mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
7872559664
From: Andrey Vagin <avagin@openvz.org> Each namespace has an owning user namespace and now there is not way to discover these relationships. Pid and user namepaces are hierarchical. There is no way to discover parent-child relationships too. Why we may want to know relationships between namespaces? One use would be visualization, in order to understand the running system. Another would be to answer the question: what capability does process X have to perform operations on a resource governed by namespace Y? One more use-case (which usually called abnormal) is checkpoint/restart. In CRIU we are going to dump and restore nested namespaces. There [1] was a discussion about which interface to choose to determing relationships between namespaces. Eric suggested to add two ioctl-s [2]: > Grumble, Grumble. I think this may actually a case for creating ioctls > for these two cases. Now that random nsfs file descriptors are bind > mountable the original reason for using proc files is not as pressing. > > One ioctl for the user namespace that owns a file descriptor. > One ioctl for the parent namespace of a namespace file descriptor. Here is an implementaions of these ioctl-s. $ man man7/namespaces.7 ... Since Linux 4.X, the following ioctl(2) calls are supported for namespace file descriptors. The correct syntax is: fd = ioctl(ns_fd, ioctl_type); where ioctl_type is one of the following: NS_GET_USERNS Returns a file descriptor that refers to an owning user names‐ pace. NS_GET_PARENT Returns a file descriptor that refers to a parent namespace. This ioctl(2) can be used for pid and user namespaces. For user namespaces, NS_GET_PARENT and NS_GET_USERNS have the same meaning. In addition to generic ioctl(2) errors, the following specific ones can occur: EINVAL NS_GET_PARENT was called for a nonhierarchical namespace. EPERM The requested namespace is outside of the current namespace scope. [1] https://lkml.org/lkml/2016/7/6/158 [2] https://lkml.org/lkml/2016/7/9/101 Changes for v2: * don't return ENOENT for init_user_ns and init_pid_ns. There is nothing outside of the init namespace, so we can return EPERM in this case too. > The fewer special cases the easier the code is to get > correct, and the easier it is to read. // Eric Changes for v3: * rename ns->get_owner() to ns->owner(). get_* usually means that it grabs a reference. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Cc: "W. Trevor King" <wking@tremily.us> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Serge Hallyn <serge.hallyn@canonical.com>
451 lines
11 KiB
C
451 lines
11 KiB
C
/*
|
|
* Pid namespaces
|
|
*
|
|
* Authors:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/pid.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/err.h>
|
|
#include <linux/acct.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/export.h>
|
|
|
|
struct pid_cache {
|
|
int nr_ids;
|
|
char name[16];
|
|
struct kmem_cache *cachep;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(pid_caches_lh);
|
|
static DEFINE_MUTEX(pid_caches_mutex);
|
|
static struct kmem_cache *pid_ns_cachep;
|
|
|
|
/*
|
|
* creates the kmem cache to allocate pids from.
|
|
* @nr_ids: the number of numerical ids this pid will have to carry
|
|
*/
|
|
|
|
static struct kmem_cache *create_pid_cachep(int nr_ids)
|
|
{
|
|
struct pid_cache *pcache;
|
|
struct kmem_cache *cachep;
|
|
|
|
mutex_lock(&pid_caches_mutex);
|
|
list_for_each_entry(pcache, &pid_caches_lh, list)
|
|
if (pcache->nr_ids == nr_ids)
|
|
goto out;
|
|
|
|
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
|
|
if (pcache == NULL)
|
|
goto err_alloc;
|
|
|
|
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
|
|
cachep = kmem_cache_create(pcache->name,
|
|
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
if (cachep == NULL)
|
|
goto err_cachep;
|
|
|
|
pcache->nr_ids = nr_ids;
|
|
pcache->cachep = cachep;
|
|
list_add(&pcache->list, &pid_caches_lh);
|
|
out:
|
|
mutex_unlock(&pid_caches_mutex);
|
|
return pcache->cachep;
|
|
|
|
err_cachep:
|
|
kfree(pcache);
|
|
err_alloc:
|
|
mutex_unlock(&pid_caches_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
static void proc_cleanup_work(struct work_struct *work)
|
|
{
|
|
struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
|
|
pid_ns_release_proc(ns);
|
|
}
|
|
|
|
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
|
|
#define MAX_PID_NS_LEVEL 32
|
|
|
|
static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
|
|
{
|
|
return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
|
|
}
|
|
|
|
static void dec_pid_namespaces(struct ucounts *ucounts)
|
|
{
|
|
dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
|
|
}
|
|
|
|
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
|
|
struct pid_namespace *parent_pid_ns)
|
|
{
|
|
struct pid_namespace *ns;
|
|
unsigned int level = parent_pid_ns->level + 1;
|
|
struct ucounts *ucounts;
|
|
int i;
|
|
int err;
|
|
|
|
err = -ENOSPC;
|
|
if (level > MAX_PID_NS_LEVEL)
|
|
goto out;
|
|
ucounts = inc_pid_namespaces(user_ns);
|
|
if (!ucounts)
|
|
goto out;
|
|
|
|
err = -ENOMEM;
|
|
ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
|
|
if (ns == NULL)
|
|
goto out_dec;
|
|
|
|
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!ns->pidmap[0].page)
|
|
goto out_free;
|
|
|
|
ns->pid_cachep = create_pid_cachep(level + 1);
|
|
if (ns->pid_cachep == NULL)
|
|
goto out_free_map;
|
|
|
|
err = ns_alloc_inum(&ns->ns);
|
|
if (err)
|
|
goto out_free_map;
|
|
ns->ns.ops = &pidns_operations;
|
|
|
|
kref_init(&ns->kref);
|
|
ns->level = level;
|
|
ns->parent = get_pid_ns(parent_pid_ns);
|
|
ns->user_ns = get_user_ns(user_ns);
|
|
ns->ucounts = ucounts;
|
|
ns->nr_hashed = PIDNS_HASH_ADDING;
|
|
INIT_WORK(&ns->proc_work, proc_cleanup_work);
|
|
|
|
set_bit(0, ns->pidmap[0].page);
|
|
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
|
|
|
|
for (i = 1; i < PIDMAP_ENTRIES; i++)
|
|
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
|
|
|
|
return ns;
|
|
|
|
out_free_map:
|
|
kfree(ns->pidmap[0].page);
|
|
out_free:
|
|
kmem_cache_free(pid_ns_cachep, ns);
|
|
out_dec:
|
|
dec_pid_namespaces(ucounts);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void delayed_free_pidns(struct rcu_head *p)
|
|
{
|
|
kmem_cache_free(pid_ns_cachep,
|
|
container_of(p, struct pid_namespace, rcu));
|
|
}
|
|
|
|
static void destroy_pid_namespace(struct pid_namespace *ns)
|
|
{
|
|
int i;
|
|
|
|
ns_free_inum(&ns->ns);
|
|
for (i = 0; i < PIDMAP_ENTRIES; i++)
|
|
kfree(ns->pidmap[i].page);
|
|
dec_pid_namespaces(ns->ucounts);
|
|
put_user_ns(ns->user_ns);
|
|
call_rcu(&ns->rcu, delayed_free_pidns);
|
|
}
|
|
|
|
struct pid_namespace *copy_pid_ns(unsigned long flags,
|
|
struct user_namespace *user_ns, struct pid_namespace *old_ns)
|
|
{
|
|
if (!(flags & CLONE_NEWPID))
|
|
return get_pid_ns(old_ns);
|
|
if (task_active_pid_ns(current) != old_ns)
|
|
return ERR_PTR(-EINVAL);
|
|
return create_pid_namespace(user_ns, old_ns);
|
|
}
|
|
|
|
static void free_pid_ns(struct kref *kref)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
ns = container_of(kref, struct pid_namespace, kref);
|
|
destroy_pid_namespace(ns);
|
|
}
|
|
|
|
void put_pid_ns(struct pid_namespace *ns)
|
|
{
|
|
struct pid_namespace *parent;
|
|
|
|
while (ns != &init_pid_ns) {
|
|
parent = ns->parent;
|
|
if (!kref_put(&ns->kref, free_pid_ns))
|
|
break;
|
|
ns = parent;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid_ns);
|
|
|
|
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
|
{
|
|
int nr;
|
|
int rc;
|
|
struct task_struct *task, *me = current;
|
|
int init_pids = thread_group_leader(me) ? 1 : 2;
|
|
|
|
/* Don't allow any more processes into the pid namespace */
|
|
disable_pid_allocation(pid_ns);
|
|
|
|
/*
|
|
* Ignore SIGCHLD causing any terminated children to autoreap.
|
|
* This speeds up the namespace shutdown, plus see the comment
|
|
* below.
|
|
*/
|
|
spin_lock_irq(&me->sighand->siglock);
|
|
me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
|
|
spin_unlock_irq(&me->sighand->siglock);
|
|
|
|
/*
|
|
* The last thread in the cgroup-init thread group is terminating.
|
|
* Find remaining pid_ts in the namespace, signal and wait for them
|
|
* to exit.
|
|
*
|
|
* Note: This signals each threads in the namespace - even those that
|
|
* belong to the same thread group, To avoid this, we would have
|
|
* to walk the entire tasklist looking a processes in this
|
|
* namespace, but that could be unnecessarily expensive if the
|
|
* pid namespace has just a few processes. Or we need to
|
|
* maintain a tasklist for each pid namespace.
|
|
*
|
|
*/
|
|
read_lock(&tasklist_lock);
|
|
nr = next_pidmap(pid_ns, 1);
|
|
while (nr > 0) {
|
|
rcu_read_lock();
|
|
|
|
task = pid_task(find_vpid(nr), PIDTYPE_PID);
|
|
if (task && !__fatal_signal_pending(task))
|
|
send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
|
|
|
|
rcu_read_unlock();
|
|
|
|
nr = next_pidmap(pid_ns, nr);
|
|
}
|
|
read_unlock(&tasklist_lock);
|
|
|
|
/*
|
|
* Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
|
|
* sys_wait4() will also block until our children traced from the
|
|
* parent namespace are detached and become EXIT_DEAD.
|
|
*/
|
|
do {
|
|
clear_thread_flag(TIF_SIGPENDING);
|
|
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
|
} while (rc != -ECHILD);
|
|
|
|
/*
|
|
* sys_wait4() above can't reap the EXIT_DEAD children but we do not
|
|
* really care, we could reparent them to the global init. We could
|
|
* exit and reap ->child_reaper even if it is not the last thread in
|
|
* this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
|
|
* pid_ns can not go away until proc_kill_sb() drops the reference.
|
|
*
|
|
* But this ns can also have other tasks injected by setns()+fork().
|
|
* Again, ignoring the user visible semantics we do not really need
|
|
* to wait until they are all reaped, but they can be reparented to
|
|
* us and thus we need to ensure that pid->child_reaper stays valid
|
|
* until they all go away. See free_pid()->wake_up_process().
|
|
*
|
|
* We rely on ignored SIGCHLD, an injected zombie must be autoreaped
|
|
* if reparented.
|
|
*/
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (pid_ns->nr_hashed == init_pids)
|
|
break;
|
|
schedule();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
if (pid_ns->reboot)
|
|
current->signal->group_exit_code = pid_ns->reboot;
|
|
|
|
acct_exit_ns(pid_ns);
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
struct pid_namespace *pid_ns = task_active_pid_ns(current);
|
|
struct ctl_table tmp = *table;
|
|
|
|
if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Writing directly to ns' last_pid field is OK, since this field
|
|
* is volatile in a living namespace anyway and a code writing to
|
|
* it should synchronize its usage with external means.
|
|
*/
|
|
|
|
tmp.data = &pid_ns->last_pid;
|
|
return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
|
}
|
|
|
|
extern int pid_max;
|
|
static int zero = 0;
|
|
static struct ctl_table pid_ns_ctl_table[] = {
|
|
{
|
|
.procname = "ns_last_pid",
|
|
.maxlen = sizeof(int),
|
|
.mode = 0666, /* permissions are checked in the handler */
|
|
.proc_handler = pid_ns_ctl_handler,
|
|
.extra1 = &zero,
|
|
.extra2 = &pid_max,
|
|
},
|
|
{ }
|
|
};
|
|
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
|
|
#endif /* CONFIG_CHECKPOINT_RESTORE */
|
|
|
|
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
|
|
{
|
|
if (pid_ns == &init_pid_ns)
|
|
return 0;
|
|
|
|
switch (cmd) {
|
|
case LINUX_REBOOT_CMD_RESTART2:
|
|
case LINUX_REBOOT_CMD_RESTART:
|
|
pid_ns->reboot = SIGHUP;
|
|
break;
|
|
|
|
case LINUX_REBOOT_CMD_POWER_OFF:
|
|
case LINUX_REBOOT_CMD_HALT:
|
|
pid_ns->reboot = SIGINT;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
read_lock(&tasklist_lock);
|
|
force_sig(SIGKILL, pid_ns->child_reaper);
|
|
read_unlock(&tasklist_lock);
|
|
|
|
do_exit(0);
|
|
|
|
/* Not reached */
|
|
return 0;
|
|
}
|
|
|
|
static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
|
|
{
|
|
return container_of(ns, struct pid_namespace, ns);
|
|
}
|
|
|
|
static struct ns_common *pidns_get(struct task_struct *task)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
rcu_read_lock();
|
|
ns = task_active_pid_ns(task);
|
|
if (ns)
|
|
get_pid_ns(ns);
|
|
rcu_read_unlock();
|
|
|
|
return ns ? &ns->ns : NULL;
|
|
}
|
|
|
|
static void pidns_put(struct ns_common *ns)
|
|
{
|
|
put_pid_ns(to_pid_ns(ns));
|
|
}
|
|
|
|
static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
|
|
{
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *ancestor, *new = to_pid_ns(ns);
|
|
|
|
if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
|
|
!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* Only allow entering the current active pid namespace
|
|
* or a child of the current active pid namespace.
|
|
*
|
|
* This is required for fork to return a usable pid value and
|
|
* this maintains the property that processes and their
|
|
* children can not escape their current pid namespace.
|
|
*/
|
|
if (new->level < active->level)
|
|
return -EINVAL;
|
|
|
|
ancestor = new;
|
|
while (ancestor->level > active->level)
|
|
ancestor = ancestor->parent;
|
|
if (ancestor != active)
|
|
return -EINVAL;
|
|
|
|
put_pid_ns(nsproxy->pid_ns_for_children);
|
|
nsproxy->pid_ns_for_children = get_pid_ns(new);
|
|
return 0;
|
|
}
|
|
|
|
static struct ns_common *pidns_get_parent(struct ns_common *ns)
|
|
{
|
|
struct pid_namespace *active = task_active_pid_ns(current);
|
|
struct pid_namespace *pid_ns, *p;
|
|
|
|
/* See if the parent is in the current namespace */
|
|
pid_ns = p = to_pid_ns(ns)->parent;
|
|
for (;;) {
|
|
if (!p)
|
|
return ERR_PTR(-EPERM);
|
|
if (p == active)
|
|
break;
|
|
p = p->parent;
|
|
}
|
|
|
|
return &get_pid_ns(pid_ns)->ns;
|
|
}
|
|
|
|
static struct user_namespace *pidns_owner(struct ns_common *ns)
|
|
{
|
|
return to_pid_ns(ns)->user_ns;
|
|
}
|
|
|
|
const struct proc_ns_operations pidns_operations = {
|
|
.name = "pid",
|
|
.type = CLONE_NEWPID,
|
|
.get = pidns_get,
|
|
.put = pidns_put,
|
|
.install = pidns_install,
|
|
.owner = pidns_owner,
|
|
.get_parent = pidns_get_parent,
|
|
};
|
|
|
|
static __init int pid_namespaces_init(void)
|
|
{
|
|
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
register_sysctl_paths(kern_path, pid_ns_ctl_table);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
__initcall(pid_namespaces_init);
|