linux-stable/drivers/gpu/drm/i915/gt/sysfs_engines.c
Chris Wilson 7a0ba6b43b drm/i915: Show per-engine default property values in sysfs
By providing the default values configured into the kernel via sysfs, it
is much more convenient for userspace to restore those sane defaults, or
at least know what are considered good baseline. This is useful, for
example, to cleanup after any failed userspace prior to commencing new
jobs.

/sys/class/drm/card0/engine/rcs0/
├── capabilities
├── class
├── .defaults
│   ├── heartbeat_interval_ms
│   ├── max_busywait_duration_ns
│   ├── preempt_timeout_ms
│   ├── stop_timeout_ms
│   └── timeslice_duration_ms
├── heartbeat_interval_ms
├── instance
├── known_capabilities
├── max_busywait_duration_ns
├── mmio_base
├── name
├── preempt_timeout_ms
├── stop_timeout_ms
└── timeslice_duration_ms

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Maciej Patelczyk <maciej.patelczyk@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200514062905.28668-1-chris@chris-wilson.co.uk
2020-05-14 08:25:05 +01:00

539 lines
14 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include "i915_drv.h"
#include "intel_engine.h"
#include "intel_engine_heartbeat.h"
#include "sysfs_engines.h"
struct kobj_engine {
struct kobject base;
struct intel_engine_cs *engine;
};
static struct intel_engine_cs *kobj_to_engine(struct kobject *kobj)
{
return container_of(kobj, struct kobj_engine, base)->engine;
}
static ssize_t
name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%s\n", kobj_to_engine(kobj)->name);
}
static struct kobj_attribute name_attr =
__ATTR(name, 0444, name_show, NULL);
static ssize_t
class_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_class);
}
static struct kobj_attribute class_attr =
__ATTR(class, 0444, class_show, NULL);
static ssize_t
inst_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", kobj_to_engine(kobj)->uabi_instance);
}
static struct kobj_attribute inst_attr =
__ATTR(instance, 0444, inst_show, NULL);
static ssize_t
mmio_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sprintf(buf, "0x%x\n", kobj_to_engine(kobj)->mmio_base);
}
static struct kobj_attribute mmio_attr =
__ATTR(mmio_base, 0444, mmio_show, NULL);
static const char * const vcs_caps[] = {
[ilog2(I915_VIDEO_CLASS_CAPABILITY_HEVC)] = "hevc",
[ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
};
static const char * const vecs_caps[] = {
[ilog2(I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC)] = "sfc",
};
static ssize_t repr_trim(char *buf, ssize_t len)
{
/* Trim off the trailing space and replace with a newline */
if (len > PAGE_SIZE)
len = PAGE_SIZE;
if (len > 0)
buf[len - 1] = '\n';
return len;
}
static ssize_t
__caps_show(struct intel_engine_cs *engine,
u32 caps, char *buf, bool show_unknown)
{
const char * const *repr;
int count, n;
ssize_t len;
BUILD_BUG_ON(!typecheck(typeof(caps), engine->uabi_capabilities));
switch (engine->class) {
case VIDEO_DECODE_CLASS:
repr = vcs_caps;
count = ARRAY_SIZE(vcs_caps);
break;
case VIDEO_ENHANCEMENT_CLASS:
repr = vecs_caps;
count = ARRAY_SIZE(vecs_caps);
break;
default:
repr = NULL;
count = 0;
break;
}
GEM_BUG_ON(count > BITS_PER_TYPE(typeof(caps)));
len = 0;
for_each_set_bit(n,
(unsigned long *)&caps,
show_unknown ? BITS_PER_TYPE(typeof(caps)) : count) {
if (n >= count || !repr[n]) {
if (GEM_WARN_ON(show_unknown))
len += snprintf(buf + len, PAGE_SIZE - len,
"[%x] ", n);
} else {
len += snprintf(buf + len, PAGE_SIZE - len,
"%s ", repr[n]);
}
if (GEM_WARN_ON(len >= PAGE_SIZE))
break;
}
return repr_trim(buf, len);
}
static ssize_t
caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return __caps_show(engine, engine->uabi_capabilities, buf, true);
}
static struct kobj_attribute caps_attr =
__ATTR(capabilities, 0444, caps_show, NULL);
static ssize_t
all_caps_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return __caps_show(kobj_to_engine(kobj), -1, buf, false);
}
static struct kobj_attribute all_caps_attr =
__ATTR(known_capabilities, 0444, all_caps_show, NULL);
static ssize_t
max_spin_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
unsigned long long duration;
int err;
/*
* When waiting for a request, if is it currently being executed
* on the GPU, we busywait for a short while before sleeping. The
* premise is that most requests are short, and if it is already
* executing then there is a good chance that it will complete
* before we can setup the interrupt handler and go to sleep.
* We try to offset the cost of going to sleep, by first spinning
* on the request -- if it completed in less time than it would take
* to go sleep, process the interrupt and return back to the client,
* then we have saved the client some latency, albeit at the cost
* of spinning on an expensive CPU core.
*
* While we try to avoid waiting at all for a request that is unlikely
* to complete, deciding how long it is worth spinning is for is an
* arbitrary decision: trading off power vs latency.
*/
err = kstrtoull(buf, 0, &duration);
if (err)
return err;
if (duration > jiffies_to_nsecs(2))
return -EINVAL;
WRITE_ONCE(engine->props.max_busywait_duration_ns, duration);
return count;
}
static ssize_t
max_spin_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->props.max_busywait_duration_ns);
}
static struct kobj_attribute max_spin_attr =
__ATTR(max_busywait_duration_ns, 0644, max_spin_show, max_spin_store);
static ssize_t
max_spin_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->defaults.max_busywait_duration_ns);
}
static struct kobj_attribute max_spin_def =
__ATTR(max_busywait_duration_ns, 0444, max_spin_default, NULL);
static ssize_t
timeslice_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
unsigned long long duration;
int err;
/*
* Execlists uses a scheduling quantum (a timeslice) to alternate
* execution between ready-to-run contexts of equal priority. This
* ensures that all users (though only if they of equal importance)
* have the opportunity to run and prevents livelocks where contexts
* may have implicit ordering due to userspace semaphores.
*/
err = kstrtoull(buf, 0, &duration);
if (err)
return err;
if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
return -EINVAL;
WRITE_ONCE(engine->props.timeslice_duration_ms, duration);
if (execlists_active(&engine->execlists))
set_timer_ms(&engine->execlists.timer, duration);
return count;
}
static ssize_t
timeslice_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->props.timeslice_duration_ms);
}
static struct kobj_attribute timeslice_duration_attr =
__ATTR(timeslice_duration_ms, 0644, timeslice_show, timeslice_store);
static ssize_t
timeslice_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->defaults.timeslice_duration_ms);
}
static struct kobj_attribute timeslice_duration_def =
__ATTR(timeslice_duration_ms, 0444, timeslice_default, NULL);
static ssize_t
stop_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
unsigned long long duration;
int err;
/*
* When we allow ourselves to sleep before a GPU reset after disabling
* submission, even for a few milliseconds, gives an innocent context
* the opportunity to clear the GPU before the reset occurs. However,
* how long to sleep depends on the typical non-preemptible duration
* (a similar problem to determining the ideal preempt-reset timeout
* or even the heartbeat interval).
*/
err = kstrtoull(buf, 0, &duration);
if (err)
return err;
if (duration > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
return -EINVAL;
WRITE_ONCE(engine->props.stop_timeout_ms, duration);
return count;
}
static ssize_t
stop_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->props.stop_timeout_ms);
}
static struct kobj_attribute stop_timeout_attr =
__ATTR(stop_timeout_ms, 0644, stop_show, stop_store);
static ssize_t
stop_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->defaults.stop_timeout_ms);
}
static struct kobj_attribute stop_timeout_def =
__ATTR(stop_timeout_ms, 0444, stop_default, NULL);
static ssize_t
preempt_timeout_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
unsigned long long timeout;
int err;
/*
* After initialising a preemption request, we give the current
* resident a small amount of time to vacate the GPU. The preemption
* request is for a higher priority context and should be immediate to
* maintain high quality of service (and avoid priority inversion).
* However, the preemption granularity of the GPU can be quite coarse
* and so we need a compromise.
*/
err = kstrtoull(buf, 0, &timeout);
if (err)
return err;
if (timeout > jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
return -EINVAL;
WRITE_ONCE(engine->props.preempt_timeout_ms, timeout);
if (READ_ONCE(engine->execlists.pending[0]))
set_timer_ms(&engine->execlists.preempt, timeout);
return count;
}
static ssize_t
preempt_timeout_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->props.preempt_timeout_ms);
}
static struct kobj_attribute preempt_timeout_attr =
__ATTR(preempt_timeout_ms, 0644, preempt_timeout_show, preempt_timeout_store);
static ssize_t
preempt_timeout_default(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->defaults.preempt_timeout_ms);
}
static struct kobj_attribute preempt_timeout_def =
__ATTR(preempt_timeout_ms, 0444, preempt_timeout_default, NULL);
static ssize_t
heartbeat_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
unsigned long long delay;
int err;
/*
* We monitor the health of the system via periodic heartbeat pulses.
* The pulses also provide the opportunity to perform garbage
* collection. However, we interpret an incomplete pulse (a missed
* heartbeat) as an indication that the system is no longer responsive,
* i.e. hung, and perform an engine or full GPU reset. Given that the
* preemption granularity can be very coarse on a system, the optimal
* value for any workload is unknowable!
*/
err = kstrtoull(buf, 0, &delay);
if (err)
return err;
if (delay >= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT))
return -EINVAL;
err = intel_engine_set_heartbeat(engine, delay);
if (err)
return err;
return count;
}
static ssize_t
heartbeat_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->props.heartbeat_interval_ms);
}
static struct kobj_attribute heartbeat_interval_attr =
__ATTR(heartbeat_interval_ms, 0644, heartbeat_show, heartbeat_store);
static ssize_t
heartbeat_default(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
struct intel_engine_cs *engine = kobj_to_engine(kobj);
return sprintf(buf, "%lu\n", engine->defaults.heartbeat_interval_ms);
}
static struct kobj_attribute heartbeat_interval_def =
__ATTR(heartbeat_interval_ms, 0444, heartbeat_default, NULL);
static void kobj_engine_release(struct kobject *kobj)
{
kfree(kobj);
}
static struct kobj_type kobj_engine_type = {
.release = kobj_engine_release,
.sysfs_ops = &kobj_sysfs_ops
};
static struct kobject *
kobj_engine(struct kobject *dir, struct intel_engine_cs *engine)
{
struct kobj_engine *ke;
ke = kzalloc(sizeof(*ke), GFP_KERNEL);
if (!ke)
return NULL;
kobject_init(&ke->base, &kobj_engine_type);
ke->engine = engine;
if (kobject_add(&ke->base, dir, "%s", engine->name)) {
kobject_put(&ke->base);
return NULL;
}
/* xfer ownership to sysfs tree */
return &ke->base;
}
static void add_defaults(struct kobj_engine *parent)
{
static const struct attribute *files[] = {
&max_spin_def.attr,
&stop_timeout_def.attr,
#if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
&heartbeat_interval_def.attr,
#endif
NULL
};
struct kobj_engine *ke;
ke = kzalloc(sizeof(*ke), GFP_KERNEL);
if (!ke)
return;
kobject_init(&ke->base, &kobj_engine_type);
ke->engine = parent->engine;
if (kobject_add(&ke->base, &parent->base, "%s", ".defaults")) {
kobject_put(&ke->base);
return;
}
if (sysfs_create_files(&ke->base, files))
return;
if (intel_engine_has_timeslices(ke->engine) &&
sysfs_create_file(&ke->base, &timeslice_duration_def.attr))
return;
if (intel_engine_has_preempt_reset(ke->engine) &&
sysfs_create_file(&ke->base, &preempt_timeout_def.attr))
return;
}
void intel_engines_add_sysfs(struct drm_i915_private *i915)
{
static const struct attribute *files[] = {
&name_attr.attr,
&class_attr.attr,
&inst_attr.attr,
&mmio_attr.attr,
&caps_attr.attr,
&all_caps_attr.attr,
&max_spin_attr.attr,
&stop_timeout_attr.attr,
#if CONFIG_DRM_I915_HEARTBEAT_INTERVAL
&heartbeat_interval_attr.attr,
#endif
NULL
};
struct device *kdev = i915->drm.primary->kdev;
struct intel_engine_cs *engine;
struct kobject *dir;
dir = kobject_create_and_add("engine", &kdev->kobj);
if (!dir)
return;
for_each_uabi_engine(engine, i915) {
struct kobject *kobj;
kobj = kobj_engine(dir, engine);
if (!kobj)
goto err_engine;
if (sysfs_create_files(kobj, files))
goto err_object;
if (intel_engine_has_timeslices(engine) &&
sysfs_create_file(kobj, &timeslice_duration_attr.attr))
goto err_engine;
if (intel_engine_has_preempt_reset(engine) &&
sysfs_create_file(kobj, &preempt_timeout_attr.attr))
goto err_engine;
add_defaults(container_of(kobj, struct kobj_engine, base));
if (0) {
err_object:
kobject_put(kobj);
err_engine:
dev_err(kdev, "Failed to add sysfs engine '%s'\n",
engine->name);
break;
}
}
}