file->f_mapping;
struct file *fpin = NULL;
pgoff_t offset = vmf->pgoff;
/* If we don't want any read-ahead, don't bother */
if (vmf->vma->vm_flags & VM_RAND_READ)
return fpin;
if (!ra->ra_pages)
return fpin;
if (vmf->vma->vm_flags & VM_SEQ_READ) {
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
page_cache_sync_readahead(mapping, ra, file, offset,
ra->ra_pages);
return fpin;
}
/* Avoid banging the cache line if not needed */
if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ra->mmap_miss++;
/*
* Do we miss much more than hit in this file? If so,
* stop bothering with read-ahead. It will only hurt.
*/
if (ra->mmap_miss > MMAP_LOTSAMISS)
return fpin;
/*
* mmap read-around
*/
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
ra->size = ra->ra_pages;
ra->async_size = ra->ra_pages / 4;
ra_submit(ra, mapping, file);
return fpin;
}
/*
* Asynchronous readahead happens when we find the page and PG_readahead,
* so we want to possibly extend the readahead further. We return the file that
* was pinned if we have to drop the mmap_sem in order to do IO.
*/
static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
struct page *page)
{
struct file *file = vmf->vma->vm_file;
struct file_ra_state *ra = &file->f_ra;
struct address_space *mapping = file->f_mapping;
struct file *fpin = NULL;
pgoff_t offset = vmf->pgoff;
/* If we don't want any read-ahead, don't bother */
if (vmf->vma->vm_flags & VM_RAND_READ)
return fpin;
if (ra->mmap_miss > 0)
ra->mmap_miss--;
if (PageReadahead(page)) {
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
page_cache_async_readahead(mapping, ra, file,
page, offset, ra->ra_pages);
}
return fpin;
}
/**
* filemap_fault - read in file data for page fault handling
* @vmf: struct vm_fault containing details of the fault
*
* filemap_fault() is invoked via the vma operations vector for a
* mapped memory region to read in file data during a page fault.
*
* The goto's are kind of ugly, but this streamlines the normal case of having
* it in the page cache, and handles the special cases reasonably without
* having a lot of duplicated code.
*
* vma->vm_mm->mmap_sem must be held on entry.
*
* If our return value has VM_FAULT_RETRY set, it's because
* lock_page_or_retry() returned 0.
* The mmap_sem has usually been released in this case.
* See __lock_page_or_retry() for the exception.
*
* If our return value does not have VM_FAULT_RETRY set, the mmap_sem
* has not been released.
*
* We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
*
* Return: bitwise-OR of %VM_FAULT_ codes.
*/
vm_fault_t filemap_fault(struct vm_fault *vmf)
{
int error;
struct file *file = vmf->vma->vm_file;
struct file *fpin = NULL;
struct address_space *mapping = file->f_mapping;
struct file_ra_state *ra = &file->f_ra;
struct inode *inode = mapping->host;
pgoff_t offset = vmf->pgoff;
pgoff_t max_off;
struct page *page;
vm_fault_t ret = 0;
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(offset >= max_off))
return VM_FAULT_SIGBUS;
/*
* Do we have something in the page cache already?
*/
page = find_get_page(mapping, offset);
if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
/*
* We found the page, so try async readahead before
* waiting for the lock.
*/
fpin = do_async_mmap_readahead(vmf, page);
} else if (!page) {
/* No page in the page cache at all */
count_vm_event(PGMAJFAULT);
count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ret = VM_FAULT_MAJOR;
fpin = do_sync_mmap_readahead(vmf);
retry_find:
page = pagecache_get_page(mapping, offset,
FGP_CREAT|FGP_FOR_MMAP,
vmf->gfp_mask);
if (!page) {
if (fpin)
goto out_retry;
return vmf_error(-ENOMEM);
}
}
if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
goto out_retry;
/* Did it get truncated? */
if (unlikely(page->mapping != mapping)) {
unlock_page(page);
put_page(page);
goto retry_find;
}
VM_BUG_ON_PAGE(page->index != offset, page);
/*
* We have a locked page in the page cache, now we need to check
* that it's up-to-date. If not, it is going to be due to an error.
*/
if (unlikely(!PageUptodate(page)))
goto page_not_uptodate;
/*
* We've made it this far and we had to drop our mmap_sem, now is the
* time to return to the upper layer and have it re-find the vma and
* redo the fault.
*/
if (fpin) {
unlock_page(page);
goto out_retry;
}
/*
* Found the page and have a reference on it.
* We must recheck i_size under page lock.
*/
max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
if (unlikely(offset >= max_off)) {
unlock_page(page);
put_page(page);
return VM_FAULT_SIGBUS;
}
vmf->page = page;
return ret | VM_FAULT_LOCKED;
page_not_uptodate:
/*
* Umm, take care of errors if the page isn't up-to-date.
* Try to re-read it _once_. We do this synchronously,
* because there really aren't any performance issues here
* and we need to check for errors.
*/
ClearPageError(page);
fpin = maybe_unlock_mmap_for_io(vmf, fpin);
error = mapping->a_ops->readpage(file, page);
if (!error) {
wait_on_page_locked(page);
if (!PageUptodate(page))
error = -EIO;
}
if (fpin)
goto out_retry;
put_page(page);
if (!error || error == AOP_TRUNCATED_PAGE)
goto retry_find;
/* Things didn't work out. Return zero to tell the mm layer so. */
shrink_readahead_size_eio(file, ra);
return VM_FAULT_SIGBUS;
out_retry:
/*
* We dropped the mmap_sem, we need to return to the fault handler to
* re-find the vma and come back and find our hopefully still populated
* page.
*/
if (page)
put_page(page);
if (fpin)
fput(fpin);
return ret | VM_FAULT_RETRY;
}
EXPORT_SYMBOL(filemap_fault);
void filemap_map_pages(struct vm_fault *vmf,
pgoff_t start_pgoff, pgoff_t end_pgoff)
{
struct file *file = vmf->vma->vm_file;
struct address_space *mapping = file->f_mapping;
pgoff_t last_pgoff = start_pgoff;
unsigned long max_idx;
XA_STATE(xas, &mapping->i_pages, start_pgoff);
struct page *head, *page;
rcu_read_lock();
xas_for_each(&xas, page, end_pgoff) {
if (xas_retry(&xas, page))
continue;
if (xa_is_value(page))
goto next;
head = compound_head(page);
/*
* Check for a locked page first, as a speculative
* reference may adversely influence page migration.
*/
if (PageLocked(head))
goto next;
if (!page_cache_get_speculative(head))
goto next;
/* The page was split under us? */
if (compound_head(page) != head)
goto skip;
/* Has the page moved? */
if (unlikely(page != xas_reload(&xas)))
goto skip;
if (!PageUptodate(page) ||
PageReadahead(page) ||
PageHWPoison(page))
goto skip;
if (!trylock_page(page))
goto skip;
if (page->mapping != mapping || !PageUptodate(page))
goto unlock;
max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
if (page->index >= max_idx)
goto unlock;
if (file->f_ra.mmap_miss > 0)
file->f_ra.mmap_miss--;
vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
if (vmf->pte)
vmf->pte += xas.xa_index - last_pgoff;
last_pgoff = xas.xa_index;
if (alloc_set_pte(vmf, NULL, page))
goto unlock;
unlock_page(page);
goto next;
unlock:
unlock_page(page);
skip:
put_page(page);
next:
/* Huge page is mapped? No need to proceed. */
if (pmd_trans_huge(*vmf->pmd))
break;
}
rcu_read_unlock();
}
EXPORT_SYMBOL(filemap_map_pages);
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vmf->vma->vm_file);
vm_fault_t ret = VM_FAULT_LOCKED;
sb_start_pagefault(inode->i_sb);
file_update_time(vmf->vma->vm_file);
lock_page(page);
if (page->mapping != inode->i_mapping) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
goto out;
}
/*
* We mark the page dirty already here so that when freeze is in
* progress, we are guaranteed that writeback during freezing will
* see the dirty page and writeprotect it again.
*/
set_page_dirty(page);
wait_for_stable_page(page);
out:
sb_end_pagefault(inode->i_sb);
return ret;
}
const struct vm_operations_struct generic_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = filemap_page_mkwrite,
};
/* This is used for a general mmap of a disk file */
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
struct address_space *mapping = file->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(file);
vma->vm_ops = &generic_file_vm_ops;
return 0;
}
/*
* This is for filesystems which do not implement ->writepage.
*/
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
return -EINVAL;
return generic_file_mmap(file, vma);
}
#else
vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
return -ENOSYS;
}
#endif /* CONFIG_MMU */
EXPORT_SYMBOL(filemap_page_mkwrite);
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);
static struct page *wait_on_page_read(struct page *page)
{
if (!IS_ERR(page)) {
wait_on_page_locked(page);
if (!PageUptodate(page)) {
put_page(page);
page = ERR_PTR(-EIO);
}
}
return page;
}
static struct page *do_read_cache_page(struct address_space *mapping,
pgoff_t index,
int (*filler)(void *, struct page *),
void *data,
gfp_t gfp)
{
struct page *page;
int err;
repeat:
page = find_get_page(mapping, index);
if (!page) {
page = __page_cache_alloc(gfp);
if (!page)
return ERR_PTR(-ENOMEM);
err = add_to_page_cache_lru(page, mapping, index, gfp);
if (unlikely(err)) {
put_page(page);
if (err == -EEXIST)
goto repeat;
/* Presumably ENOMEM for xarray node */
return ERR_PTR(err);
}
filler:
err = filler(data, page);
if (err < 0) {
put_page(page);
return ERR_PTR(err);
}
page = wait_on_page_read(page);
if (IS_ERR(page))
return page;
goto out;
}
if (PageUptodate(page))
goto out;
/*
* Page is not up to date and may be locked due one of the following
* case a: Page is being filled and the page lock is held
* case b: Read/write error clearing the page uptodate status
* case c: Truncation in progress (page locked)
* case d: Reclaim in progress
*
* Case a, the page will be up to date when the page is unlocked.
* There is no need to serialise on the page lock here as the page
* is pinned so the lock gives no additional protection. Even if the
* the page is truncated, the data is still valid if PageUptodate as
* it's a race vs truncate race.
* Case b, the page will not be up to date
* Case c, the page may be truncated but in itself, the data may still
* be valid after IO completes as it's a read vs truncate race. The
* operation must restart if the page is not uptodate on unlock but
* otherwise serialising on page lock to stabilise the mapping gives
* no additional guarantees to the caller as the page lock is
* released before return.
* Case d, similar to truncation. If reclaim holds the page lock, it
* will be a race with remove_mapping that determines if the mapping
* is valid on unlock but otherwise the data is valid and there is
* no need to serialise with page lock.
*
* As the page lock gives no additional guarantee, we optimistically
* wait on the page to be unlocked and check if it's up to date and
* use the page if it is. Otherwise, the page lock is required to
* distinguish between the different cases. The motivation is that we
* avoid spurious serialisations and wakeups when multiple processes
* wait on the same page for IO to complete.
*/
wait_on_page_locked(page);
if (PageUptodate(page))
goto out;
/* Distinguish between all the cases under the safety of the lock */
lock_page(page);
/* Case c or d, restart the operation */
if (!page->mapping) {
unlock_page(page);
put_page(page);
goto repeat;
}
/* Someone else locked and filled the page in a very small window */
if (PageUptodate(page)) {
unlock_page(page);
goto out;
}
goto filler;
out:
mark_page_accessed(page);
return page;
}
/**
* read_cache_page - read into page cache, fill it if needed
* @mapping: the page's address_space
* @index: the page index
* @filler: function to perform the read
* @data: first arg to filler(data, page) function, often left as NULL
*
* Read into the page cache. If a page already exists, and PageUptodate() is
* not set, try to fill the page and wait for it to become unlocked.
*
* If the page does not get brought uptodate, return -EIO.
*
* Return: up to date page on success, ERR_PTR() on failure.
*/
struct page *read_cache_page(struct address_space *mapping,
pgoff_t index,
int (*filler)(void *, struct page *),
void *data)
{
return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
}
EXPORT_SYMBOL(read_cache_page);
/**
* read_cache_page_gfp - read into page cache, using specified page allocation flags.
* @mapping: the page's address_space
* @index: the page index
* @gfp: the page allocator flags to use if allocating
*
* This is the same as "read_mapping_page(mapping, index, NULL)", but with
* any new page allocations done using the specified allocation flags.
*
* If the page does not get brought uptodate, return -EIO.
*
* Return: up to date page on success, ERR_PTR() on failure.
*/
struct page *read_cache_page_gfp(struct address_space *mapping,
pgoff_t index,
gfp_t gfp)
{
filler_t *filler = (filler_t *)mapping->a_ops->readpage;
return do_read_cache_page(mapping, index, filler, NULL, gfp);
}
EXPORT_SYMBOL(read_cache_page_gfp);
/*
* Don't operate on ranges the page cache doesn't support, and don't exceed the
* LFS limits. If pos is under the limit it becomes a short access. If it
* exceeds the limit we return -EFBIG.
*/
static int generic_access_check_limits(struct file *file, loff_t pos,
loff_t *count)
{
struct inode *inode = file->f_mapping->host;
loff_t max_size = inode->i_sb->s_maxbytes;
if (!(file->f_flags & O_LARGEFILE))
max_size = MAX_NON_LFS;
if (unlikely(pos >= max_size))
return -EFBIG;
*count = min(*count, max_size - pos);
return 0;
}
static int generic_write_check_limits(struct file *file, loff_t pos,
loff_t *count)
{
loff_t limit = rlimit(RLIMIT_FSIZE);
if (limit != RLIM_INFINITY) {
if (pos >= limit) {
send_sig(SIGXFSZ, current, 0);
return -EFBIG;
}
*count = min(*count, limit - pos);
}
return generic_access_check_limits(file, pos, count);
}
/*
* Performs necessary checks before doing a write
*
* Can adjust writing position or amount of bytes to write.
* Returns appropriate error code that caller should return or
* zero in case that write should be allowed.
*/
inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
loff_t count;
int ret;
if (!iov_iter_count(from))
return 0;
/* FIXME: this is for backwards compatibility with 2.4 */
if (iocb->ki_flags & IOCB_APPEND)
iocb->ki_pos = i_size_read(inode);
if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
return -EINVAL;
count = iov_iter_count(from);
ret = generic_write_check_limits(file, iocb->ki_pos, &count);
if (ret)
return ret;
iov_iter_truncate(from, count);
return iov_iter_count(from);
}
EXPORT_SYMBOL(generic_write_checks);
/*
* Performs necessary checks before doing a clone.
*
* Can adjust amount of bytes to clone.
* Returns appropriate error code that caller should return or
* zero in case the clone should be allowed.
*/
int generic_remap_checks(struct file *file_in, loff_t pos_in,
struct file *file_out, loff_t pos_out,
loff_t *req_count, unsigned int remap_flags)
{
struct inode *inode_in = file_in->f_mapping->host;
struct inode *inode_out = file_out->f_mapping->host;
uint64_t count = *req_count;
uint64_t bcount;
loff_t size_in, size_out;
loff_t bs = inode_out->i_sb->s_blocksize;
int ret;
/* The start of both ranges must be aligned to an fs block. */
if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
return -EINVAL;
/* Ensure offsets don't wrap. */
if (pos_in + count < pos_in || pos_out + count < pos_out)
return -EINVAL;
size_in = i_size_read(inode_in);
size_out = i_size_read(inode_out);
/* Dedupe requires both ranges to be within EOF. */
if ((remap_flags & REMAP_FILE_DEDUP) &&
(pos_in >= size_in || pos_in + count > size_in ||
pos_out >= size_out || pos_out + count > size_out))
return -EINVAL;
/* Ensure the infile range is within the infile. */
if (pos_in >= size_in)
return -EINVAL;
count = min(count, size_in - (uint64_t)pos_in);
ret = generic_access_check_limits(file_in, pos_in, &count);
if (ret)
return ret;
ret = generic_write_check_limits(file_out, pos_out, &count);
if (ret)
return ret;
/*
* If the user wanted us to link to the infile's EOF, round up to the
* next block boundary for this check.
*
* Otherwise, make sure the count is also block-aligned, having
* already confirmed the starting offsets' block alignment.
*/
if (pos_in + count == size_in) {
bcount = ALIGN(size_in, bs) - pos_in;
} else {
if (!IS_ALIGNED(count, bs))
count = ALIGN_DOWN(count, bs);
bcount = count;
}
/* Don't allow overlapped cloning within the same file. */
if (inode_in == inode_out &&
pos_out + bcount > pos_in &&
pos_out < pos_in + bcount)
return -EINVAL;
/*
* We shortened the request but the caller can't deal with that, so
* bounce the request back to userspace.
*/
if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
return -EINVAL;
*req_count = count;
return 0;
}
int pagecache_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
const struct address_space_operations *aops = mapping->a_ops;
return aops->write_begin(file, mapping, pos, len, flags,
pagep, fsdata);
}
EXPORT_SYMBOL(pagecache_write_begin);
int pagecache_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
const struct address_space_operations *aops = mapping->a_ops;
return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
}
EXPORT_SYMBOL(pagecache_write_end);
ssize_t
generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
loff_t pos = iocb->ki_pos;
ssize_t written;
size_t write_len;
pgoff_t end;
write_len = iov_iter_count(from);
end = (pos + write_len - 1) >> PAGE_SHIFT;
if (iocb->ki_flags & IOCB_NOWAIT) {
/* If there are pages to writeback, return */
if (filemap_range_has_page(inode->i_mapping, pos,
pos + write_len - 1))
return -EAGAIN;
} else {
written = filemap_write_and_wait_range(mapping, pos,
pos + write_len - 1);
if (written)
goto out;
}
/*
* After a write we want buffered reads to be sure to go to disk to get
* the new data. We invalidate clean cached page from the region we're
* about to write. We do this *before* the write so that we can return
* without clobbering -EIOCBQUEUED from ->direct_IO().
*/
written = invalidate_inode_pages2_range(mapping,
pos >> PAGE_SHIFT, end);
/*
* If a page can not be invalidated, return 0 to fall back
* to buffered write.
*/
if (written) {
if (written == -EBUSY)
return 0;
goto out;
}
written = mapping->a_ops->direct_IO(iocb, from);
/*
* Finally, try again to invalidate clean pages which might have been
* cached by non-direct readahead, or faulted in by get_user_pages()
* if the source of the write was an mmap'ed region of the file
* we're writing. Either one is a pretty crazy thing to do,
* so we don't support it 100%. If this invalidation
* fails, tough, the write still worked...
*
* Most of the time we do not need this since dio_complete() will do
* the invalidation for us. However there are some file systems that
* do not end up with dio_complete() being called, so let's not break
* them by removing it completely
*/
if (mapping->nrpages)
invalidate_inode_pages2_range(mapping,
pos >> PAGE_SHIFT, end);
if (written > 0) {
pos += written;
write_len -= written;
if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
iocb->ki_pos = pos;
}
iov_iter_revert(from, write_len - iov_iter_count(from));
out:
return written;
}
EXPORT_SYMBOL(generic_file_direct_write);
/*
* Find or create a page at the given pagecache position. Return the locked
* page. This function is specifically for buffered writes.
*/
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags)
{
struct page *page;
int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
if (flags & AOP_FLAG_NOFS)
fgp_flags |= FGP_NOFS;
page = pagecache_get_page(mapping, index, fgp_flags,
mapping_gfp_mask(mapping));
if (page)
wait_for_stable_page(page);
return page;
}
EXPORT_SYMBOL(grab_cache_page_write_begin);
ssize_t generic_perform_write(struct file *file,
struct iov_iter *i, loff_t pos)
{
struct address_space *mapping = file->f_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
long status = 0;
ssize_t written = 0;
unsigned int flags = 0;
do {
struct page *page;
unsigned long offset; /* Offset into pagecache page */
unsigned long bytes; /* Bytes to write to page */
size_t copied; /* Bytes copied from user */
void *fsdata;
offset = (pos & (PAGE_SIZE - 1));
bytes = min_t(unsigned long, PAGE_SIZE - offset,
iov_iter_count(i));
again:
/*
* Bring in the user page that we will copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*
* Not only is this an optimisation, but it is also required
* to check that the address is actually valid, when atomic
* usercopies are used, below.
*/
if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
status = -EFAULT;
break;
}
if (fatal_signal_pending(current)) {
status = -EINTR;
break;
}
status = a_ops->write_begin(file, mapping, pos, bytes, flags,
&page, &fsdata);
if (unlikely(status < 0))
break;
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
flush_dcache_page(page);
status = a_ops->write_end(file, mapping, pos, bytes, copied,
page, fsdata);
if (unlikely(status < 0))
break;
copied = status;
cond_resched();
iov_iter_advance(i, copied);
if (unlikely(copied == 0)) {
/*
* If we were unable to copy any data at all, we must
* fall back to a single segment length write.
*
* If we didn't fallback here, we could livelock
* because not all segments in the iov can be copied at
* once without a pagefault.
*/
bytes = min_t(unsigned long, PAGE_SIZE - offset,
iov_iter_single_seg_count(i));
goto again;
}
pos += copied;
written += copied;
balance_dirty_pages_ratelimited(mapping);
} while (iov_iter_count(i));
return written ? written : status;
}
EXPORT_SYMBOL(generic_perform_write);
/**
* __generic_file_write_iter - write data to a file
* @iocb: IO state structure (file, offset, etc.)
* @from: iov_iter with data to write
*
* This function does all the work needed for actually writing data to a
* file. It does all basic checks, removes SUID from the file, updates
* modification times and calls proper subroutines depending on whether we
* do direct IO or a standard buffered write.
*
* It expects i_mutex to be grabbed unless we work on a block device or similar
* object which does not need locking at all.
*
* This function does *not* take care of syncing data in case of O_SYNC write.
* A caller has to handle it. This is mainly due to the fact that we want to
* avoid syncing under i_mutex.
*
* Return:
* * number of bytes written, even for truncated writes
* * negative error code if no data has been written at all
*/
ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t written = 0;
ssize_t err;
ssize_t status;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
err = file_remove_privs(file);
if (err)
goto out;
err = file_update_time(file);
if (err)
goto out;
if (iocb->ki_flags & IOCB_DIRECT) {
loff_t pos, endbyte;
written = generic_file_direct_write(iocb, from);
/*
* If the write stopped short of completing, fall back to
* buffered writes. Some filesystems do this for writes to
* holes, for example. For DAX files, a buffered write will
* not succeed (even if it did, DAX does not handle dirty
* page-cache pages correctly).
*/
if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
goto out;
status = generic_perform_write(file, from, pos = iocb->ki_pos);
/*
* If generic_perform_write() returned a synchronous error
* then we want to return the number of bytes which were
* direct-written, or the error code if that was zero. Note
* that this differs from normal direct-io semantics, which
* will return -EFOO even if some bytes were written.
*/
if (unlikely(status < 0)) {
err = status;
goto out;
}
/*
* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics.
*/
endbyte = pos + status - 1;
err = filemap_write_and_wait_range(mapping, pos, endbyte);
if (err == 0) {
iocb->ki_pos = endbyte + 1;
written += status;
invalidate_mapping_pages(mapping,
pos >> PAGE_SHIFT,
endbyte >> PAGE_SHIFT);
} else {
/*
* We don't know how much we wrote, so just return
* the number of bytes which were direct-written
*/
}
} else {
written = generic_perform_write(file, from, iocb->ki_pos);
if (likely(written > 0))
iocb->ki_pos += written;
}
out:
current->backing_dev_info = NULL;
return written ? written : err;
}
EXPORT_SYMBOL(__generic_file_write_iter);
/**
* generic_file_write_iter - write data to a file
* @iocb: IO state structure
* @from: iov_iter with data to write
*
* This is a wrapper around __generic_file_write_iter() to be used by most
* filesystems. It takes care of syncing the file in case of O_SYNC file
* and acquires i_mutex as needed.
* Return:
* * negative error code if no data has been written at all of
* vfs_fsync_range() failed for a synchronous write
* * number of bytes written, even for truncated writes
*/
ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
ssize_t ret;
inode_lock(inode);
ret = generic_write_checks(iocb, from);
if (ret > 0)
ret = __generic_file_write_iter(iocb, from);
inode_unlock(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
return ret;
}
EXPORT_SYMBOL(generic_file_write_iter);
/**
* try_to_release_page() - release old fs-specific metadata on a page
*
* @page: the page which the kernel is trying to free
* @gfp_mask: memory allocation flags (and I/O mode)
*
* The address_space is to try to release any data against the page
* (presumably at page->private).
*
* This may also be called if PG_fscache is set on a page, indicating that the
* page is known to the local caching routines.
*
* The @gfp_mask argument specifies whether I/O may be performed to release
* this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
*
* Return: %1 if the release was successful, otherwise return zero.
*/
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
struct address_space * const mapping = page->mapping;
BUG_ON(!PageLocked(page));
if (PageWriteback(page))
return 0;
if (mapping && mapping->a_ops->releasepage)
return mapping->a_ops->releasepage(page, gfp_mask);
return try_to_free_buffers(page);
}
EXPORT_SYMBOL(try_to_release_page);