linux-stable/arch/x86/kernel/smpboot.c
Huang Rui 3743d55b28 x86, sched: Fix the AMD CPPC maximum performance value on certain AMD Ryzen generations
Some AMD Ryzen generations has different calculation method on maximum
performance. 255 is not for all ASICs, some specific generations should use 166
as the maximum performance. Otherwise, it will report incorrect frequency value
like below:

  ~ → lscpu | grep MHz
  CPU MHz:                         3400.000
  CPU max MHz:                     7228.3198
  CPU min MHz:                     2200.0000

[ mingo: Tidied up whitespace use. ]
[ Alexander Monakov <amonakov@ispras.ru>: fix 225 -> 255 typo. ]

Fixes: 41ea667227 ("x86, sched: Calculate frequency invariance for AMD systems")
Fixes: 3c55e94c0a ("cpufreq: ACPI: Extend frequency tables to cover boost frequencies")
Reported-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Fixed-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210425073451.2557394-1-ray.huang@amd.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211791
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-05-13 12:10:24 +02:00

2203 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* x86 SMP booting functions
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* Copyright 2001 Andi Kleen, SuSE Labs.
*
* Much of the core SMP work is based on previous work by Thomas Radke, to
* whom a great many thanks are extended.
*
* Thanks to Intel for making available several different Pentium,
* Pentium Pro and Pentium-II/Xeon MP machines.
* Original development of Linux SMP code supported by Caldera.
*
* Fixes
* Felix Koop : NR_CPUS used properly
* Jose Renau : Handle single CPU case.
* Alan Cox : By repeated request 8) - Total BogoMIPS report.
* Greg Wright : Fix for kernel stacks panic.
* Erich Boleyn : MP v1.4 and additional changes.
* Matthias Sattler : Changes for 2.1 kernel map.
* Michel Lespinasse : Changes for 2.1 kernel map.
* Michael Chastain : Change trampoline.S to gnu as.
* Alan Cox : Dumb bug: 'B' step PPro's are fine
* Ingo Molnar : Added APIC timers, based on code
* from Jose Renau
* Ingo Molnar : various cleanups and rewrites
* Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
* Maciej W. Rozycki : Bits for genuine 82489DX APICs
* Andi Kleen : Changed for SMP boot into long mode.
* Martin J. Bligh : Added support for multi-quad systems
* Dave Jones : Report invalid combinations of Athlon CPUs.
* Rusty Russell : Hacked into shape for new "hotplug" boot process.
* Andi Kleen : Converted to new state machine.
* Ashok Raj : CPU hotplug support
* Glauber Costa : i386 and x86_64 integration
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/nmi.h>
#include <linux/tboot.h>
#include <linux/gfp.h>
#include <linux/cpuidle.h>
#include <linux/numa.h>
#include <linux/pgtable.h>
#include <linux/overflow.h>
#include <linux/syscore_ops.h>
#include <asm/acpi.h>
#include <asm/desc.h>
#include <asm/nmi.h>
#include <asm/irq.h>
#include <asm/realmode.h>
#include <asm/cpu.h>
#include <asm/numa.h>
#include <asm/tlbflush.h>
#include <asm/mtrr.h>
#include <asm/mwait.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/fpu/internal.h>
#include <asm/setup.h>
#include <asm/uv/uv.h>
#include <linux/mc146818rtc.h>
#include <asm/i8259.h>
#include <asm/misc.h>
#include <asm/qspinlock.h>
#include <asm/intel-family.h>
#include <asm/cpu_device_id.h>
#include <asm/spec-ctrl.h>
#include <asm/hw_irq.h>
#include <asm/stackprotector.h>
#ifdef CONFIG_ACPI_CPPC_LIB
#include <acpi/cppc_acpi.h>
#endif
/* representing HT siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
/* representing HT and core siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL(cpu_core_map);
/* representing HT, core, and die siblings of each logical CPU */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
EXPORT_PER_CPU_SYMBOL(cpu_die_map);
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
/* Per CPU bogomips and other parameters */
DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
EXPORT_PER_CPU_SYMBOL(cpu_info);
/* Logical package management. We might want to allocate that dynamically */
unsigned int __max_logical_packages __read_mostly;
EXPORT_SYMBOL(__max_logical_packages);
static unsigned int logical_packages __read_mostly;
static unsigned int logical_die __read_mostly;
/* Maximum number of SMT threads on any online core */
int __read_mostly __max_smt_threads = 1;
/* Flag to indicate if a complete sched domain rebuild is required */
bool x86_topology_update;
int arch_update_cpu_topology(void)
{
int retval = x86_topology_update;
x86_topology_update = false;
return retval;
}
static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
{
unsigned long flags;
spin_lock_irqsave(&rtc_lock, flags);
CMOS_WRITE(0xa, 0xf);
spin_unlock_irqrestore(&rtc_lock, flags);
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
start_eip >> 4;
*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
start_eip & 0xf;
}
static inline void smpboot_restore_warm_reset_vector(void)
{
unsigned long flags;
/*
* Paranoid: Set warm reset code and vector here back
* to default values.
*/
spin_lock_irqsave(&rtc_lock, flags);
CMOS_WRITE(0, 0xf);
spin_unlock_irqrestore(&rtc_lock, flags);
*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
}
static void init_freq_invariance(bool secondary, bool cppc_ready);
/*
* Report back to the Boot Processor during boot time or to the caller processor
* during CPU online.
*/
static void smp_callin(void)
{
int cpuid;
/*
* If waken up by an INIT in an 82489DX configuration
* cpu_callout_mask guarantees we don't get here before
* an INIT_deassert IPI reaches our local APIC, so it is
* now safe to touch our local APIC.
*/
cpuid = smp_processor_id();
/*
* the boot CPU has finished the init stage and is spinning
* on callin_map until we finish. We are free to set up this
* CPU, first the APIC. (this is probably redundant on most
* boards)
*/
apic_ap_setup();
/*
* Save our processor parameters. Note: this information
* is needed for clock calibration.
*/
smp_store_cpu_info(cpuid);
/*
* The topology information must be up to date before
* calibrate_delay() and notify_cpu_starting().
*/
set_cpu_sibling_map(raw_smp_processor_id());
init_freq_invariance(true, false);
/*
* Get our bogomips.
* Update loops_per_jiffy in cpu_data. Previous call to
* smp_store_cpu_info() stored a value that is close but not as
* accurate as the value just calculated.
*/
calibrate_delay();
cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
pr_debug("Stack at about %p\n", &cpuid);
wmb();
notify_cpu_starting(cpuid);
/*
* Allow the master to continue.
*/
cpumask_set_cpu(cpuid, cpu_callin_mask);
}
static int cpu0_logical_apicid;
static int enable_start_cpu0;
/*
* Activate a secondary processor.
*/
static void notrace start_secondary(void *unused)
{
/*
* Don't put *anything* except direct CPU state initialization
* before cpu_init(), SMP booting is too fragile that we want to
* limit the things done here to the most necessary things.
*/
cr4_init();
#ifdef CONFIG_X86_32
/* switch away from the initial page table */
load_cr3(swapper_pg_dir);
__flush_tlb_all();
#endif
cpu_init_exception_handling();
cpu_init();
rcu_cpu_starting(raw_smp_processor_id());
x86_cpuinit.early_percpu_clock_init();
preempt_disable();
smp_callin();
enable_start_cpu0 = 0;
/* otherwise gcc will move up smp_processor_id before the cpu_init */
barrier();
/*
* Check TSC synchronization with the boot CPU:
*/
check_tsc_sync_target();
speculative_store_bypass_ht_init();
/*
* Lock vector_lock, set CPU online and bring the vector
* allocator online. Online must be set with vector_lock held
* to prevent a concurrent irq setup/teardown from seeing a
* half valid vector space.
*/
lock_vector_lock();
set_cpu_online(smp_processor_id(), true);
lapic_online();
unlock_vector_lock();
cpu_set_state_online(smp_processor_id());
x86_platform.nmi_init();
/* enable local interrupts */
local_irq_enable();
x86_cpuinit.setup_percpu_clockev();
wmb();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
/**
* topology_is_primary_thread - Check whether CPU is the primary SMT thread
* @cpu: CPU to check
*/
bool topology_is_primary_thread(unsigned int cpu)
{
return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
}
/**
* topology_smt_supported - Check whether SMT is supported by the CPUs
*/
bool topology_smt_supported(void)
{
return smp_num_siblings > 1;
}
/**
* topology_phys_to_logical_pkg - Map a physical package id to a logical
*
* Returns logical package id or -1 if not found
*/
int topology_phys_to_logical_pkg(unsigned int phys_pkg)
{
int cpu;
for_each_possible_cpu(cpu) {
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->initialized && c->phys_proc_id == phys_pkg)
return c->logical_proc_id;
}
return -1;
}
EXPORT_SYMBOL(topology_phys_to_logical_pkg);
/**
* topology_phys_to_logical_die - Map a physical die id to logical
*
* Returns logical die id or -1 if not found
*/
int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
{
int cpu;
int proc_id = cpu_data(cur_cpu).phys_proc_id;
for_each_possible_cpu(cpu) {
struct cpuinfo_x86 *c = &cpu_data(cpu);
if (c->initialized && c->cpu_die_id == die_id &&
c->phys_proc_id == proc_id)
return c->logical_die_id;
}
return -1;
}
EXPORT_SYMBOL(topology_phys_to_logical_die);
/**
* topology_update_package_map - Update the physical to logical package map
* @pkg: The physical package id as retrieved via CPUID
* @cpu: The cpu for which this is updated
*/
int topology_update_package_map(unsigned int pkg, unsigned int cpu)
{
int new;
/* Already available somewhere? */
new = topology_phys_to_logical_pkg(pkg);
if (new >= 0)
goto found;
new = logical_packages++;
if (new != pkg) {
pr_info("CPU %u Converting physical %u to logical package %u\n",
cpu, pkg, new);
}
found:
cpu_data(cpu).logical_proc_id = new;
return 0;
}
/**
* topology_update_die_map - Update the physical to logical die map
* @die: The die id as retrieved via CPUID
* @cpu: The cpu for which this is updated
*/
int topology_update_die_map(unsigned int die, unsigned int cpu)
{
int new;
/* Already available somewhere? */
new = topology_phys_to_logical_die(die, cpu);
if (new >= 0)
goto found;
new = logical_die++;
if (new != die) {
pr_info("CPU %u Converting physical %u to logical die %u\n",
cpu, die, new);
}
found:
cpu_data(cpu).logical_die_id = new;
return 0;
}
void __init smp_store_boot_cpu_info(void)
{
int id = 0; /* CPU 0 */
struct cpuinfo_x86 *c = &cpu_data(id);
*c = boot_cpu_data;
c->cpu_index = id;
topology_update_package_map(c->phys_proc_id, id);
topology_update_die_map(c->cpu_die_id, id);
c->initialized = true;
}
/*
* The bootstrap kernel entry code has set these up. Save them for
* a given CPU
*/
void smp_store_cpu_info(int id)
{
struct cpuinfo_x86 *c = &cpu_data(id);
/* Copy boot_cpu_data only on the first bringup */
if (!c->initialized)
*c = boot_cpu_data;
c->cpu_index = id;
/*
* During boot time, CPU0 has this setup already. Save the info when
* bringing up AP or offlined CPU0.
*/
identify_secondary_cpu(c);
c->initialized = true;
}
static bool
topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
}
static bool
topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
{
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
return !WARN_ONCE(!topology_same_node(c, o),
"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
"[node: %d != %d]. Ignoring dependency.\n",
cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
}
#define link_mask(mfunc, c1, c2) \
do { \
cpumask_set_cpu((c1), mfunc(c2)); \
cpumask_set_cpu((c2), mfunc(c1)); \
} while (0)
static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id &&
per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
if (c->cpu_core_id == o->cpu_core_id)
return topology_sane(c, o, "smt");
if ((c->cu_id != 0xff) &&
(o->cu_id != 0xff) &&
(c->cu_id == o->cu_id))
return topology_sane(c, o, "smt");
}
} else if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id &&
c->cpu_core_id == o->cpu_core_id) {
return topology_sane(c, o, "smt");
}
return false;
}
static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id &&
c->cpu_die_id == o->cpu_die_id)
return true;
return false;
}
/*
* Unlike the other levels, we do not enforce keeping a
* multicore group inside a NUMA node. If this happens, we will
* discard the MC level of the topology later.
*/
static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
if (c->phys_proc_id == o->phys_proc_id)
return true;
return false;
}
/*
* Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
*
* Any Intel CPU that has multiple nodes per package and does not
* match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
*
* When in SNC mode, these CPUs enumerate an LLC that is shared
* by multiple NUMA nodes. The LLC is shared for off-package data
* access but private to the NUMA node (half of the package) for
* on-package access. CPUID (the source of the information about
* the LLC) can only enumerate the cache as shared or unshared,
* but not this particular configuration.
*/
static const struct x86_cpu_id intel_cod_cpu[] = {
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
{}
};
static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
{
const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
bool intel_snc = id && id->driver_data;
/* Do not match if we do not have a valid APICID for cpu: */
if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
return false;
/* Do not match if LLC id does not match: */
if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
return false;
/*
* Allow the SNC topology without warning. Return of false
* means 'c' does not share the LLC of 'o'. This will be
* reflected to userspace.
*/
if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
return false;
return topology_sane(c, o, "llc");
}
#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
static inline int x86_sched_itmt_flags(void)
{
return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
}
#ifdef CONFIG_SCHED_MC
static int x86_core_flags(void)
{
return cpu_core_flags() | x86_sched_itmt_flags();
}
#endif
#ifdef CONFIG_SCHED_SMT
static int x86_smt_flags(void)
{
return cpu_smt_flags() | x86_sched_itmt_flags();
}
#endif
#endif
static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ NULL, },
};
static struct sched_domain_topology_level x86_topology[] = {
#ifdef CONFIG_SCHED_SMT
{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
#endif
{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
{ NULL, },
};
/*
* Set if a package/die has multiple NUMA nodes inside.
* AMD Magny-Cours, Intel Cluster-on-Die, and Intel
* Sub-NUMA Clustering have this.
*/
static bool x86_has_numa_in_package;
void set_cpu_sibling_map(int cpu)
{
bool has_smt = smp_num_siblings > 1;
bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct cpuinfo_x86 *o;
int i, threads;
cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
if (!has_mp) {
cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
c->booted_cores = 1;
return;
}
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if (match_pkg(c, o) && !topology_same_node(c, o))
x86_has_numa_in_package = true;
if ((i == cpu) || (has_smt && match_smt(c, o)))
link_mask(topology_sibling_cpumask, cpu, i);
if ((i == cpu) || (has_mp && match_llc(c, o)))
link_mask(cpu_llc_shared_mask, cpu, i);
if ((i == cpu) || (has_mp && match_die(c, o)))
link_mask(topology_die_cpumask, cpu, i);
}
threads = cpumask_weight(topology_sibling_cpumask(cpu));
if (threads > __max_smt_threads)
__max_smt_threads = threads;
/*
* This needs a separate iteration over the cpus because we rely on all
* topology_sibling_cpumask links to be set-up.
*/
for_each_cpu(i, cpu_sibling_setup_mask) {
o = &cpu_data(i);
if ((i == cpu) || (has_mp && match_pkg(c, o))) {
link_mask(topology_core_cpumask, cpu, i);
/*
* Does this new cpu bringup a new core?
*/
if (threads == 1) {
/*
* for each core in package, increment
* the booted_cores for this new cpu
*/
if (cpumask_first(
topology_sibling_cpumask(i)) == i)
c->booted_cores++;
/*
* increment the core count for all
* the other cpus in this package
*/
if (i != cpu)
cpu_data(i).booted_cores++;
} else if (i != cpu && !c->booted_cores)
c->booted_cores = cpu_data(i).booted_cores;
}
}
}
/* maps the cpu to the sched domain representing multi-core */
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return cpu_llc_shared_mask(cpu);
}
static void impress_friends(void)
{
int cpu;
unsigned long bogosum = 0;
/*
* Allow the user to impress friends.
*/
pr_debug("Before bogomips\n");
for_each_possible_cpu(cpu)
if (cpumask_test_cpu(cpu, cpu_callout_mask))
bogosum += cpu_data(cpu).loops_per_jiffy;
pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
num_online_cpus(),
bogosum/(500000/HZ),
(bogosum/(5000/HZ))%100);
pr_debug("Before bogocount - setting activated=1\n");
}
void __inquire_remote_apic(int apicid)
{
unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
const char * const names[] = { "ID", "VERSION", "SPIV" };
int timeout;
u32 status;
pr_info("Inquiring remote APIC 0x%x...\n", apicid);
for (i = 0; i < ARRAY_SIZE(regs); i++) {
pr_info("... APIC 0x%x %s: ", apicid, names[i]);
/*
* Wait for idle.
*/
status = safe_apic_wait_icr_idle();
if (status)
pr_cont("a previous APIC delivery may have failed\n");
apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
timeout = 0;
do {
udelay(100);
status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
switch (status) {
case APIC_ICR_RR_VALID:
status = apic_read(APIC_RRR);
pr_cont("%08x\n", status);
break;
default:
pr_cont("failed\n");
}
}
}
/*
* The Multiprocessor Specification 1.4 (1997) example code suggests
* that there should be a 10ms delay between the BSP asserting INIT
* and de-asserting INIT, when starting a remote processor.
* But that slows boot and resume on modern processors, which include
* many cores and don't require that delay.
*
* Cmdline "init_cpu_udelay=" is available to over-ride this delay.
* Modern processor families are quirked to remove the delay entirely.
*/
#define UDELAY_10MS_DEFAULT 10000
static unsigned int init_udelay = UINT_MAX;
static int __init cpu_init_udelay(char *str)
{
get_option(&str, &init_udelay);
return 0;
}
early_param("cpu_init_udelay", cpu_init_udelay);
static void __init smp_quirk_init_udelay(void)
{
/* if cmdline changed it from default, leave it alone */
if (init_udelay != UINT_MAX)
return;
/* if modern processor, use no delay */
if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
init_udelay = 0;
return;
}
/* else, use legacy delay */
init_udelay = UDELAY_10MS_DEFAULT;
}
/*
* Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
* INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
* won't ... remember to clear down the APIC, etc later.
*/
int
wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
{
u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
unsigned long send_status, accept_status = 0;
int maxlvt;
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_NMI | dm, apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
udelay(200);
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
maxlvt = lapic_get_maxlvt();
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
}
pr_debug("NMI sent\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
static int
wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
{
unsigned long send_status = 0, accept_status = 0;
int maxlvt, num_starts, j;
maxlvt = lapic_get_maxlvt();
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
pr_debug("Asserting INIT\n");
/*
* Turn INIT on target chip
*/
/*
* Send IPI
*/
apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
udelay(init_udelay);
pr_debug("Deasserting INIT\n");
/* Target chip */
/* Send IPI */
apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
mb();
/*
* Should we send STARTUP IPIs ?
*
* Determine this based on the APIC version.
* If we don't have an integrated APIC, don't send the STARTUP IPIs.
*/
if (APIC_INTEGRATED(boot_cpu_apic_version))
num_starts = 2;
else
num_starts = 0;
/*
* Run STARTUP IPI loop.
*/
pr_debug("#startup loops: %d\n", num_starts);
for (j = 1; j <= num_starts; j++) {
pr_debug("Sending STARTUP #%d\n", j);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
pr_debug("After apic_write\n");
/*
* STARTUP IPI
*/
/* Target chip */
/* Boot on the stack */
/* Kick the second */
apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
phys_apicid);
/*
* Give the other CPU some time to accept the IPI.
*/
if (init_udelay == 0)
udelay(10);
else
udelay(300);
pr_debug("Startup point 1\n");
pr_debug("Waiting for send to finish...\n");
send_status = safe_apic_wait_icr_idle();
/*
* Give the other CPU some time to accept the IPI.
*/
if (init_udelay == 0)
udelay(10);
else
udelay(200);
if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
apic_write(APIC_ESR, 0);
accept_status = (apic_read(APIC_ESR) & 0xEF);
if (send_status || accept_status)
break;
}
pr_debug("After Startup\n");
if (send_status)
pr_err("APIC never delivered???\n");
if (accept_status)
pr_err("APIC delivery error (%lx)\n", accept_status);
return (send_status | accept_status);
}
/* reduce the number of lines printed when booting a large cpu count system */
static void announce_cpu(int cpu, int apicid)
{
static int current_node = NUMA_NO_NODE;
int node = early_cpu_to_node(cpu);
static int width, node_width;
if (!width)
width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
if (!node_width)
node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
if (cpu == 1)
printk(KERN_INFO "x86: Booting SMP configuration:\n");
if (system_state < SYSTEM_RUNNING) {
if (node != current_node) {
if (current_node > (-1))
pr_cont("\n");
current_node = node;
printk(KERN_INFO ".... node %*s#%d, CPUs: ",
node_width - num_digits(node), " ", node);
}
/* Add padding for the BSP */
if (cpu == 1)
pr_cont("%*s", width + 1, " ");
pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
} else
pr_info("Booting Node %d Processor %d APIC 0x%x\n",
node, cpu, apicid);
}
static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
{
int cpu;
cpu = smp_processor_id();
if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
return NMI_HANDLED;
return NMI_DONE;
}
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*
* Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
* boot-strap code which is not a desired behavior for waking up BSP. To
* void the boot-strap code, wake up CPU0 by NMI instead.
*
* This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
* (i.e. physically hot removed and then hot added), NMI won't wake it up.
* We'll change this code in the future to wake up hard offlined CPU0 if
* real platform and request are available.
*/
static int
wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
int *cpu0_nmi_registered)
{
int id;
int boot_error;
preempt_disable();
/*
* Wake up AP by INIT, INIT, STARTUP sequence.
*/
if (cpu) {
boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
goto out;
}
/*
* Wake up BSP by nmi.
*
* Register a NMI handler to help wake up CPU0.
*/
boot_error = register_nmi_handler(NMI_LOCAL,
wakeup_cpu0_nmi, 0, "wake_cpu0");
if (!boot_error) {
enable_start_cpu0 = 1;
*cpu0_nmi_registered = 1;
id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
}
out:
preempt_enable();
return boot_error;
}
int common_cpu_up(unsigned int cpu, struct task_struct *idle)
{
int ret;
/* Just in case we booted with a single CPU. */
alternatives_enable_smp();
per_cpu(current_task, cpu) = idle;
cpu_init_stack_canary(cpu, idle);
/* Initialize the interrupt stack(s) */
ret = irq_init_percpu_irqstack(cpu);
if (ret)
return ret;
#ifdef CONFIG_X86_32
/* Stack for startup_32 can be just as for start_secondary onwards */
per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
#else
initial_gs = per_cpu_offset(cpu);
#endif
return 0;
}
/*
* NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
* (ie clustered apic addressing mode), this is a LOGICAL apic ID.
* Returns zero if CPU booted OK, else error code from
* ->wakeup_secondary_cpu.
*/
static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
int *cpu0_nmi_registered)
{
/* start_ip had better be page-aligned! */
unsigned long start_ip = real_mode_header->trampoline_start;
unsigned long boot_error = 0;
unsigned long timeout;
idle->thread.sp = (unsigned long)task_pt_regs(idle);
early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
initial_code = (unsigned long)start_secondary;
initial_stack = idle->thread.sp;
/* Enable the espfix hack for this CPU */
init_espfix_ap(cpu);
/* So we see what's up */
announce_cpu(cpu, apicid);
/*
* This grunge runs the startup process for
* the targeted processor.
*/
if (x86_platform.legacy.warm_reset) {
pr_debug("Setting warm reset code and vector.\n");
smpboot_setup_warm_reset_vector(start_ip);
/*
* Be paranoid about clearing APIC errors.
*/
if (APIC_INTEGRATED(boot_cpu_apic_version)) {
apic_write(APIC_ESR, 0);
apic_read(APIC_ESR);
}
}
/*
* AP might wait on cpu_callout_mask in cpu_init() with
* cpu_initialized_mask set if previous attempt to online
* it timed-out. Clear cpu_initialized_mask so that after
* INIT/SIPI it could start with a clean state.
*/
cpumask_clear_cpu(cpu, cpu_initialized_mask);
smp_mb();
/*
* Wake up a CPU in difference cases:
* - Use the method in the APIC driver if it's defined
* Otherwise,
* - Use an INIT boot APIC message for APs or NMI for BSP.
*/
if (apic->wakeup_secondary_cpu)
boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
else
boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
cpu0_nmi_registered);
if (!boot_error) {
/*
* Wait 10s total for first sign of life from AP
*/
boot_error = -1;
timeout = jiffies + 10*HZ;
while (time_before(jiffies, timeout)) {
if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
/*
* Tell AP to proceed with initialization
*/
cpumask_set_cpu(cpu, cpu_callout_mask);
boot_error = 0;
break;
}
schedule();
}
}
if (!boot_error) {
/*
* Wait till AP completes initial initialization
*/
while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
/*
* Allow other tasks to run while we wait for the
* AP to come online. This also gives a chance
* for the MTRR work(triggered by the AP coming online)
* to be completed in the stop machine context.
*/
schedule();
}
}
if (x86_platform.legacy.warm_reset) {
/*
* Cleanup possible dangling ends...
*/
smpboot_restore_warm_reset_vector();
}
return boot_error;
}
int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
{
int apicid = apic->cpu_present_to_apicid(cpu);
int cpu0_nmi_registered = 0;
unsigned long flags;
int err, ret = 0;
lockdep_assert_irqs_enabled();
pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
if (apicid == BAD_APICID ||
!physid_isset(apicid, phys_cpu_present_map) ||
!apic->apic_id_valid(apicid)) {
pr_err("%s: bad cpu %d\n", __func__, cpu);
return -EINVAL;
}
/*
* Already booted CPU?
*/
if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
pr_debug("do_boot_cpu %d Already started\n", cpu);
return -ENOSYS;
}
/*
* Save current MTRR state in case it was changed since early boot
* (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
*/
mtrr_save_state();
/* x86 CPUs take themselves offline, so delayed offline is OK. */
err = cpu_check_up_prepare(cpu);
if (err && err != -EBUSY)
return err;
/* the FPU context is blank, nobody can own it */
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
err = common_cpu_up(cpu, tidle);
if (err)
return err;
err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
if (err) {
pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
ret = -EIO;
goto unreg_nmi;
}
/*
* Check TSC synchronization with the AP (keep irqs disabled
* while doing so):
*/
local_irq_save(flags);
check_tsc_sync_source(cpu);
local_irq_restore(flags);
while (!cpu_online(cpu)) {
cpu_relax();
touch_nmi_watchdog();
}
unreg_nmi:
/*
* Clean up the nmi handler. Do this after the callin and callout sync
* to avoid impact of possible long unregister time.
*/
if (cpu0_nmi_registered)
unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
return ret;
}
/**
* arch_disable_smp_support() - disables SMP support for x86 at runtime
*/
void arch_disable_smp_support(void)
{
disable_ioapic_support();
}
/*
* Fall back to non SMP mode after errors.
*
* RED-PEN audit/test this more. I bet there is more state messed up here.
*/
static __init void disable_smp(void)
{
pr_info("SMP disabled\n");
disable_ioapic_support();
init_cpu_present(cpumask_of(0));
init_cpu_possible(cpumask_of(0));
if (smp_found_config)
physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
else
physid_set_mask_of_physid(0, &phys_cpu_present_map);
cpumask_set_cpu(0, topology_sibling_cpumask(0));
cpumask_set_cpu(0, topology_core_cpumask(0));
cpumask_set_cpu(0, topology_die_cpumask(0));
}
/*
* Various sanity checks.
*/
static void __init smp_sanity_check(void)
{
preempt_disable();
#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
if (def_to_bigsmp && nr_cpu_ids > 8) {
unsigned int cpu;
unsigned nr;
pr_warn("More than 8 CPUs detected - skipping them\n"
"Use CONFIG_X86_BIGSMP\n");
nr = 0;
for_each_present_cpu(cpu) {
if (nr >= 8)
set_cpu_present(cpu, false);
nr++;
}
nr = 0;
for_each_possible_cpu(cpu) {
if (nr >= 8)
set_cpu_possible(cpu, false);
nr++;
}
nr_cpu_ids = 8;
}
#endif
if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
hard_smp_processor_id());
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
/*
* Should not be necessary because the MP table should list the boot
* CPU too, but we do it for the sake of robustness anyway.
*/
if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
boot_cpu_physical_apicid);
physid_set(hard_smp_processor_id(), phys_cpu_present_map);
}
preempt_enable();
}
static void __init smp_cpu_index_default(void)
{
int i;
struct cpuinfo_x86 *c;
for_each_possible_cpu(i) {
c = &cpu_data(i);
/* mark all to hotplug */
c->cpu_index = nr_cpu_ids;
}
}
static void __init smp_get_logical_apicid(void)
{
if (x2apic_mode)
cpu0_logical_apicid = apic_read(APIC_LDR);
else
cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
}
/*
* Prepare for SMP bootup.
* @max_cpus: configured maximum number of CPUs, It is a legacy parameter
* for common interface support.
*/
void __init native_smp_prepare_cpus(unsigned int max_cpus)
{
unsigned int i;
smp_cpu_index_default();
/*
* Setup boot CPU information
*/
smp_store_boot_cpu_info(); /* Final full version of the data */
cpumask_copy(cpu_callin_mask, cpumask_of(0));
mb();
for_each_possible_cpu(i) {
zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
}
/*
* Set 'default' x86 topology, this matches default_topology() in that
* it has NUMA nodes as a topology level. See also
* native_smp_cpus_done().
*
* Must be done before set_cpus_sibling_map() is ran.
*/
set_sched_topology(x86_topology);
set_cpu_sibling_map(0);
init_freq_invariance(false, false);
smp_sanity_check();
switch (apic_intr_mode) {
case APIC_PIC:
case APIC_VIRTUAL_WIRE_NO_CONFIG:
disable_smp();
return;
case APIC_SYMMETRIC_IO_NO_ROUTING:
disable_smp();
/* Setup local timer */
x86_init.timers.setup_percpu_clockev();
return;
case APIC_VIRTUAL_WIRE:
case APIC_SYMMETRIC_IO:
break;
}
/* Setup local timer */
x86_init.timers.setup_percpu_clockev();
smp_get_logical_apicid();
pr_info("CPU0: ");
print_cpu_info(&cpu_data(0));
uv_system_init();
set_mtrr_aps_delayed_init();
smp_quirk_init_udelay();
speculative_store_bypass_ht_init();
}
void arch_thaw_secondary_cpus_begin(void)
{
set_mtrr_aps_delayed_init();
}
void arch_thaw_secondary_cpus_end(void)
{
mtrr_aps_init();
}
/*
* Early setup to make printk work.
*/
void __init native_smp_prepare_boot_cpu(void)
{
int me = smp_processor_id();
switch_to_new_gdt(me);
/* already set me in cpu_online_mask in boot_cpu_init() */
cpumask_set_cpu(me, cpu_callout_mask);
cpu_set_state_online(me);
native_pv_lock_init();
}
void __init calculate_max_logical_packages(void)
{
int ncpus;
/*
* Today neither Intel nor AMD support heterogeneous systems so
* extrapolate the boot cpu's data to all packages.
*/
ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
pr_info("Max logical packages: %u\n", __max_logical_packages);
}
void __init native_smp_cpus_done(unsigned int max_cpus)
{
pr_debug("Boot done\n");
calculate_max_logical_packages();
if (x86_has_numa_in_package)
set_sched_topology(x86_numa_in_package_topology);
nmi_selftest();
impress_friends();
mtrr_aps_init();
}
static int __initdata setup_possible_cpus = -1;
static int __init _setup_possible_cpus(char *str)
{
get_option(&str, &setup_possible_cpus);
return 0;
}
early_param("possible_cpus", _setup_possible_cpus);
/*
* cpu_possible_mask should be static, it cannot change as cpu's
* are onlined, or offlined. The reason is per-cpu data-structures
* are allocated by some modules at init time, and don't expect to
* do this dynamically on cpu arrival/departure.
* cpu_present_mask on the other hand can change dynamically.
* In case when cpu_hotplug is not compiled, then we resort to current
* behaviour, which is cpu_possible == cpu_present.
* - Ashok Raj
*
* Three ways to find out the number of additional hotplug CPUs:
* - If the BIOS specified disabled CPUs in ACPI/mptables use that.
* - The user can overwrite it with possible_cpus=NUM
* - Otherwise don't reserve additional CPUs.
* We do this because additional CPUs waste a lot of memory.
* -AK
*/
__init void prefill_possible_map(void)
{
int i, possible;
/* No boot processor was found in mptable or ACPI MADT */
if (!num_processors) {
if (boot_cpu_has(X86_FEATURE_APIC)) {
int apicid = boot_cpu_physical_apicid;
int cpu = hard_smp_processor_id();
pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
/* Make sure boot cpu is enumerated */
if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
apic->apic_id_valid(apicid))
generic_processor_info(apicid, boot_cpu_apic_version);
}
if (!num_processors)
num_processors = 1;
}
i = setup_max_cpus ?: 1;
if (setup_possible_cpus == -1) {
possible = num_processors;
#ifdef CONFIG_HOTPLUG_CPU
if (setup_max_cpus)
possible += disabled_cpus;
#else
if (possible > i)
possible = i;
#endif
} else
possible = setup_possible_cpus;
total_cpus = max_t(int, possible, num_processors + disabled_cpus);
/* nr_cpu_ids could be reduced via nr_cpus= */
if (possible > nr_cpu_ids) {
pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
possible, nr_cpu_ids);
possible = nr_cpu_ids;
}
#ifdef CONFIG_HOTPLUG_CPU
if (!setup_max_cpus)
#endif
if (possible > i) {
pr_warn("%d Processors exceeds max_cpus limit of %u\n",
possible, setup_max_cpus);
possible = i;
}
nr_cpu_ids = possible;
pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
possible, max_t(int, possible - num_processors, 0));
reset_cpu_possible_mask();
for (i = 0; i < possible; i++)
set_cpu_possible(i, true);
}
#ifdef CONFIG_HOTPLUG_CPU
/* Recompute SMT state for all CPUs on offline */
static void recompute_smt_state(void)
{
int max_threads, cpu;
max_threads = 0;
for_each_online_cpu (cpu) {
int threads = cpumask_weight(topology_sibling_cpumask(cpu));
if (threads > max_threads)
max_threads = threads;
}
__max_smt_threads = max_threads;
}
static void remove_siblinginfo(int cpu)
{
int sibling;
struct cpuinfo_x86 *c = &cpu_data(cpu);
for_each_cpu(sibling, topology_core_cpumask(cpu)) {
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
/*/
* last thread sibling in this cpu core going down
*/
if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
cpu_data(sibling).booted_cores--;
}
for_each_cpu(sibling, topology_die_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
cpumask_clear(cpu_llc_shared_mask(cpu));
cpumask_clear(topology_sibling_cpumask(cpu));
cpumask_clear(topology_core_cpumask(cpu));
cpumask_clear(topology_die_cpumask(cpu));
c->cpu_core_id = 0;
c->booted_cores = 0;
cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
recompute_smt_state();
}
static void remove_cpu_from_maps(int cpu)
{
set_cpu_online(cpu, false);
cpumask_clear_cpu(cpu, cpu_callout_mask);
cpumask_clear_cpu(cpu, cpu_callin_mask);
/* was set by cpu_init() */
cpumask_clear_cpu(cpu, cpu_initialized_mask);
numa_remove_cpu(cpu);
}
void cpu_disable_common(void)
{
int cpu = smp_processor_id();
remove_siblinginfo(cpu);
/* It's now safe to remove this processor from the online map */
lock_vector_lock();
remove_cpu_from_maps(cpu);
unlock_vector_lock();
fixup_irqs();
lapic_offline();
}
int native_cpu_disable(void)
{
int ret;
ret = lapic_can_unplug_cpu();
if (ret)
return ret;
cpu_disable_common();
/*
* Disable the local APIC. Otherwise IPI broadcasts will reach
* it. It still responds normally to INIT, NMI, SMI, and SIPI
* messages.
*
* Disabling the APIC must happen after cpu_disable_common()
* which invokes fixup_irqs().
*
* Disabling the APIC preserves already set bits in IRR, but
* an interrupt arriving after disabling the local APIC does not
* set the corresponding IRR bit.
*
* fixup_irqs() scans IRR for set bits so it can raise a not
* yet handled interrupt on the new destination CPU via an IPI
* but obviously it can't do so for IRR bits which are not set.
* IOW, interrupts arriving after disabling the local APIC will
* be lost.
*/
apic_soft_disable();
return 0;
}
int common_cpu_die(unsigned int cpu)
{
int ret = 0;
/* We don't do anything here: idle task is faking death itself. */
/* They ack this in play_dead() by setting CPU_DEAD */
if (cpu_wait_death(cpu, 5)) {
if (system_state == SYSTEM_RUNNING)
pr_info("CPU %u is now offline\n", cpu);
} else {
pr_err("CPU %u didn't die...\n", cpu);
ret = -1;
}
return ret;
}
void native_cpu_die(unsigned int cpu)
{
common_cpu_die(cpu);
}
void play_dead_common(void)
{
idle_task_exit();
/* Ack it */
(void)cpu_report_death();
/*
* With physical CPU hotplug, we should halt the cpu
*/
local_irq_disable();
}
/**
* cond_wakeup_cpu0 - Wake up CPU0 if needed.
*
* If NMI wants to wake up CPU0, start CPU0.
*/
void cond_wakeup_cpu0(void)
{
if (smp_processor_id() == 0 && enable_start_cpu0)
start_cpu0();
}
EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
/*
* We need to flush the caches before going to sleep, lest we have
* dirty data in our caches when we come back up.
*/
static inline void mwait_play_dead(void)
{
unsigned int eax, ebx, ecx, edx;
unsigned int highest_cstate = 0;
unsigned int highest_subcstate = 0;
void *mwait_ptr;
int i;
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
return;
if (!this_cpu_has(X86_FEATURE_MWAIT))
return;
if (!this_cpu_has(X86_FEATURE_CLFLUSH))
return;
if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
return;
eax = CPUID_MWAIT_LEAF;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
/*
* eax will be 0 if EDX enumeration is not valid.
* Initialized below to cstate, sub_cstate value when EDX is valid.
*/
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
eax = 0;
} else {
edx >>= MWAIT_SUBSTATE_SIZE;
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
if (edx & MWAIT_SUBSTATE_MASK) {
highest_cstate = i;
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
}
}
eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
(highest_subcstate - 1);
}
/*
* This should be a memory location in a cache line which is
* unlikely to be touched by other processors. The actual
* content is immaterial as it is not actually modified in any way.
*/
mwait_ptr = &current_thread_info()->flags;
wbinvd();
while (1) {
/*
* The CLFLUSH is a workaround for erratum AAI65 for
* the Xeon 7400 series. It's not clear it is actually
* needed, but it should be harmless in either case.
* The WBINVD is insufficient due to the spurious-wakeup
* case where we return around the loop.
*/
mb();
clflush(mwait_ptr);
mb();
__monitor(mwait_ptr, 0, 0);
mb();
__mwait(eax, 0);
cond_wakeup_cpu0();
}
}
void hlt_play_dead(void)
{
if (__this_cpu_read(cpu_info.x86) >= 4)
wbinvd();
while (1) {
native_halt();
cond_wakeup_cpu0();
}
}
void native_play_dead(void)
{
play_dead_common();
tboot_shutdown(TB_SHUTDOWN_WFS);
mwait_play_dead(); /* Only returns on failure */
if (cpuidle_play_dead())
hlt_play_dead();
}
#else /* ... !CONFIG_HOTPLUG_CPU */
int native_cpu_disable(void)
{
return -ENOSYS;
}
void native_cpu_die(unsigned int cpu)
{
/* We said "no" in __cpu_disable */
BUG();
}
void native_play_dead(void)
{
BUG();
}
#endif
#ifdef CONFIG_X86_64
/*
* APERF/MPERF frequency ratio computation.
*
* The scheduler wants to do frequency invariant accounting and needs a <1
* ratio to account for the 'current' frequency, corresponding to
* freq_curr / freq_max.
*
* Since the frequency freq_curr on x86 is controlled by micro-controller and
* our P-state setting is little more than a request/hint, we need to observe
* the effective frequency 'BusyMHz', i.e. the average frequency over a time
* interval after discarding idle time. This is given by:
*
* BusyMHz = delta_APERF / delta_MPERF * freq_base
*
* where freq_base is the max non-turbo P-state.
*
* The freq_max term has to be set to a somewhat arbitrary value, because we
* can't know which turbo states will be available at a given point in time:
* it all depends on the thermal headroom of the entire package. We set it to
* the turbo level with 4 cores active.
*
* Benchmarks show that's a good compromise between the 1C turbo ratio
* (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
* which would ignore the entire turbo range (a conspicuous part, making
* freq_curr/freq_max always maxed out).
*
* An exception to the heuristic above is the Atom uarch, where we choose the
* highest turbo level for freq_max since Atom's are generally oriented towards
* power efficiency.
*
* Setting freq_max to anything less than the 1C turbo ratio makes the ratio
* freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
*/
DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
static DEFINE_PER_CPU(u64, arch_prev_aperf);
static DEFINE_PER_CPU(u64, arch_prev_mperf);
static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
void arch_set_max_freq_ratio(bool turbo_disabled)
{
arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
arch_turbo_freq_ratio;
}
EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
static bool turbo_disabled(void)
{
u64 misc_en;
int err;
err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
if (err)
return false;
return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
}
static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
{
int err;
err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
if (err)
return false;
err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
if (err)
return false;
*base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
*turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
return true;
}
#define X86_MATCH(model) \
X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
X86_MATCH(XEON_PHI_KNL),
X86_MATCH(XEON_PHI_KNM),
{}
};
static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
X86_MATCH(SKYLAKE_X),
{}
};
static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
X86_MATCH(ATOM_GOLDMONT),
X86_MATCH(ATOM_GOLDMONT_D),
X86_MATCH(ATOM_GOLDMONT_PLUS),
{}
};
static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
int num_delta_fratio)
{
int fratio, delta_fratio, found;
int err, i;
u64 msr;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
if (err)
return false;
fratio = (msr >> 8) & 0xFF;
i = 16;
found = 0;
do {
if (found >= num_delta_fratio) {
*turbo_freq = fratio;
return true;
}
delta_fratio = (msr >> (i + 5)) & 0x7;
if (delta_fratio) {
found += 1;
fratio -= delta_fratio;
}
i += 8;
} while (i < 64);
return true;
}
static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
{
u64 ratios, counts;
u32 group_size;
int err, i;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
if (err)
return false;
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
if (err)
return false;
for (i = 0; i < 64; i += 8) {
group_size = (counts >> i) & 0xFF;
if (group_size >= size) {
*turbo_freq = (ratios >> i) & 0xFF;
return true;
}
}
return false;
}
static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
{
u64 msr;
int err;
err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
if (err)
return false;
err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
if (err)
return false;
*base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
*turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
/* The CPU may have less than 4 cores */
if (!*turbo_freq)
*turbo_freq = msr & 0xFF; /* 1C turbo */
return true;
}
static bool intel_set_max_freq_ratio(void)
{
u64 base_freq, turbo_freq;
u64 turbo_ratio;
if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
goto out;
if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
goto out;
if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
goto out;
if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
goto out;
if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
goto out;
return false;
out:
/*
* Some hypervisors advertise X86_FEATURE_APERFMPERF
* but then fill all MSR's with zeroes.
* Some CPUs have turbo boost but don't declare any turbo ratio
* in MSR_TURBO_RATIO_LIMIT.
*/
if (!base_freq || !turbo_freq) {
pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
return false;
}
turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
if (!turbo_ratio) {
pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
return false;
}
arch_turbo_freq_ratio = turbo_ratio;
arch_set_max_freq_ratio(turbo_disabled());
return true;
}
#ifdef CONFIG_ACPI_CPPC_LIB
static bool amd_set_max_freq_ratio(void)
{
struct cppc_perf_caps perf_caps;
u64 highest_perf, nominal_perf;
u64 perf_ratio;
int rc;
rc = cppc_get_perf_caps(0, &perf_caps);
if (rc) {
pr_debug("Could not retrieve perf counters (%d)\n", rc);
return false;
}
highest_perf = amd_get_highest_perf();
nominal_perf = perf_caps.nominal_perf;
if (!highest_perf || !nominal_perf) {
pr_debug("Could not retrieve highest or nominal performance\n");
return false;
}
perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
/* midpoint between max_boost and max_P */
perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
if (!perf_ratio) {
pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
return false;
}
arch_turbo_freq_ratio = perf_ratio;
arch_set_max_freq_ratio(false);
return true;
}
#else
static bool amd_set_max_freq_ratio(void)
{
return false;
}
#endif
static void init_counter_refs(void)
{
u64 aperf, mperf;
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
this_cpu_write(arch_prev_aperf, aperf);
this_cpu_write(arch_prev_mperf, mperf);
}
#ifdef CONFIG_PM_SLEEP
static struct syscore_ops freq_invariance_syscore_ops = {
.resume = init_counter_refs,
};
static void register_freq_invariance_syscore_ops(void)
{
/* Bail out if registered already. */
if (freq_invariance_syscore_ops.node.prev)
return;
register_syscore_ops(&freq_invariance_syscore_ops);
}
#else
static inline void register_freq_invariance_syscore_ops(void) {}
#endif
static void init_freq_invariance(bool secondary, bool cppc_ready)
{
bool ret = false;
if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
return;
if (secondary) {
if (static_branch_likely(&arch_scale_freq_key)) {
init_counter_refs();
}
return;
}
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
ret = intel_set_max_freq_ratio();
else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
if (!cppc_ready) {
return;
}
ret = amd_set_max_freq_ratio();
}
if (ret) {
init_counter_refs();
static_branch_enable(&arch_scale_freq_key);
register_freq_invariance_syscore_ops();
pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
} else {
pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
}
}
#ifdef CONFIG_ACPI_CPPC_LIB
static DEFINE_MUTEX(freq_invariance_lock);
void init_freq_invariance_cppc(void)
{
static bool secondary;
mutex_lock(&freq_invariance_lock);
init_freq_invariance(secondary, true);
secondary = true;
mutex_unlock(&freq_invariance_lock);
}
#endif
static void disable_freq_invariance_workfn(struct work_struct *work)
{
static_branch_disable(&arch_scale_freq_key);
}
static DECLARE_WORK(disable_freq_invariance_work,
disable_freq_invariance_workfn);
DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
void arch_scale_freq_tick(void)
{
u64 freq_scale = SCHED_CAPACITY_SCALE;
u64 aperf, mperf;
u64 acnt, mcnt;
if (!arch_scale_freq_invariant())
return;
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
acnt = aperf - this_cpu_read(arch_prev_aperf);
mcnt = mperf - this_cpu_read(arch_prev_mperf);
this_cpu_write(arch_prev_aperf, aperf);
this_cpu_write(arch_prev_mperf, mperf);
if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
goto error;
if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
goto error;
freq_scale = div64_u64(acnt, mcnt);
if (!freq_scale)
goto error;
if (freq_scale > SCHED_CAPACITY_SCALE)
freq_scale = SCHED_CAPACITY_SCALE;
this_cpu_write(arch_freq_scale, freq_scale);
return;
error:
pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
schedule_work(&disable_freq_invariance_work);
}
#else
static inline void init_freq_invariance(bool secondary, bool cppc_ready)
{
}
#endif /* CONFIG_X86_64 */