linux-stable/arch/i386/kernel/process.c
H. J. Lu fd51f666fa [PATCH] i386/x86_64 segment register access update
The new i386/x86_64 assemblers no longer accept instructions for moving
between a segment register and a 32bit memory location, i.e.,

        movl (%eax),%ds
        movl %ds,(%eax)

To generate instructions for moving between a segment register and a
16bit memory location without the 16bit operand size prefix, 0x66,

        mov (%eax),%ds
        mov %ds,(%eax)

should be used. It will work with both new and old assemblers. The
assembler starting from 2.16.90.0.1 will also support

        movw (%eax),%ds
        movw %ds,(%eax)

without the 0x66 prefix. I am enclosing patches for 2.4 and 2.6 kernels
here. The resulting kernel binaries should be unchanged as before, with
old and new assemblers, if gcc never generates memory access for

               unsigned gsindex;
               asm volatile("movl %%gs,%0" : "=g" (gsindex));

If gcc does generate memory access for the code above, the upper bits
in gsindex are undefined and the new assembler doesn't allow it.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01 08:58:48 -07:00

851 lines
21 KiB
C

/*
* linux/arch/i386/kernel/process.c
*
* Copyright (C) 1995 Linus Torvalds
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* This file handles the architecture-dependent parts of process handling..
*/
#include <stdarg.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/elfcore.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/interrupt.h>
#include <linux/config.h>
#include <linux/utsname.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/ptrace.h>
#include <linux/random.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/ldt.h>
#include <asm/processor.h>
#include <asm/i387.h>
#include <asm/irq.h>
#include <asm/desc.h>
#ifdef CONFIG_MATH_EMULATION
#include <asm/math_emu.h>
#endif
#include <linux/irq.h>
#include <linux/err.h>
asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
static int hlt_counter;
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);
/*
* Return saved PC of a blocked thread.
*/
unsigned long thread_saved_pc(struct task_struct *tsk)
{
return ((unsigned long *)tsk->thread.esp)[3];
}
/*
* Powermanagement idle function, if any..
*/
void (*pm_idle)(void);
static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
void disable_hlt(void)
{
hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);
void enable_hlt(void)
{
hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);
/*
* We use this if we don't have any better
* idle routine..
*/
void default_idle(void)
{
if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
local_irq_disable();
if (!need_resched())
safe_halt();
else
local_irq_enable();
} else {
cpu_relax();
}
}
/*
* On SMP it's slightly faster (but much more power-consuming!)
* to poll the ->work.need_resched flag instead of waiting for the
* cross-CPU IPI to arrive. Use this option with caution.
*/
static void poll_idle (void)
{
int oldval;
local_irq_enable();
/*
* Deal with another CPU just having chosen a thread to
* run here:
*/
oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
if (!oldval) {
set_thread_flag(TIF_POLLING_NRFLAG);
asm volatile(
"2:"
"testl %0, %1;"
"rep; nop;"
"je 2b;"
: : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
clear_thread_flag(TIF_POLLING_NRFLAG);
} else {
set_need_resched();
}
}
/*
* The idle thread. There's no useful work to be
* done, so just try to conserve power and have a
* low exit latency (ie sit in a loop waiting for
* somebody to say that they'd like to reschedule)
*/
void cpu_idle (void)
{
/* endless idle loop with no priority at all */
while (1) {
while (!need_resched()) {
void (*idle)(void);
if (__get_cpu_var(cpu_idle_state))
__get_cpu_var(cpu_idle_state) = 0;
rmb();
idle = pm_idle;
if (!idle)
idle = default_idle;
__get_cpu_var(irq_stat).idle_timestamp = jiffies;
idle();
}
schedule();
}
}
void cpu_idle_wait(void)
{
unsigned int cpu, this_cpu = get_cpu();
cpumask_t map;
set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
put_cpu();
cpus_clear(map);
for_each_online_cpu(cpu) {
per_cpu(cpu_idle_state, cpu) = 1;
cpu_set(cpu, map);
}
__get_cpu_var(cpu_idle_state) = 0;
wmb();
do {
ssleep(1);
for_each_online_cpu(cpu) {
if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
cpu_clear(cpu, map);
}
cpus_and(map, map, cpu_online_map);
} while (!cpus_empty(map));
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);
/*
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
* which can obviate IPI to trigger checking of need_resched.
* We execute MONITOR against need_resched and enter optimized wait state
* through MWAIT. Whenever someone changes need_resched, we would be woken
* up from MWAIT (without an IPI).
*/
static void mwait_idle(void)
{
local_irq_enable();
if (!need_resched()) {
set_thread_flag(TIF_POLLING_NRFLAG);
do {
__monitor((void *)&current_thread_info()->flags, 0, 0);
if (need_resched())
break;
__mwait(0, 0);
} while (!need_resched());
clear_thread_flag(TIF_POLLING_NRFLAG);
}
}
void __init select_idle_routine(const struct cpuinfo_x86 *c)
{
if (cpu_has(c, X86_FEATURE_MWAIT)) {
printk("monitor/mwait feature present.\n");
/*
* Skip, if setup has overridden idle.
* One CPU supports mwait => All CPUs supports mwait
*/
if (!pm_idle) {
printk("using mwait in idle threads.\n");
pm_idle = mwait_idle;
}
}
}
static int __init idle_setup (char *str)
{
if (!strncmp(str, "poll", 4)) {
printk("using polling idle threads.\n");
pm_idle = poll_idle;
#ifdef CONFIG_X86_SMP
if (smp_num_siblings > 1)
printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
#endif
} else if (!strncmp(str, "halt", 4)) {
printk("using halt in idle threads.\n");
pm_idle = default_idle;
}
boot_option_idle_override = 1;
return 1;
}
__setup("idle=", idle_setup);
void show_regs(struct pt_regs * regs)
{
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
printk("\n");
printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
print_symbol("EIP is at %s\n", regs->eip);
if (regs->xcs & 3)
printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
printk(" EFLAGS: %08lx %s (%s)\n",
regs->eflags, print_tainted(), system_utsname.release);
printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
regs->eax,regs->ebx,regs->ecx,regs->edx);
printk("ESI: %08lx EDI: %08lx EBP: %08lx",
regs->esi, regs->edi, regs->ebp);
printk(" DS: %04x ES: %04x\n",
0xffff & regs->xds,0xffff & regs->xes);
__asm__("movl %%cr0, %0": "=r" (cr0));
__asm__("movl %%cr2, %0": "=r" (cr2));
__asm__("movl %%cr3, %0": "=r" (cr3));
/* This could fault if %cr4 does not exist */
__asm__("1: movl %%cr4, %0 \n"
"2: \n"
".section __ex_table,\"a\" \n"
".long 1b,2b \n"
".previous \n"
: "=r" (cr4): "0" (0));
printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
show_trace(NULL, &regs->esp);
}
/*
* This gets run with %ebx containing the
* function to call, and %edx containing
* the "args".
*/
extern void kernel_thread_helper(void);
__asm__(".section .text\n"
".align 4\n"
"kernel_thread_helper:\n\t"
"movl %edx,%eax\n\t"
"pushl %edx\n\t"
"call *%ebx\n\t"
"pushl %eax\n\t"
"call do_exit\n"
".previous");
/*
* Create a kernel thread
*/
int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
regs.ebx = (unsigned long) fn;
regs.edx = (unsigned long) arg;
regs.xds = __USER_DS;
regs.xes = __USER_DS;
regs.orig_eax = -1;
regs.eip = (unsigned long) kernel_thread_helper;
regs.xcs = __KERNEL_CS;
regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
/* Ok, create the new process.. */
return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
}
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
struct task_struct *tsk = current;
struct thread_struct *t = &tsk->thread;
/* The process may have allocated an io port bitmap... nuke it. */
if (unlikely(NULL != t->io_bitmap_ptr)) {
int cpu = get_cpu();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
kfree(t->io_bitmap_ptr);
t->io_bitmap_ptr = NULL;
/*
* Careful, clear this in the TSS too:
*/
memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
t->io_bitmap_max = 0;
tss->io_bitmap_owner = NULL;
tss->io_bitmap_max = 0;
tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
put_cpu();
}
}
void flush_thread(void)
{
struct task_struct *tsk = current;
memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
/*
* Forget coprocessor state..
*/
clear_fpu(tsk);
clear_used_math();
}
void release_thread(struct task_struct *dead_task)
{
if (dead_task->mm) {
// temporary debugging check
if (dead_task->mm->context.size) {
printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
dead_task->comm,
dead_task->mm->context.ldt,
dead_task->mm->context.size);
BUG();
}
}
release_vm86_irqs(dead_task);
}
/*
* This gets called before we allocate a new thread and copy
* the current task into it.
*/
void prepare_to_copy(struct task_struct *tsk)
{
unlazy_fpu(tsk);
}
int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
unsigned long unused,
struct task_struct * p, struct pt_regs * regs)
{
struct pt_regs * childregs;
struct task_struct *tsk;
int err;
childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
*childregs = *regs;
childregs->eax = 0;
childregs->esp = esp;
p->thread.esp = (unsigned long) childregs;
/*
* The below -8 is to reserve 8 bytes on top of the ring0 stack.
* This is necessary to guarantee that the entire "struct pt_regs"
* is accessable even if the CPU haven't stored the SS/ESP registers
* on the stack (interrupt gate does not save these registers
* when switching to the same priv ring).
* Therefore beware: accessing the xss/esp fields of the
* "struct pt_regs" is possible, but they may contain the
* completely wrong values.
*/
p->thread.esp0 = (unsigned long) (childregs+1) - 8;
p->thread.eip = (unsigned long) ret_from_fork;
savesegment(fs,p->thread.fs);
savesegment(gs,p->thread.gs);
tsk = current;
if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {
p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES);
}
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS) {
struct desc_struct *desc;
struct user_desc info;
int idx;
err = -EFAULT;
if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
goto out;
err = -EINVAL;
if (LDT_empty(&info))
goto out;
idx = info.entry_number;
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
goto out;
desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
desc->a = LDT_entry_a(&info);
desc->b = LDT_entry_b(&info);
}
err = 0;
out:
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
/*
* fill in the user structure for a core dump..
*/
void dump_thread(struct pt_regs * regs, struct user * dump)
{
int i;
/* changed the size calculations - should hopefully work better. lbt */
dump->magic = CMAGIC;
dump->start_code = 0;
dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
dump->u_dsize -= dump->u_tsize;
dump->u_ssize = 0;
for (i = 0; i < 8; i++)
dump->u_debugreg[i] = current->thread.debugreg[i];
if (dump->start_stack < TASK_SIZE)
dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
dump->regs.ebx = regs->ebx;
dump->regs.ecx = regs->ecx;
dump->regs.edx = regs->edx;
dump->regs.esi = regs->esi;
dump->regs.edi = regs->edi;
dump->regs.ebp = regs->ebp;
dump->regs.eax = regs->eax;
dump->regs.ds = regs->xds;
dump->regs.es = regs->xes;
savesegment(fs,dump->regs.fs);
savesegment(gs,dump->regs.gs);
dump->regs.orig_eax = regs->orig_eax;
dump->regs.eip = regs->eip;
dump->regs.cs = regs->xcs;
dump->regs.eflags = regs->eflags;
dump->regs.esp = regs->esp;
dump->regs.ss = regs->xss;
dump->u_fpvalid = dump_fpu (regs, &dump->i387);
}
/*
* Capture the user space registers if the task is not running (in user space)
*/
int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
{
struct pt_regs ptregs;
ptregs = *(struct pt_regs *)
((unsigned long)tsk->thread_info+THREAD_SIZE - sizeof(ptregs));
ptregs.xcs &= 0xffff;
ptregs.xds &= 0xffff;
ptregs.xes &= 0xffff;
ptregs.xss &= 0xffff;
elf_core_copy_regs(regs, &ptregs);
return 1;
}
static inline void
handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss)
{
if (!next->io_bitmap_ptr) {
/*
* Disable the bitmap via an invalid offset. We still cache
* the previous bitmap owner and the IO bitmap contents:
*/
tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
return;
}
if (likely(next == tss->io_bitmap_owner)) {
/*
* Previous owner of the bitmap (hence the bitmap content)
* matches the next task, we dont have to do anything but
* to set a valid offset in the TSS:
*/
tss->io_bitmap_base = IO_BITMAP_OFFSET;
return;
}
/*
* Lazy TSS's I/O bitmap copy. We set an invalid offset here
* and we let the task to get a GPF in case an I/O instruction
* is performed. The handler of the GPF will verify that the
* faulting task has a valid I/O bitmap and, it true, does the
* real copy and restart the instruction. This will save us
* redundant copies when the currently switched task does not
* perform any I/O during its timeslice.
*/
tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
}
/*
* switch_to(x,yn) should switch tasks from x to y.
*
* We fsave/fwait so that an exception goes off at the right time
* (as a call from the fsave or fwait in effect) rather than to
* the wrong process. Lazy FP saving no longer makes any sense
* with modern CPU's, and this simplifies a lot of things (SMP
* and UP become the same).
*
* NOTE! We used to use the x86 hardware context switching. The
* reason for not using it any more becomes apparent when you
* try to recover gracefully from saved state that is no longer
* valid (stale segment register values in particular). With the
* hardware task-switch, there is no way to fix up bad state in
* a reasonable manner.
*
* The fact that Intel documents the hardware task-switching to
* be slow is a fairly red herring - this code is not noticeably
* faster. However, there _is_ some room for improvement here,
* so the performance issues may eventually be a valid point.
* More important, however, is the fact that this allows us much
* more flexibility.
*
* The return value (in %eax) will be the "prev" task after
* the task-switch, and shows up in ret_from_fork in entry.S,
* for example.
*/
struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
{
struct thread_struct *prev = &prev_p->thread,
*next = &next_p->thread;
int cpu = smp_processor_id();
struct tss_struct *tss = &per_cpu(init_tss, cpu);
/* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
__unlazy_fpu(prev_p);
/*
* Reload esp0, LDT and the page table pointer:
*/
load_esp0(tss, next);
/*
* Load the per-thread Thread-Local Storage descriptor.
*/
load_TLS(next, cpu);
/*
* Save away %fs and %gs. No need to save %es and %ds, as
* those are always kernel segments while inside the kernel.
*/
asm volatile("mov %%fs,%0":"=m" (prev->fs));
asm volatile("mov %%gs,%0":"=m" (prev->gs));
/*
* Restore %fs and %gs if needed.
*/
if (unlikely(prev->fs | prev->gs | next->fs | next->gs)) {
loadsegment(fs, next->fs);
loadsegment(gs, next->gs);
}
/*
* Now maybe reload the debug registers
*/
if (unlikely(next->debugreg[7])) {
loaddebug(next, 0);
loaddebug(next, 1);
loaddebug(next, 2);
loaddebug(next, 3);
/* no 4 and 5 */
loaddebug(next, 6);
loaddebug(next, 7);
}
if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr))
handle_io_bitmap(next, tss);
return prev_p;
}
asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
}
asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;
unsigned long newsp;
int __user *parent_tidptr, *child_tidptr;
clone_flags = regs.ebx;
newsp = regs.ecx;
parent_tidptr = (int __user *)regs.edx;
child_tidptr = (int __user *)regs.edi;
if (!newsp)
newsp = regs.esp;
return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
}
/*
* This is trivial, and on the face of it looks like it
* could equally well be done in user mode.
*
* Not so, for quite unobvious reasons - register pressure.
* In user mode vfork() cannot have a stack frame, and if
* done by calling the "clone()" system call directly, you
* do not have enough call-clobbered registers to hold all
* the information you need.
*/
asmlinkage int sys_vfork(struct pt_regs regs)
{
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
}
/*
* sys_execve() executes a new program.
*/
asmlinkage int sys_execve(struct pt_regs regs)
{
int error;
char * filename;
filename = getname((char __user *) regs.ebx);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename,
(char __user * __user *) regs.ecx,
(char __user * __user *) regs.edx,
&regs);
if (error == 0) {
task_lock(current);
current->ptrace &= ~PT_DTRACE;
task_unlock(current);
/* Make sure we don't return using sysenter.. */
set_thread_flag(TIF_IRET);
}
putname(filename);
out:
return error;
}
#define top_esp (THREAD_SIZE - sizeof(unsigned long))
#define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
unsigned long get_wchan(struct task_struct *p)
{
unsigned long ebp, esp, eip;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
stack_page = (unsigned long)p->thread_info;
esp = p->thread.esp;
if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
return 0;
/* include/asm-i386/system.h:switch_to() pushes ebp last. */
ebp = *(unsigned long *) esp;
do {
if (ebp < stack_page || ebp > top_ebp+stack_page)
return 0;
eip = *(unsigned long *) (ebp+4);
if (!in_sched_functions(eip))
return eip;
ebp = *(unsigned long *) ebp;
} while (count++ < 16);
return 0;
}
/*
* sys_alloc_thread_area: get a yet unused TLS descriptor index.
*/
static int get_free_idx(void)
{
struct thread_struct *t = &current->thread;
int idx;
for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
if (desc_empty(t->tls_array + idx))
return idx + GDT_ENTRY_TLS_MIN;
return -ESRCH;
}
/*
* Set a given TLS descriptor:
*/
asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
{
struct thread_struct *t = &current->thread;
struct user_desc info;
struct desc_struct *desc;
int cpu, idx;
if (copy_from_user(&info, u_info, sizeof(info)))
return -EFAULT;
idx = info.entry_number;
/*
* index -1 means the kernel should try to find and
* allocate an empty descriptor:
*/
if (idx == -1) {
idx = get_free_idx();
if (idx < 0)
return idx;
if (put_user(idx, &u_info->entry_number))
return -EFAULT;
}
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
return -EINVAL;
desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
/*
* We must not get preempted while modifying the TLS.
*/
cpu = get_cpu();
if (LDT_empty(&info)) {
desc->a = 0;
desc->b = 0;
} else {
desc->a = LDT_entry_a(&info);
desc->b = LDT_entry_b(&info);
}
load_TLS(t, cpu);
put_cpu();
return 0;
}
/*
* Get the current Thread-Local Storage area:
*/
#define GET_BASE(desc) ( \
(((desc)->a >> 16) & 0x0000ffff) | \
(((desc)->b << 16) & 0x00ff0000) | \
( (desc)->b & 0xff000000) )
#define GET_LIMIT(desc) ( \
((desc)->a & 0x0ffff) | \
((desc)->b & 0xf0000) )
#define GET_32BIT(desc) (((desc)->b >> 22) & 1)
#define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
#define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
#define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
#define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
#define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
{
struct user_desc info;
struct desc_struct *desc;
int idx;
if (get_user(idx, &u_info->entry_number))
return -EFAULT;
if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
return -EINVAL;
desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
info.entry_number = idx;
info.base_addr = GET_BASE(desc);
info.limit = GET_LIMIT(desc);
info.seg_32bit = GET_32BIT(desc);
info.contents = GET_CONTENTS(desc);
info.read_exec_only = !GET_WRITABLE(desc);
info.limit_in_pages = GET_LIMIT_PAGES(desc);
info.seg_not_present = !GET_PRESENT(desc);
info.useable = GET_USEABLE(desc);
if (copy_to_user(u_info, &info, sizeof(info)))
return -EFAULT;
return 0;
}
unsigned long arch_align_stack(unsigned long sp)
{
if (randomize_va_space)
sp -= get_random_int() % 8192;
return sp & ~0xf;
}