linux-stable/drivers/cpufreq/qcom-cpufreq-hw.c
Bjorn Andersson c377d4ba86 cpufreq: qcom-hw: Add support for per-core-dcvs
The OSM and EPSS hardware controls the frequency of each cluster in the
system based on requests from the OS and various limiting factors, such
as input from LMH.

In most systems the vote from the OS is done using a single register per
cluster, but some systems are configured to instead take one request per
core.  In this configuration a set of consecutive registers are used for
the OS to request the frequency of each of the cores within the cluster.
The information is then aggregated in the hardware and the frequency for
the cluster is determined.

As the current implementation ends up only requesting a frequency for
the first core in each cluster and only the vote of non-idle cores are
considered it's often the case that the cluster will be clocked (much)
lower than expected.

It's possible that there are benefits of performing the per-core
requests from the OS, but more investigation of the outcome is needed
before introducing such support. As such this patch extends the request
for the cluster to be written to all the cores.

The weight of the policy's related_cpus is used to determine how many
cores, and hence consecutive registers, each cluster has.

The OS is not permitted to disable the per-core dcvs feature.

Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2022-02-24 09:57:55 +05:30

660 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018, The Linux Foundation. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/interconnect.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define LUT_MAX_ENTRIES 40U
#define LUT_SRC GENMASK(31, 30)
#define LUT_L_VAL GENMASK(7, 0)
#define LUT_CORE_COUNT GENMASK(18, 16)
#define LUT_VOLT GENMASK(11, 0)
#define CLK_HW_DIV 2
#define LUT_TURBO_IND 1
#define HZ_PER_KHZ 1000
struct qcom_cpufreq_soc_data {
u32 reg_enable;
u32 reg_dcvs_ctrl;
u32 reg_freq_lut;
u32 reg_volt_lut;
u32 reg_current_vote;
u32 reg_perf_state;
u8 lut_row_size;
};
struct qcom_cpufreq_data {
void __iomem *base;
struct resource *res;
const struct qcom_cpufreq_soc_data *soc_data;
/*
* Mutex to synchronize between de-init sequence and re-starting LMh
* polling/interrupts
*/
struct mutex throttle_lock;
int throttle_irq;
char irq_name[15];
bool cancel_throttle;
struct delayed_work throttle_work;
struct cpufreq_policy *policy;
bool per_core_dcvs;
};
static unsigned long cpu_hw_rate, xo_rate;
static bool icc_scaling_enabled;
static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy,
unsigned long freq_khz)
{
unsigned long freq_hz = freq_khz * 1000;
struct dev_pm_opp *opp;
struct device *dev;
int ret;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true);
if (IS_ERR(opp))
return PTR_ERR(opp);
ret = dev_pm_opp_set_opp(dev, opp);
dev_pm_opp_put(opp);
return ret;
}
static int qcom_cpufreq_update_opp(struct device *cpu_dev,
unsigned long freq_khz,
unsigned long volt)
{
unsigned long freq_hz = freq_khz * 1000;
int ret;
/* Skip voltage update if the opp table is not available */
if (!icc_scaling_enabled)
return dev_pm_opp_add(cpu_dev, freq_hz, volt);
ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt);
if (ret) {
dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz);
return ret;
}
return dev_pm_opp_enable(cpu_dev, freq_hz);
}
static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy,
unsigned int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = data->soc_data;
unsigned long freq = policy->freq_table[index].frequency;
unsigned int i;
writel_relaxed(index, data->base + soc_data->reg_perf_state);
if (data->per_core_dcvs)
for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
if (icc_scaling_enabled)
qcom_cpufreq_set_bw(policy, freq);
return 0;
}
static unsigned int qcom_cpufreq_hw_get(unsigned int cpu)
{
struct qcom_cpufreq_data *data;
const struct qcom_cpufreq_soc_data *soc_data;
struct cpufreq_policy *policy;
unsigned int index;
policy = cpufreq_cpu_get_raw(cpu);
if (!policy)
return 0;
data = policy->driver_data;
soc_data = data->soc_data;
index = readl_relaxed(data->base + soc_data->reg_perf_state);
index = min(index, LUT_MAX_ENTRIES - 1);
return policy->freq_table[index].frequency;
}
static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct qcom_cpufreq_data *data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = data->soc_data;
unsigned int index;
unsigned int i;
index = policy->cached_resolved_idx;
writel_relaxed(index, data->base + soc_data->reg_perf_state);
if (data->per_core_dcvs)
for (i = 1; i < cpumask_weight(policy->related_cpus); i++)
writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4);
return policy->freq_table[index].frequency;
}
static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev,
struct cpufreq_policy *policy)
{
u32 data, src, lval, i, core_count, prev_freq = 0, freq;
u32 volt;
struct cpufreq_frequency_table *table;
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
struct qcom_cpufreq_data *drv_data = policy->driver_data;
const struct qcom_cpufreq_soc_data *soc_data = drv_data->soc_data;
table = kcalloc(LUT_MAX_ENTRIES + 1, sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
ret = dev_pm_opp_of_add_table(cpu_dev);
if (!ret) {
/* Disable all opps and cross-validate against LUT later */
icc_scaling_enabled = true;
for (rate = 0; ; rate++) {
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp))
break;
dev_pm_opp_put(opp);
dev_pm_opp_disable(cpu_dev, rate);
}
} else if (ret != -ENODEV) {
dev_err(cpu_dev, "Invalid opp table in device tree\n");
return ret;
} else {
policy->fast_switch_possible = true;
icc_scaling_enabled = false;
}
for (i = 0; i < LUT_MAX_ENTRIES; i++) {
data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut +
i * soc_data->lut_row_size);
src = FIELD_GET(LUT_SRC, data);
lval = FIELD_GET(LUT_L_VAL, data);
core_count = FIELD_GET(LUT_CORE_COUNT, data);
data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut +
i * soc_data->lut_row_size);
volt = FIELD_GET(LUT_VOLT, data) * 1000;
if (src)
freq = xo_rate * lval / 1000;
else
freq = cpu_hw_rate / 1000;
if (freq != prev_freq && core_count != LUT_TURBO_IND) {
if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) {
table[i].frequency = freq;
dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i,
freq, core_count);
} else {
dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq);
table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
} else if (core_count == LUT_TURBO_IND) {
table[i].frequency = CPUFREQ_ENTRY_INVALID;
}
/*
* Two of the same frequencies with the same core counts means
* end of table
*/
if (i > 0 && prev_freq == freq) {
struct cpufreq_frequency_table *prev = &table[i - 1];
/*
* Only treat the last frequency that might be a boost
* as the boost frequency
*/
if (prev->frequency == CPUFREQ_ENTRY_INVALID) {
if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) {
prev->frequency = prev_freq;
prev->flags = CPUFREQ_BOOST_FREQ;
} else {
dev_warn(cpu_dev, "failed to update OPP for freq=%d\n",
freq);
}
}
break;
}
prev_freq = freq;
}
table[i].frequency = CPUFREQ_TABLE_END;
policy->freq_table = table;
dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
return 0;
}
static void qcom_get_related_cpus(int index, struct cpumask *m)
{
struct device_node *cpu_np;
struct of_phandle_args args;
int cpu, ret;
for_each_possible_cpu(cpu) {
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
continue;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0,
&args);
of_node_put(cpu_np);
if (ret < 0)
continue;
if (index == args.args[0])
cpumask_set_cpu(cpu, m);
}
}
static unsigned int qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
{
unsigned int val = readl_relaxed(data->base + data->soc_data->reg_current_vote);
return (val & 0x3FF) * 19200;
}
static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
{
struct cpufreq_policy *policy = data->policy;
int cpu = cpumask_first(policy->cpus);
struct device *dev = get_cpu_device(cpu);
unsigned long freq_hz, throttled_freq;
struct dev_pm_opp *opp;
unsigned int freq;
/*
* Get the h/w throttled frequency, normalize it using the
* registered opp table and use it to calculate thermal pressure.
*/
freq = qcom_lmh_get_throttle_freq(data);
freq_hz = freq * HZ_PER_KHZ;
opp = dev_pm_opp_find_freq_floor(dev, &freq_hz);
if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE)
dev_pm_opp_find_freq_ceil(dev, &freq_hz);
throttled_freq = freq_hz / HZ_PER_KHZ;
/* Update thermal pressure (the boost frequencies are accepted) */
arch_update_thermal_pressure(policy->related_cpus, throttled_freq);
/*
* In the unlikely case policy is unregistered do not enable
* polling or h/w interrupt
*/
mutex_lock(&data->throttle_lock);
if (data->cancel_throttle)
goto out;
/*
* If h/w throttled frequency is higher than what cpufreq has requested
* for, then stop polling and switch back to interrupt mechanism.
*/
if (throttled_freq >= qcom_cpufreq_hw_get(cpu))
enable_irq(data->throttle_irq);
else
mod_delayed_work(system_highpri_wq, &data->throttle_work,
msecs_to_jiffies(10));
out:
mutex_unlock(&data->throttle_lock);
}
static void qcom_lmh_dcvs_poll(struct work_struct *work)
{
struct qcom_cpufreq_data *data;
data = container_of(work, struct qcom_cpufreq_data, throttle_work.work);
qcom_lmh_dcvs_notify(data);
}
static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
{
struct qcom_cpufreq_data *c_data = data;
/* Disable interrupt and enable polling */
disable_irq_nosync(c_data->throttle_irq);
schedule_delayed_work(&c_data->throttle_work, 0);
return IRQ_HANDLED;
}
static const struct qcom_cpufreq_soc_data qcom_soc_data = {
.reg_enable = 0x0,
.reg_dcvs_ctrl = 0xbc,
.reg_freq_lut = 0x110,
.reg_volt_lut = 0x114,
.reg_current_vote = 0x704,
.reg_perf_state = 0x920,
.lut_row_size = 32,
};
static const struct qcom_cpufreq_soc_data epss_soc_data = {
.reg_enable = 0x0,
.reg_dcvs_ctrl = 0xb0,
.reg_freq_lut = 0x100,
.reg_volt_lut = 0x200,
.reg_perf_state = 0x320,
.lut_row_size = 4,
};
static const struct of_device_id qcom_cpufreq_hw_match[] = {
{ .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data },
{ .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data },
{}
};
MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match);
static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
struct platform_device *pdev = cpufreq_get_driver_data();
int ret;
/*
* Look for LMh interrupt. If no interrupt line is specified /
* if there is an error, allow cpufreq to be enabled as usual.
*/
data->throttle_irq = platform_get_irq_optional(pdev, index);
if (data->throttle_irq == -ENXIO)
return 0;
if (data->throttle_irq < 0)
return data->throttle_irq;
data->cancel_throttle = false;
data->policy = policy;
mutex_init(&data->throttle_lock);
INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu);
ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data);
if (ret) {
dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
return 0;
}
ret = irq_set_affinity_hint(data->throttle_irq, policy->cpus);
if (ret)
dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
data->irq_name, data->throttle_irq);
return 0;
}
static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data)
{
if (data->throttle_irq <= 0)
return;
mutex_lock(&data->throttle_lock);
data->cancel_throttle = true;
mutex_unlock(&data->throttle_lock);
cancel_delayed_work_sync(&data->throttle_work);
free_irq(data->throttle_irq, data);
}
static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
{
struct platform_device *pdev = cpufreq_get_driver_data();
struct device *dev = &pdev->dev;
struct of_phandle_args args;
struct device_node *cpu_np;
struct device *cpu_dev;
struct resource *res;
void __iomem *base;
struct qcom_cpufreq_data *data;
int ret, index;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
policy->cpu);
return -ENODEV;
}
cpu_np = of_cpu_device_node_get(policy->cpu);
if (!cpu_np)
return -EINVAL;
ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain",
"#freq-domain-cells", 0, &args);
of_node_put(cpu_np);
if (ret)
return ret;
index = args.args[0];
res = platform_get_resource(pdev, IORESOURCE_MEM, index);
if (!res) {
dev_err(dev, "failed to get mem resource %d\n", index);
return -ENODEV;
}
if (!request_mem_region(res->start, resource_size(res), res->name)) {
dev_err(dev, "failed to request resource %pR\n", res);
return -EBUSY;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
dev_err(dev, "failed to map resource %pR\n", res);
ret = -ENOMEM;
goto release_region;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
ret = -ENOMEM;
goto unmap_base;
}
data->soc_data = of_device_get_match_data(&pdev->dev);
data->base = base;
data->res = res;
/* HW should be in enabled state to proceed */
if (!(readl_relaxed(base + data->soc_data->reg_enable) & 0x1)) {
dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index);
ret = -ENODEV;
goto error;
}
if (readl_relaxed(base + data->soc_data->reg_dcvs_ctrl) & 0x1)
data->per_core_dcvs = true;
qcom_get_related_cpus(index, policy->cpus);
if (cpumask_empty(policy->cpus)) {
dev_err(dev, "Domain-%d failed to get related CPUs\n", index);
ret = -ENOENT;
goto error;
}
policy->driver_data = data;
policy->dvfs_possible_from_any_cpu = true;
ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy);
if (ret) {
dev_err(dev, "Domain-%d failed to read LUT\n", index);
goto error;
}
ret = dev_pm_opp_get_opp_count(cpu_dev);
if (ret <= 0) {
dev_err(cpu_dev, "Failed to add OPPs\n");
ret = -ENODEV;
goto error;
}
if (policy_has_boost_freq(policy)) {
ret = cpufreq_enable_boost_support();
if (ret)
dev_warn(cpu_dev, "failed to enable boost: %d\n", ret);
}
ret = qcom_cpufreq_hw_lmh_init(policy, index);
if (ret)
goto error;
return 0;
error:
kfree(data);
unmap_base:
iounmap(base);
release_region:
release_mem_region(res->start, resource_size(res));
return ret;
}
static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
{
struct device *cpu_dev = get_cpu_device(policy->cpu);
struct qcom_cpufreq_data *data = policy->driver_data;
struct resource *res = data->res;
void __iomem *base = data->base;
dev_pm_opp_remove_all_dynamic(cpu_dev);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
qcom_cpufreq_hw_lmh_exit(data);
kfree(policy->freq_table);
kfree(data);
iounmap(base);
release_mem_region(res->start, resource_size(res));
return 0;
}
static void qcom_cpufreq_ready(struct cpufreq_policy *policy)
{
struct qcom_cpufreq_data *data = policy->driver_data;
if (data->throttle_irq >= 0)
enable_irq(data->throttle_irq);
}
static struct freq_attr *qcom_cpufreq_hw_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&cpufreq_freq_attr_scaling_boost_freqs,
NULL
};
static struct cpufreq_driver cpufreq_qcom_hw_driver = {
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = qcom_cpufreq_hw_target_index,
.get = qcom_cpufreq_hw_get,
.init = qcom_cpufreq_hw_cpu_init,
.exit = qcom_cpufreq_hw_cpu_exit,
.register_em = cpufreq_register_em_with_opp,
.fast_switch = qcom_cpufreq_hw_fast_switch,
.name = "qcom-cpufreq-hw",
.attr = qcom_cpufreq_hw_attr,
.ready = qcom_cpufreq_ready,
};
static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev)
{
struct device *cpu_dev;
struct clk *clk;
int ret;
clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(clk))
return PTR_ERR(clk);
xo_rate = clk_get_rate(clk);
clk_put(clk);
clk = clk_get(&pdev->dev, "alternate");
if (IS_ERR(clk))
return PTR_ERR(clk);
cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV;
clk_put(clk);
cpufreq_qcom_hw_driver.driver_data = pdev;
/* Check for optional interconnect paths on CPU0 */
cpu_dev = get_cpu_device(0);
if (!cpu_dev)
return -EPROBE_DEFER;
ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
if (ret)
return ret;
ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver);
if (ret)
dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
else
dev_dbg(&pdev->dev, "QCOM CPUFreq HW driver initialized\n");
return ret;
}
static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
}
static struct platform_driver qcom_cpufreq_hw_driver = {
.probe = qcom_cpufreq_hw_driver_probe,
.remove = qcom_cpufreq_hw_driver_remove,
.driver = {
.name = "qcom-cpufreq-hw",
.of_match_table = qcom_cpufreq_hw_match,
},
};
static int __init qcom_cpufreq_hw_init(void)
{
return platform_driver_register(&qcom_cpufreq_hw_driver);
}
postcore_initcall(qcom_cpufreq_hw_init);
static void __exit qcom_cpufreq_hw_exit(void)
{
platform_driver_unregister(&qcom_cpufreq_hw_driver);
}
module_exit(qcom_cpufreq_hw_exit);
MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver");
MODULE_LICENSE("GPL v2");