linux-stable/tools/perf/util/record.h
Stephane Eranian d99c22eabe perf record: Add num-synthesize-threads option
To control degree of parallelism of the synthesize_mmap() code which
is scanning /proc/PID/task/PID/maps and can be time consuming.
Mimic perf top way of handling the option.
If not specified will default to 1 thread, i.e. default behavior before
this option.

On a desktop computer the processing of /proc/PID/task/PID/maps isn't
slow enough to warrant parallel processing and the thread creation has
some cost - hence the default of 1. On a loaded server with
>100 cores it is possible to see synthesis times in the order of
seconds and in this case having the option is desirable.

As the processing is a synchronization point, it is legitimate to worry if
Amdahl's law will apply to this patch. Profiling with this patch in
place:
https://lore.kernel.org/lkml/20200415054050.31645-4-irogers@google.com/
shows:
...
      - 32.59% __perf_event__synthesize_threads
         - 32.54% __event__synthesize_thread
            + 22.13% perf_event__synthesize_mmap_events
            + 6.68% perf_event__get_comm_ids.constprop.0
            + 1.49% process_synthesized_event
            + 1.29% __GI___readdir64
            + 0.60% __opendir
...
That is the processing is 1.49% of execution time and there is plenty to
make parallel. This is shown in the benchmark in this patch:

https://lore.kernel.org/lkml/20200415054050.31645-2-irogers@google.com/

  Computing performance of multi threaded perf event synthesis by
  synthesizing events on CPU 0:
   Number of synthesis threads: 1
     Average synthesis took: 127729.000 usec (+- 3372.880 usec)
     Average num. events: 21548.600 (+- 0.306)
     Average time per event 5.927 usec
   Number of synthesis threads: 2
     Average synthesis took: 88863.500 usec (+- 385.168 usec)
     Average num. events: 21552.800 (+- 0.327)
     Average time per event 4.123 usec
   Number of synthesis threads: 3
     Average synthesis took: 83257.400 usec (+- 348.617 usec)
     Average num. events: 21553.200 (+- 0.327)
     Average time per event 3.863 usec
   Number of synthesis threads: 4
     Average synthesis took: 75093.000 usec (+- 422.978 usec)
     Average num. events: 21554.200 (+- 0.200)
     Average time per event 3.484 usec
   Number of synthesis threads: 5
     Average synthesis took: 64896.600 usec (+- 353.348 usec)
     Average num. events: 21558.000 (+- 0.000)
     Average time per event 3.010 usec
   Number of synthesis threads: 6
     Average synthesis took: 59210.200 usec (+- 342.890 usec)
     Average num. events: 21560.000 (+- 0.000)
     Average time per event 2.746 usec
   Number of synthesis threads: 7
     Average synthesis took: 54093.900 usec (+- 306.247 usec)
     Average num. events: 21562.000 (+- 0.000)
     Average time per event 2.509 usec
   Number of synthesis threads: 8
     Average synthesis took: 48938.700 usec (+- 341.732 usec)
     Average num. events: 21564.000 (+- 0.000)
     Average time per event 2.269 usec

Where average time per synthesized event goes from 5.927 usec with 1
thread to 2.269 usec with 8. This isn't a linear speed up as not all of
synthesize code has been made parallel. If the synthesis time was about
10 seconds then using 8 threads may bring this down to less than 4.

Signed-off-by: Stephane Eranian <eranian@google.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexey Budankov <alexey.budankov@linux.intel.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Jones <tonyj@suse.de>
Cc: yuzhoujian <yuzhoujian@didichuxing.com>
Link: http://lore.kernel.org/lkml/20200422155038.9380-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2020-04-23 11:10:41 -03:00

79 lines
2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _PERF_RECORD_H
#define _PERF_RECORD_H
#include <time.h>
#include <stdbool.h>
#include <linux/types.h>
#include <linux/stddef.h>
#include <linux/perf_event.h>
#include "util/target.h"
struct option;
struct record_opts {
struct target target;
bool group;
bool inherit_stat;
bool no_buffering;
bool no_inherit;
bool no_inherit_set;
bool no_samples;
bool raw_samples;
bool sample_address;
bool sample_phys_addr;
bool sample_weight;
bool sample_time;
bool sample_time_set;
bool sample_cpu;
bool period;
bool period_set;
bool running_time;
bool full_auxtrace;
bool auxtrace_snapshot_mode;
bool auxtrace_snapshot_on_exit;
bool auxtrace_sample_mode;
bool record_namespaces;
bool record_cgroup;
bool record_switch_events;
bool all_kernel;
bool all_user;
bool kernel_callchains;
bool user_callchains;
bool tail_synthesize;
bool overwrite;
bool ignore_missing_thread;
bool strict_freq;
bool sample_id;
bool no_bpf_event;
bool kcore;
unsigned int freq;
unsigned int mmap_pages;
unsigned int auxtrace_mmap_pages;
unsigned int user_freq;
u64 branch_stack;
u64 sample_intr_regs;
u64 sample_user_regs;
u64 default_interval;
u64 user_interval;
size_t auxtrace_snapshot_size;
const char *auxtrace_snapshot_opts;
const char *auxtrace_sample_opts;
bool sample_transaction;
unsigned initial_delay;
bool use_clockid;
clockid_t clockid;
u64 clockid_res_ns;
int nr_cblocks;
int affinity;
int mmap_flush;
unsigned int comp_level;
unsigned int nr_threads_synthesize;
};
extern const char * const *record_usage;
extern struct option *record_options;
int record__parse_freq(const struct option *opt, const char *str, int unset);
#endif // _PERF_RECORD_H