linux-stable/drivers/of/of_reserved_mem.c
David Hildenbrand e16faf2678 cma: factor out minimum alignment requirement
Patch series "mm: enforce pageblock_order < MAX_ORDER".

Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.

For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.

We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.

Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.

Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.

This patch (of 2):

Let's enforce pageblock_order < MAX_ORDER and simplify.

Especially patch #1 can be regarded a cleanup before:
	[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
	alignment. [2]

[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com

Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:05 -07:00

447 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Device tree based initialization code for reserved memory.
*
* Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
* Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
* http://www.samsung.com
* Author: Marek Szyprowski <m.szyprowski@samsung.com>
* Author: Josh Cartwright <joshc@codeaurora.org>
*/
#define pr_fmt(fmt) "OF: reserved mem: " fmt
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/of_reserved_mem.h>
#include <linux/sort.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/kmemleak.h>
#include <linux/cma.h>
#include "of_private.h"
#define MAX_RESERVED_REGIONS 64
static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
static int reserved_mem_count;
static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
phys_addr_t *res_base)
{
phys_addr_t base;
int err = 0;
end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
align = !align ? SMP_CACHE_BYTES : align;
base = memblock_phys_alloc_range(size, align, start, end);
if (!base)
return -ENOMEM;
*res_base = base;
if (nomap) {
err = memblock_mark_nomap(base, size);
if (err)
memblock_phys_free(base, size);
kmemleak_ignore_phys(base);
}
return err;
}
/*
* fdt_reserved_mem_save_node() - save fdt node for second pass initialization
*/
void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
phys_addr_t base, phys_addr_t size)
{
struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
pr_err("not enough space for all defined regions.\n");
return;
}
rmem->fdt_node = node;
rmem->name = uname;
rmem->base = base;
rmem->size = size;
reserved_mem_count++;
return;
}
/*
* __reserved_mem_alloc_size() - allocate reserved memory described by
* 'size', 'alignment' and 'alloc-ranges' properties.
*/
static int __init __reserved_mem_alloc_size(unsigned long node,
const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
{
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
phys_addr_t start = 0, end = 0;
phys_addr_t base = 0, align = 0, size;
int len;
const __be32 *prop;
bool nomap;
int ret;
prop = of_get_flat_dt_prop(node, "size", &len);
if (!prop)
return -EINVAL;
if (len != dt_root_size_cells * sizeof(__be32)) {
pr_err("invalid size property in '%s' node.\n", uname);
return -EINVAL;
}
size = dt_mem_next_cell(dt_root_size_cells, &prop);
prop = of_get_flat_dt_prop(node, "alignment", &len);
if (prop) {
if (len != dt_root_addr_cells * sizeof(__be32)) {
pr_err("invalid alignment property in '%s' node.\n",
uname);
return -EINVAL;
}
align = dt_mem_next_cell(dt_root_addr_cells, &prop);
}
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
/* Need adjust the alignment to satisfy the CMA requirement */
if (IS_ENABLED(CONFIG_CMA)
&& of_flat_dt_is_compatible(node, "shared-dma-pool")
&& of_get_flat_dt_prop(node, "reusable", NULL)
&& !nomap)
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
if (prop) {
if (len % t_len != 0) {
pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
uname);
return -EINVAL;
}
base = 0;
while (len > 0) {
start = dt_mem_next_cell(dt_root_addr_cells, &prop);
end = start + dt_mem_next_cell(dt_root_size_cells,
&prop);
ret = early_init_dt_alloc_reserved_memory_arch(size,
align, start, end, nomap, &base);
if (ret == 0) {
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
uname, &base,
(unsigned long)(size / SZ_1M));
break;
}
len -= t_len;
}
} else {
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
0, 0, nomap, &base);
if (ret == 0)
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
uname, &base, (unsigned long)(size / SZ_1M));
}
if (base == 0) {
pr_info("failed to allocate memory for node '%s'\n", uname);
return -ENOMEM;
}
*res_base = base;
*res_size = size;
return 0;
}
static const struct of_device_id __rmem_of_table_sentinel
__used __section("__reservedmem_of_table_end");
/*
* __reserved_mem_init_node() - call region specific reserved memory init code
*/
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
{
extern const struct of_device_id __reservedmem_of_table[];
const struct of_device_id *i;
int ret = -ENOENT;
for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
reservedmem_of_init_fn initfn = i->data;
const char *compat = i->compatible;
if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
continue;
ret = initfn(rmem);
if (ret == 0) {
pr_info("initialized node %s, compatible id %s\n",
rmem->name, compat);
break;
}
}
return ret;
}
static int __init __rmem_cmp(const void *a, const void *b)
{
const struct reserved_mem *ra = a, *rb = b;
if (ra->base < rb->base)
return -1;
if (ra->base > rb->base)
return 1;
/*
* Put the dynamic allocations (address == 0, size == 0) before static
* allocations at address 0x0 so that overlap detection works
* correctly.
*/
if (ra->size < rb->size)
return -1;
if (ra->size > rb->size)
return 1;
return 0;
}
static void __init __rmem_check_for_overlap(void)
{
int i;
if (reserved_mem_count < 2)
return;
sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
__rmem_cmp, NULL);
for (i = 0; i < reserved_mem_count - 1; i++) {
struct reserved_mem *this, *next;
this = &reserved_mem[i];
next = &reserved_mem[i + 1];
if (this->base + this->size > next->base) {
phys_addr_t this_end, next_end;
this_end = this->base + this->size;
next_end = next->base + next->size;
pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
this->name, &this->base, &this_end,
next->name, &next->base, &next_end);
}
}
}
/**
* fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
*/
void __init fdt_init_reserved_mem(void)
{
int i;
/* check for overlapping reserved regions */
__rmem_check_for_overlap();
for (i = 0; i < reserved_mem_count; i++) {
struct reserved_mem *rmem = &reserved_mem[i];
unsigned long node = rmem->fdt_node;
int len;
const __be32 *prop;
int err = 0;
bool nomap;
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
prop = of_get_flat_dt_prop(node, "phandle", &len);
if (!prop)
prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
if (prop)
rmem->phandle = of_read_number(prop, len/4);
if (rmem->size == 0)
err = __reserved_mem_alloc_size(node, rmem->name,
&rmem->base, &rmem->size);
if (err == 0) {
err = __reserved_mem_init_node(rmem);
if (err != 0 && err != -ENOENT) {
pr_info("node %s compatible matching fail\n",
rmem->name);
if (nomap)
memblock_clear_nomap(rmem->base, rmem->size);
else
memblock_phys_free(rmem->base,
rmem->size);
}
}
}
}
static inline struct reserved_mem *__find_rmem(struct device_node *node)
{
unsigned int i;
if (!node->phandle)
return NULL;
for (i = 0; i < reserved_mem_count; i++)
if (reserved_mem[i].phandle == node->phandle)
return &reserved_mem[i];
return NULL;
}
struct rmem_assigned_device {
struct device *dev;
struct reserved_mem *rmem;
struct list_head list;
};
static LIST_HEAD(of_rmem_assigned_device_list);
static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
/**
* of_reserved_mem_device_init_by_idx() - assign reserved memory region to
* given device
* @dev: Pointer to the device to configure
* @np: Pointer to the device_node with 'reserved-memory' property
* @idx: Index of selected region
*
* This function assigns respective DMA-mapping operations based on reserved
* memory region specified by 'memory-region' property in @np node to the @dev
* device. When driver needs to use more than one reserved memory region, it
* should allocate child devices and initialize regions by name for each of
* child device.
*
* Returns error code or zero on success.
*/
int of_reserved_mem_device_init_by_idx(struct device *dev,
struct device_node *np, int idx)
{
struct rmem_assigned_device *rd;
struct device_node *target;
struct reserved_mem *rmem;
int ret;
if (!np || !dev)
return -EINVAL;
target = of_parse_phandle(np, "memory-region", idx);
if (!target)
return -ENODEV;
if (!of_device_is_available(target)) {
of_node_put(target);
return 0;
}
rmem = __find_rmem(target);
of_node_put(target);
if (!rmem || !rmem->ops || !rmem->ops->device_init)
return -EINVAL;
rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
if (!rd)
return -ENOMEM;
ret = rmem->ops->device_init(rmem, dev);
if (ret == 0) {
rd->dev = dev;
rd->rmem = rmem;
mutex_lock(&of_rmem_assigned_device_mutex);
list_add(&rd->list, &of_rmem_assigned_device_list);
mutex_unlock(&of_rmem_assigned_device_mutex);
dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
} else {
kfree(rd);
}
return ret;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
/**
* of_reserved_mem_device_init_by_name() - assign named reserved memory region
* to given device
* @dev: pointer to the device to configure
* @np: pointer to the device node with 'memory-region' property
* @name: name of the selected memory region
*
* Returns: 0 on success or a negative error-code on failure.
*/
int of_reserved_mem_device_init_by_name(struct device *dev,
struct device_node *np,
const char *name)
{
int idx = of_property_match_string(np, "memory-region-names", name);
return of_reserved_mem_device_init_by_idx(dev, np, idx);
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
/**
* of_reserved_mem_device_release() - release reserved memory device structures
* @dev: Pointer to the device to deconfigure
*
* This function releases structures allocated for memory region handling for
* the given device.
*/
void of_reserved_mem_device_release(struct device *dev)
{
struct rmem_assigned_device *rd, *tmp;
LIST_HEAD(release_list);
mutex_lock(&of_rmem_assigned_device_mutex);
list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
if (rd->dev == dev)
list_move_tail(&rd->list, &release_list);
}
mutex_unlock(&of_rmem_assigned_device_mutex);
list_for_each_entry_safe(rd, tmp, &release_list, list) {
if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
rd->rmem->ops->device_release(rd->rmem, dev);
kfree(rd);
}
}
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
/**
* of_reserved_mem_lookup() - acquire reserved_mem from a device node
* @np: node pointer of the desired reserved-memory region
*
* This function allows drivers to acquire a reference to the reserved_mem
* struct based on a device node handle.
*
* Returns a reserved_mem reference, or NULL on error.
*/
struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
{
const char *name;
int i;
if (!np->full_name)
return NULL;
name = kbasename(np->full_name);
for (i = 0; i < reserved_mem_count; i++)
if (!strcmp(reserved_mem[i].name, name))
return &reserved_mem[i];
return NULL;
}
EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);