linux-stable/drivers/gpu/drm/bridge/samsung-dsim.c
Marek Szyprowski 15f389da11
drm: bridge: samsung-dsim: Fix waiting for empty cmd transfer FIFO on older Exynos
Samsung DSIM used in older Exynos SoCs (like Exynos 4210, 4x12, 3250)
doesn't report empty level of packer header FIFO. In case of those SoCs,
use the old way of waiting for empty command tranfsfer FIFO, removed
recently by commit 14806c6415 ("drm: bridge: samsung-dsim: Drain command transfer FIFO before transfer").

Fixes: 14806c6415 ("drm: bridge: samsung-dsim: Drain command transfer FIFO before transfer")
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Marek Vasut <marex@denx.de>
Signed-off-by: Robert Foss <rfoss@kernel.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20230809145641.3213210-1-m.szyprowski@samsung.com
2023-08-11 14:54:05 +02:00

2122 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Samsung MIPI DSIM bridge driver.
*
* Copyright (C) 2021 Amarula Solutions(India)
* Copyright (c) 2014 Samsung Electronics Co., Ltd
* Author: Jagan Teki <jagan@amarulasolutions.com>
*
* Based on exynos_drm_dsi from
* Tomasz Figa <t.figa@samsung.com>
*/
#include <asm/unaligned.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/media-bus-format.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <video/mipi_display.h>
#include <drm/bridge/samsung-dsim.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
/* returns true iff both arguments logically differs */
#define NEQV(a, b) (!(a) ^ !(b))
/* DSIM_STATUS */
#define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0)
#define DSIM_STOP_STATE_CLK BIT(8)
#define DSIM_TX_READY_HS_CLK BIT(10)
#define DSIM_PLL_STABLE BIT(31)
/* DSIM_SWRST */
#define DSIM_FUNCRST BIT(16)
#define DSIM_SWRST BIT(0)
/* DSIM_TIMEOUT */
#define DSIM_LPDR_TIMEOUT(x) ((x) << 0)
#define DSIM_BTA_TIMEOUT(x) ((x) << 16)
/* DSIM_CLKCTRL */
#define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0)
#define DSIM_ESC_PRESCALER_MASK (0xffff << 0)
#define DSIM_LANE_ESC_CLK_EN_CLK BIT(19)
#define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20)
#define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20)
#define DSIM_BYTE_CLKEN BIT(24)
#define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25)
#define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25)
#define DSIM_PLL_BYPASS BIT(27)
#define DSIM_ESC_CLKEN BIT(28)
#define DSIM_TX_REQUEST_HSCLK BIT(31)
/* DSIM_CONFIG */
#define DSIM_LANE_EN_CLK BIT(0)
#define DSIM_LANE_EN(x) (((x) & 0xf) << 1)
#define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5)
#define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8)
#define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12)
#define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12)
#define DSIM_SUB_VC (((x) & 0x3) << 16)
#define DSIM_MAIN_VC (((x) & 0x3) << 18)
#define DSIM_HSA_DISABLE_MODE BIT(20)
#define DSIM_HBP_DISABLE_MODE BIT(21)
#define DSIM_HFP_DISABLE_MODE BIT(22)
/*
* The i.MX 8M Mini Applications Processor Reference Manual,
* Rev. 3, 11/2020 Page 4091
* The i.MX 8M Nano Applications Processor Reference Manual,
* Rev. 2, 07/2022 Page 3058
* The i.MX 8M Plus Applications Processor Reference Manual,
* Rev. 1, 06/2021 Page 5436
* all claims this bit is 'HseDisableMode' with the definition
* 0 = Disables transfer
* 1 = Enables transfer
*
* This clearly states that HSE is not a disabled bit.
*
* The naming convention follows as per the manual and the
* driver logic is based on the MIPI_DSI_MODE_VIDEO_HSE flag.
*/
#define DSIM_HSE_DISABLE_MODE BIT(23)
#define DSIM_AUTO_MODE BIT(24)
#define DSIM_VIDEO_MODE BIT(25)
#define DSIM_BURST_MODE BIT(26)
#define DSIM_SYNC_INFORM BIT(27)
#define DSIM_EOT_DISABLE BIT(28)
#define DSIM_MFLUSH_VS BIT(29)
/* This flag is valid only for exynos3250/3472/5260/5430 */
#define DSIM_CLKLANE_STOP BIT(30)
/* DSIM_ESCMODE */
#define DSIM_TX_TRIGGER_RST BIT(4)
#define DSIM_TX_LPDT_LP BIT(6)
#define DSIM_CMD_LPDT_LP BIT(7)
#define DSIM_FORCE_BTA BIT(16)
#define DSIM_FORCE_STOP_STATE BIT(20)
#define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21)
#define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21)
/* DSIM_MDRESOL */
#define DSIM_MAIN_STAND_BY BIT(31)
#define DSIM_MAIN_VRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 16)
#define DSIM_MAIN_HRESOL(x, num_bits) (((x) & ((1 << (num_bits)) - 1)) << 0)
/* DSIM_MVPORCH */
#define DSIM_CMD_ALLOW(x) ((x) << 28)
#define DSIM_STABLE_VFP(x) ((x) << 16)
#define DSIM_MAIN_VBP(x) ((x) << 0)
#define DSIM_CMD_ALLOW_MASK (0xf << 28)
#define DSIM_STABLE_VFP_MASK (0x7ff << 16)
#define DSIM_MAIN_VBP_MASK (0x7ff << 0)
/* DSIM_MHPORCH */
#define DSIM_MAIN_HFP(x) ((x) << 16)
#define DSIM_MAIN_HBP(x) ((x) << 0)
#define DSIM_MAIN_HFP_MASK ((0xffff) << 16)
#define DSIM_MAIN_HBP_MASK ((0xffff) << 0)
/* DSIM_MSYNC */
#define DSIM_MAIN_VSA(x) ((x) << 22)
#define DSIM_MAIN_HSA(x) ((x) << 0)
#define DSIM_MAIN_VSA_MASK ((0x3ff) << 22)
#define DSIM_MAIN_HSA_MASK ((0xffff) << 0)
/* DSIM_SDRESOL */
#define DSIM_SUB_STANDY(x) ((x) << 31)
#define DSIM_SUB_VRESOL(x) ((x) << 16)
#define DSIM_SUB_HRESOL(x) ((x) << 0)
#define DSIM_SUB_STANDY_MASK ((0x1) << 31)
#define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16)
#define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0)
/* DSIM_INTSRC */
#define DSIM_INT_PLL_STABLE BIT(31)
#define DSIM_INT_SW_RST_RELEASE BIT(30)
#define DSIM_INT_SFR_FIFO_EMPTY BIT(29)
#define DSIM_INT_SFR_HDR_FIFO_EMPTY BIT(28)
#define DSIM_INT_BTA BIT(25)
#define DSIM_INT_FRAME_DONE BIT(24)
#define DSIM_INT_RX_TIMEOUT BIT(21)
#define DSIM_INT_BTA_TIMEOUT BIT(20)
#define DSIM_INT_RX_DONE BIT(18)
#define DSIM_INT_RX_TE BIT(17)
#define DSIM_INT_RX_ACK BIT(16)
#define DSIM_INT_RX_ECC_ERR BIT(15)
#define DSIM_INT_RX_CRC_ERR BIT(14)
/* DSIM_FIFOCTRL */
#define DSIM_RX_DATA_FULL BIT(25)
#define DSIM_RX_DATA_EMPTY BIT(24)
#define DSIM_SFR_HEADER_FULL BIT(23)
#define DSIM_SFR_HEADER_EMPTY BIT(22)
#define DSIM_SFR_PAYLOAD_FULL BIT(21)
#define DSIM_SFR_PAYLOAD_EMPTY BIT(20)
#define DSIM_I80_HEADER_FULL BIT(19)
#define DSIM_I80_HEADER_EMPTY BIT(18)
#define DSIM_I80_PAYLOAD_FULL BIT(17)
#define DSIM_I80_PAYLOAD_EMPTY BIT(16)
#define DSIM_SD_HEADER_FULL BIT(15)
#define DSIM_SD_HEADER_EMPTY BIT(14)
#define DSIM_SD_PAYLOAD_FULL BIT(13)
#define DSIM_SD_PAYLOAD_EMPTY BIT(12)
#define DSIM_MD_HEADER_FULL BIT(11)
#define DSIM_MD_HEADER_EMPTY BIT(10)
#define DSIM_MD_PAYLOAD_FULL BIT(9)
#define DSIM_MD_PAYLOAD_EMPTY BIT(8)
#define DSIM_RX_FIFO BIT(4)
#define DSIM_SFR_FIFO BIT(3)
#define DSIM_I80_FIFO BIT(2)
#define DSIM_SD_FIFO BIT(1)
#define DSIM_MD_FIFO BIT(0)
/* DSIM_PHYACCHR */
#define DSIM_AFC_EN BIT(14)
#define DSIM_AFC_CTL(x) (((x) & 0x7) << 5)
/* DSIM_PLLCTRL */
#define DSIM_PLL_DPDNSWAP_CLK (1 << 25)
#define DSIM_PLL_DPDNSWAP_DAT (1 << 24)
#define DSIM_FREQ_BAND(x) ((x) << 24)
#define DSIM_PLL_EN BIT(23)
#define DSIM_PLL_P(x, offset) ((x) << (offset))
#define DSIM_PLL_M(x) ((x) << 4)
#define DSIM_PLL_S(x) ((x) << 1)
/* DSIM_PHYCTRL */
#define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0)
#define DSIM_PHYCTRL_B_DPHYCTL_VREG_LP BIT(30)
#define DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP BIT(14)
/* DSIM_PHYTIMING */
#define DSIM_PHYTIMING_LPX(x) ((x) << 8)
#define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0)
/* DSIM_PHYTIMING1 */
#define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24)
#define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16)
#define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8)
#define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0)
/* DSIM_PHYTIMING2 */
#define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16)
#define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8)
#define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0)
#define DSI_MAX_BUS_WIDTH 4
#define DSI_NUM_VIRTUAL_CHANNELS 4
#define DSI_TX_FIFO_SIZE 2048
#define DSI_RX_FIFO_SIZE 256
#define DSI_XFER_TIMEOUT_MS 100
#define DSI_RX_FIFO_EMPTY 0x30800002
#define OLD_SCLK_MIPI_CLK_NAME "pll_clk"
#define PS_TO_CYCLE(ps, hz) DIV64_U64_ROUND_CLOSEST(((ps) * (hz)), 1000000000000ULL)
static const char *const clk_names[5] = {
"bus_clk",
"sclk_mipi",
"phyclk_mipidphy0_bitclkdiv8",
"phyclk_mipidphy0_rxclkesc0",
"sclk_rgb_vclk_to_dsim0"
};
enum samsung_dsim_transfer_type {
EXYNOS_DSI_TX,
EXYNOS_DSI_RX,
};
enum reg_idx {
DSIM_STATUS_REG, /* Status register */
DSIM_SWRST_REG, /* Software reset register */
DSIM_CLKCTRL_REG, /* Clock control register */
DSIM_TIMEOUT_REG, /* Time out register */
DSIM_CONFIG_REG, /* Configuration register */
DSIM_ESCMODE_REG, /* Escape mode register */
DSIM_MDRESOL_REG,
DSIM_MVPORCH_REG, /* Main display Vporch register */
DSIM_MHPORCH_REG, /* Main display Hporch register */
DSIM_MSYNC_REG, /* Main display sync area register */
DSIM_INTSRC_REG, /* Interrupt source register */
DSIM_INTMSK_REG, /* Interrupt mask register */
DSIM_PKTHDR_REG, /* Packet Header FIFO register */
DSIM_PAYLOAD_REG, /* Payload FIFO register */
DSIM_RXFIFO_REG, /* Read FIFO register */
DSIM_FIFOCTRL_REG, /* FIFO status and control register */
DSIM_PLLCTRL_REG, /* PLL control register */
DSIM_PHYCTRL_REG,
DSIM_PHYTIMING_REG,
DSIM_PHYTIMING1_REG,
DSIM_PHYTIMING2_REG,
NUM_REGS
};
static const unsigned int exynos_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x00,
[DSIM_SWRST_REG] = 0x04,
[DSIM_CLKCTRL_REG] = 0x08,
[DSIM_TIMEOUT_REG] = 0x0c,
[DSIM_CONFIG_REG] = 0x10,
[DSIM_ESCMODE_REG] = 0x14,
[DSIM_MDRESOL_REG] = 0x18,
[DSIM_MVPORCH_REG] = 0x1c,
[DSIM_MHPORCH_REG] = 0x20,
[DSIM_MSYNC_REG] = 0x24,
[DSIM_INTSRC_REG] = 0x2c,
[DSIM_INTMSK_REG] = 0x30,
[DSIM_PKTHDR_REG] = 0x34,
[DSIM_PAYLOAD_REG] = 0x38,
[DSIM_RXFIFO_REG] = 0x3c,
[DSIM_FIFOCTRL_REG] = 0x44,
[DSIM_PLLCTRL_REG] = 0x4c,
[DSIM_PHYCTRL_REG] = 0x5c,
[DSIM_PHYTIMING_REG] = 0x64,
[DSIM_PHYTIMING1_REG] = 0x68,
[DSIM_PHYTIMING2_REG] = 0x6c,
};
static const unsigned int exynos5433_reg_ofs[] = {
[DSIM_STATUS_REG] = 0x04,
[DSIM_SWRST_REG] = 0x0C,
[DSIM_CLKCTRL_REG] = 0x10,
[DSIM_TIMEOUT_REG] = 0x14,
[DSIM_CONFIG_REG] = 0x18,
[DSIM_ESCMODE_REG] = 0x1C,
[DSIM_MDRESOL_REG] = 0x20,
[DSIM_MVPORCH_REG] = 0x24,
[DSIM_MHPORCH_REG] = 0x28,
[DSIM_MSYNC_REG] = 0x2C,
[DSIM_INTSRC_REG] = 0x34,
[DSIM_INTMSK_REG] = 0x38,
[DSIM_PKTHDR_REG] = 0x3C,
[DSIM_PAYLOAD_REG] = 0x40,
[DSIM_RXFIFO_REG] = 0x44,
[DSIM_FIFOCTRL_REG] = 0x4C,
[DSIM_PLLCTRL_REG] = 0x94,
[DSIM_PHYCTRL_REG] = 0xA4,
[DSIM_PHYTIMING_REG] = 0xB4,
[DSIM_PHYTIMING1_REG] = 0xB8,
[DSIM_PHYTIMING2_REG] = 0xBC,
};
enum reg_value_idx {
RESET_TYPE,
PLL_TIMER,
STOP_STATE_CNT,
PHYCTRL_ULPS_EXIT,
PHYCTRL_VREG_LP,
PHYCTRL_SLEW_UP,
PHYTIMING_LPX,
PHYTIMING_HS_EXIT,
PHYTIMING_CLK_PREPARE,
PHYTIMING_CLK_ZERO,
PHYTIMING_CLK_POST,
PHYTIMING_CLK_TRAIL,
PHYTIMING_HS_PREPARE,
PHYTIMING_HS_ZERO,
PHYTIMING_HS_TRAIL
};
static const unsigned int reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x0af),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x27),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x09),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const unsigned int exynos5422_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x08),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0d),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x30),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x0a),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0c),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x11),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0d),
};
static const unsigned int exynos5433_reg_values[] = {
[RESET_TYPE] = DSIM_FUNCRST,
[PLL_TIMER] = 22200,
[STOP_STATE_CNT] = 0xa,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0x190),
[PHYCTRL_VREG_LP] = DSIM_PHYCTRL_B_DPHYCTL_VREG_LP,
[PHYCTRL_SLEW_UP] = DSIM_PHYCTRL_B_DPHYCTL_SLEW_UP,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x07),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0c),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x09),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x2d),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0e),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x09),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x0b),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x10),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0c),
};
static const unsigned int imx8mm_dsim_reg_values[] = {
[RESET_TYPE] = DSIM_SWRST,
[PLL_TIMER] = 500,
[STOP_STATE_CNT] = 0xf,
[PHYCTRL_ULPS_EXIT] = DSIM_PHYCTRL_ULPS_EXIT(0xaf),
[PHYCTRL_VREG_LP] = 0,
[PHYCTRL_SLEW_UP] = 0,
[PHYTIMING_LPX] = DSIM_PHYTIMING_LPX(0x06),
[PHYTIMING_HS_EXIT] = DSIM_PHYTIMING_HS_EXIT(0x0b),
[PHYTIMING_CLK_PREPARE] = DSIM_PHYTIMING1_CLK_PREPARE(0x07),
[PHYTIMING_CLK_ZERO] = DSIM_PHYTIMING1_CLK_ZERO(0x26),
[PHYTIMING_CLK_POST] = DSIM_PHYTIMING1_CLK_POST(0x0d),
[PHYTIMING_CLK_TRAIL] = DSIM_PHYTIMING1_CLK_TRAIL(0x08),
[PHYTIMING_HS_PREPARE] = DSIM_PHYTIMING2_HS_PREPARE(0x08),
[PHYTIMING_HS_ZERO] = DSIM_PHYTIMING2_HS_ZERO(0x0d),
[PHYTIMING_HS_TRAIL] = DSIM_PHYTIMING2_HS_TRAIL(0x0b),
};
static const struct samsung_dsim_driver_data exynos3_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
.has_broken_fifoctrl_emptyhdr = 1,
};
static const struct samsung_dsim_driver_data exynos4_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x50,
.has_freqband = 1,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
.has_broken_fifoctrl_emptyhdr = 1,
};
static const struct samsung_dsim_driver_data exynos5_dsi_driver_data = {
.reg_ofs = exynos_reg_ofs,
.plltmr_reg = 0x58,
.num_clks = 2,
.max_freq = 1000,
.wait_for_reset = 1,
.num_bits_resol = 11,
.pll_p_offset = 13,
.reg_values = reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5433_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 5,
.max_freq = 1500,
.wait_for_reset = 0,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5433_reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data exynos5422_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 1500,
.wait_for_reset = 1,
.num_bits_resol = 12,
.pll_p_offset = 13,
.reg_values = exynos5422_reg_values,
.m_min = 41,
.m_max = 125,
.min_freq = 500,
};
static const struct samsung_dsim_driver_data imx8mm_dsi_driver_data = {
.reg_ofs = exynos5433_reg_ofs,
.plltmr_reg = 0xa0,
.has_clklane_stop = 1,
.num_clks = 2,
.max_freq = 2100,
.wait_for_reset = 0,
.num_bits_resol = 12,
/*
* Unlike Exynos, PLL_P(PMS_P) offset 14 is used in i.MX8M Mini/Nano/Plus
* downstream driver - drivers/gpu/drm/bridge/sec-dsim.c
*/
.pll_p_offset = 14,
.reg_values = imx8mm_dsim_reg_values,
.m_min = 64,
.m_max = 1023,
.min_freq = 1050,
};
static const struct samsung_dsim_driver_data *
samsung_dsim_types[DSIM_TYPE_COUNT] = {
[DSIM_TYPE_EXYNOS3250] = &exynos3_dsi_driver_data,
[DSIM_TYPE_EXYNOS4210] = &exynos4_dsi_driver_data,
[DSIM_TYPE_EXYNOS5410] = &exynos5_dsi_driver_data,
[DSIM_TYPE_EXYNOS5422] = &exynos5422_dsi_driver_data,
[DSIM_TYPE_EXYNOS5433] = &exynos5433_dsi_driver_data,
[DSIM_TYPE_IMX8MM] = &imx8mm_dsi_driver_data,
[DSIM_TYPE_IMX8MP] = &imx8mm_dsi_driver_data,
};
static inline struct samsung_dsim *host_to_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct samsung_dsim, dsi_host);
}
static inline struct samsung_dsim *bridge_to_dsi(struct drm_bridge *b)
{
return container_of(b, struct samsung_dsim, bridge);
}
static inline void samsung_dsim_write(struct samsung_dsim *dsi,
enum reg_idx idx, u32 val)
{
writel(val, dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static inline u32 samsung_dsim_read(struct samsung_dsim *dsi, enum reg_idx idx)
{
return readl(dsi->reg_base + dsi->driver_data->reg_ofs[idx]);
}
static void samsung_dsim_wait_for_reset(struct samsung_dsim *dsi)
{
if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300)))
return;
dev_err(dsi->dev, "timeout waiting for reset\n");
}
static void samsung_dsim_reset(struct samsung_dsim *dsi)
{
u32 reset_val = dsi->driver_data->reg_values[RESET_TYPE];
reinit_completion(&dsi->completed);
samsung_dsim_write(dsi, DSIM_SWRST_REG, reset_val);
}
#ifndef MHZ
#define MHZ (1000 * 1000)
#endif
static unsigned long samsung_dsim_pll_find_pms(struct samsung_dsim *dsi,
unsigned long fin,
unsigned long fout,
u8 *p, u16 *m, u8 *s)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long best_freq = 0;
u32 min_delta = 0xffffffff;
u8 p_min, p_max;
u8 _p, best_p;
u16 _m, best_m;
u8 _s, best_s;
p_min = DIV_ROUND_UP(fin, (12 * MHZ));
p_max = fin / (6 * MHZ);
for (_p = p_min; _p <= p_max; ++_p) {
for (_s = 0; _s <= 5; ++_s) {
u64 tmp;
u32 delta;
tmp = (u64)fout * (_p << _s);
do_div(tmp, fin);
_m = tmp;
if (_m < driver_data->m_min || _m > driver_data->m_max)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p);
if (tmp < driver_data->min_freq * MHZ ||
tmp > driver_data->max_freq * MHZ)
continue;
tmp = (u64)_m * fin;
do_div(tmp, _p << _s);
delta = abs(fout - tmp);
if (delta < min_delta) {
best_p = _p;
best_m = _m;
best_s = _s;
min_delta = delta;
best_freq = tmp;
}
}
}
if (best_freq) {
*p = best_p;
*m = best_m;
*s = best_s;
}
return best_freq;
}
static unsigned long samsung_dsim_set_pll(struct samsung_dsim *dsi,
unsigned long freq)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
unsigned long fin, fout;
int timeout;
u8 p, s;
u16 m;
u32 reg;
fin = dsi->pll_clk_rate;
fout = samsung_dsim_pll_find_pms(dsi, fin, freq, &p, &m, &s);
if (!fout) {
dev_err(dsi->dev,
"failed to find PLL PMS for requested frequency\n");
return 0;
}
dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s);
writel(driver_data->reg_values[PLL_TIMER],
dsi->reg_base + driver_data->plltmr_reg);
reg = DSIM_PLL_EN | DSIM_PLL_P(p, driver_data->pll_p_offset) |
DSIM_PLL_M(m) | DSIM_PLL_S(s);
if (driver_data->has_freqband) {
static const unsigned long freq_bands[] = {
100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ,
270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ,
510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ,
770 * MHZ, 870 * MHZ, 950 * MHZ,
};
int band;
for (band = 0; band < ARRAY_SIZE(freq_bands); ++band)
if (fout < freq_bands[band])
break;
dev_dbg(dsi->dev, "band %d\n", band);
reg |= DSIM_FREQ_BAND(band);
}
if (dsi->swap_dn_dp_clk)
reg |= DSIM_PLL_DPDNSWAP_CLK;
if (dsi->swap_dn_dp_data)
reg |= DSIM_PLL_DPDNSWAP_DAT;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
timeout = 1000;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "PLL failed to stabilize\n");
return 0;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
} while ((reg & DSIM_PLL_STABLE) == 0);
dsi->hs_clock = fout;
return fout;
}
static int samsung_dsim_enable_clock(struct samsung_dsim *dsi)
{
unsigned long hs_clk, byte_clk, esc_clk, pix_clk;
unsigned long esc_div;
u32 reg;
struct drm_display_mode *m = &dsi->mode;
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
/* m->clock is in KHz */
pix_clk = m->clock * 1000;
/* Use burst_clk_rate if available, otherwise use the pix_clk */
if (dsi->burst_clk_rate)
hs_clk = samsung_dsim_set_pll(dsi, dsi->burst_clk_rate);
else
hs_clk = samsung_dsim_set_pll(dsi, DIV_ROUND_UP(pix_clk * bpp, dsi->lanes));
if (!hs_clk) {
dev_err(dsi->dev, "failed to configure DSI PLL\n");
return -EFAULT;
}
byte_clk = hs_clk / 8;
esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate);
esc_clk = byte_clk / esc_div;
if (esc_clk > 20 * MHZ) {
++esc_div;
esc_clk = byte_clk / esc_div;
}
dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n",
hs_clk, byte_clk, esc_clk);
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS
| DSIM_BYTE_CLK_SRC_MASK);
reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN
| DSIM_ESC_PRESCALER(esc_div)
| DSIM_LANE_ESC_CLK_EN_CLK
| DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1)
| DSIM_BYTE_CLK_SRC(0)
| DSIM_TX_REQUEST_HSCLK;
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
return 0;
}
static void samsung_dsim_set_phy_ctrl(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
const unsigned int *reg_values = driver_data->reg_values;
u32 reg;
struct phy_configure_opts_mipi_dphy cfg;
int clk_prepare, lpx, clk_zero, clk_post, clk_trail;
int hs_exit, hs_prepare, hs_zero, hs_trail;
unsigned long long byte_clock = dsi->hs_clock / 8;
if (driver_data->has_freqband)
return;
phy_mipi_dphy_get_default_config_for_hsclk(dsi->hs_clock,
dsi->lanes, &cfg);
/*
* TODO:
* The tech Applications Processor manuals for i.MX8M Mini, Nano,
* and Plus don't state what the definition of the PHYTIMING
* bits are beyond their address and bit position.
* After reviewing NXP's downstream code, it appears
* that the various PHYTIMING registers take the number
* of cycles and use various dividers on them. This
* calculation does not result in an exact match to the
* downstream code, but it is very close to the values
* generated by their lookup table, and it appears
* to sync at a variety of resolutions. If someone
* can get a more accurate mathematical equation needed
* for these registers, this should be updated.
*/
lpx = PS_TO_CYCLE(cfg.lpx, byte_clock);
hs_exit = PS_TO_CYCLE(cfg.hs_exit, byte_clock);
clk_prepare = PS_TO_CYCLE(cfg.clk_prepare, byte_clock);
clk_zero = PS_TO_CYCLE(cfg.clk_zero, byte_clock);
clk_post = PS_TO_CYCLE(cfg.clk_post, byte_clock);
clk_trail = PS_TO_CYCLE(cfg.clk_trail, byte_clock);
hs_prepare = PS_TO_CYCLE(cfg.hs_prepare, byte_clock);
hs_zero = PS_TO_CYCLE(cfg.hs_zero, byte_clock);
hs_trail = PS_TO_CYCLE(cfg.hs_trail, byte_clock);
/* B D-PHY: D-PHY Master & Slave Analog Block control */
reg = reg_values[PHYCTRL_ULPS_EXIT] | reg_values[PHYCTRL_VREG_LP] |
reg_values[PHYCTRL_SLEW_UP];
samsung_dsim_write(dsi, DSIM_PHYCTRL_REG, reg);
/*
* T LPX: Transmitted length of any Low-Power state period
* T HS-EXIT: Time that the transmitter drives LP-11 following a HS
* burst
*/
reg = DSIM_PHYTIMING_LPX(lpx) | DSIM_PHYTIMING_HS_EXIT(hs_exit);
samsung_dsim_write(dsi, DSIM_PHYTIMING_REG, reg);
/*
* T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Clock.
* T CLK_POST: Time that the transmitter continues to send HS clock
* after the last associated Data Lane has transitioned to LP Mode
* Interval is defined as the period from the end of T HS-TRAIL to
* the beginning of T CLK-TRAIL
* T CLK-TRAIL: Time that the transmitter drives the HS-0 state after
* the last payload clock bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING1_CLK_PREPARE(clk_prepare) |
DSIM_PHYTIMING1_CLK_ZERO(clk_zero) |
DSIM_PHYTIMING1_CLK_POST(clk_post) |
DSIM_PHYTIMING1_CLK_TRAIL(clk_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING1_REG, reg);
/*
* T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00
* Line state immediately before the HS-0 Line state starting the
* HS transmission
* T HS-ZERO: Time that the transmitter drives the HS-0 state prior to
* transmitting the Sync sequence.
* T HS-TRAIL: Time that the transmitter drives the flipped differential
* state after last payload data bit of a HS transmission burst
*/
reg = DSIM_PHYTIMING2_HS_PREPARE(hs_prepare) |
DSIM_PHYTIMING2_HS_ZERO(hs_zero) |
DSIM_PHYTIMING2_HS_TRAIL(hs_trail);
samsung_dsim_write(dsi, DSIM_PHYTIMING2_REG, reg);
}
static void samsung_dsim_disable_clock(struct samsung_dsim *dsi)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_CLKCTRL_REG);
reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK
| DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN);
samsung_dsim_write(dsi, DSIM_CLKCTRL_REG, reg);
reg = samsung_dsim_read(dsi, DSIM_PLLCTRL_REG);
reg &= ~DSIM_PLL_EN;
samsung_dsim_write(dsi, DSIM_PLLCTRL_REG, reg);
}
static void samsung_dsim_enable_lane(struct samsung_dsim *dsi, u32 lane)
{
u32 reg = samsung_dsim_read(dsi, DSIM_CONFIG_REG);
reg |= (DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1) | DSIM_LANE_EN_CLK |
DSIM_LANE_EN(lane));
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
}
static int samsung_dsim_init_link(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int timeout;
u32 reg;
u32 lanes_mask;
/* Initialize FIFO pointers */
reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
reg &= ~0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
reg |= 0x1f;
samsung_dsim_write(dsi, DSIM_FIFOCTRL_REG, reg);
usleep_range(9000, 11000);
/* DSI configuration */
reg = 0;
/*
* The first bit of mode_flags specifies display configuration.
* If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video
* mode, otherwise it will support command mode.
*/
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
reg |= DSIM_VIDEO_MODE;
/*
* The user manual describes that following bits are ignored in
* command mode.
*/
if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH))
reg |= DSIM_MFLUSH_VS;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE)
reg |= DSIM_SYNC_INFORM;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
reg |= DSIM_BURST_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT)
reg |= DSIM_AUTO_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE)
reg |= DSIM_HSE_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HFP)
reg |= DSIM_HFP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HBP)
reg |= DSIM_HBP_DISABLE_MODE;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_NO_HSA)
reg |= DSIM_HSA_DISABLE_MODE;
}
if (dsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET)
reg |= DSIM_EOT_DISABLE;
switch (dsi->format) {
case MIPI_DSI_FMT_RGB888:
reg |= DSIM_MAIN_PIX_FORMAT_RGB888;
break;
case MIPI_DSI_FMT_RGB666:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P;
break;
case MIPI_DSI_FMT_RGB565:
reg |= DSIM_MAIN_PIX_FORMAT_RGB565;
break;
default:
dev_err(dsi->dev, "invalid pixel format\n");
return -EINVAL;
}
/*
* Use non-continuous clock mode if the periparal wants and
* host controller supports
*
* In non-continous clock mode, host controller will turn off
* the HS clock between high-speed transmissions to reduce
* power consumption.
*/
if (driver_data->has_clklane_stop &&
dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
reg |= DSIM_CLKLANE_STOP;
samsung_dsim_write(dsi, DSIM_CONFIG_REG, reg);
lanes_mask = BIT(dsi->lanes) - 1;
samsung_dsim_enable_lane(dsi, lanes_mask);
/* Check clock and data lane state are stop state */
timeout = 100;
do {
if (timeout-- == 0) {
dev_err(dsi->dev, "waiting for bus lanes timed out\n");
return -EFAULT;
}
reg = samsung_dsim_read(dsi, DSIM_STATUS_REG);
if ((reg & DSIM_STOP_STATE_DAT(lanes_mask))
!= DSIM_STOP_STATE_DAT(lanes_mask))
continue;
} while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK)));
reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
reg &= ~DSIM_STOP_STATE_CNT_MASK;
reg |= DSIM_STOP_STATE_CNT(driver_data->reg_values[STOP_STATE_CNT]);
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type))
reg |= DSIM_FORCE_STOP_STATE;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff);
samsung_dsim_write(dsi, DSIM_TIMEOUT_REG, reg);
return 0;
}
static void samsung_dsim_set_display_mode(struct samsung_dsim *dsi)
{
struct drm_display_mode *m = &dsi->mode;
unsigned int num_bits_resol = dsi->driver_data->num_bits_resol;
u32 reg;
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
int byte_clk_khz = dsi->hs_clock / 1000 / 8;
int hfp = (m->hsync_start - m->hdisplay) * byte_clk_khz / m->clock;
int hbp = (m->htotal - m->hsync_end) * byte_clk_khz / m->clock;
int hsa = (m->hsync_end - m->hsync_start) * byte_clk_khz / m->clock;
/* remove packet overhead when possible */
hfp = max(hfp - 6, 0);
hbp = max(hbp - 6, 0);
hsa = max(hsa - 6, 0);
dev_dbg(dsi->dev, "calculated hfp: %u, hbp: %u, hsa: %u",
hfp, hbp, hsa);
reg = DSIM_CMD_ALLOW(0xf)
| DSIM_STABLE_VFP(m->vsync_start - m->vdisplay)
| DSIM_MAIN_VBP(m->vtotal - m->vsync_end);
samsung_dsim_write(dsi, DSIM_MVPORCH_REG, reg);
reg = DSIM_MAIN_HFP(hfp) | DSIM_MAIN_HBP(hbp);
samsung_dsim_write(dsi, DSIM_MHPORCH_REG, reg);
reg = DSIM_MAIN_VSA(m->vsync_end - m->vsync_start)
| DSIM_MAIN_HSA(hsa);
samsung_dsim_write(dsi, DSIM_MSYNC_REG, reg);
}
reg = DSIM_MAIN_HRESOL(m->hdisplay, num_bits_resol) |
DSIM_MAIN_VRESOL(m->vdisplay, num_bits_resol);
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
dev_dbg(dsi->dev, "LCD size = %dx%d\n", m->hdisplay, m->vdisplay);
}
static void samsung_dsim_set_display_enable(struct samsung_dsim *dsi, bool enable)
{
u32 reg;
reg = samsung_dsim_read(dsi, DSIM_MDRESOL_REG);
if (enable)
reg |= DSIM_MAIN_STAND_BY;
else
reg &= ~DSIM_MAIN_STAND_BY;
samsung_dsim_write(dsi, DSIM_MDRESOL_REG, reg);
}
static int samsung_dsim_wait_for_hdr_fifo(struct samsung_dsim *dsi)
{
int timeout = 2000;
do {
u32 reg = samsung_dsim_read(dsi, DSIM_FIFOCTRL_REG);
if (!dsi->driver_data->has_broken_fifoctrl_emptyhdr) {
if (reg & DSIM_SFR_HEADER_EMPTY)
return 0;
} else {
if (!(reg & DSIM_SFR_HEADER_FULL)) {
/*
* Wait a little bit, so the pending data can
* actually leave the FIFO to avoid overflow.
*/
if (!cond_resched())
usleep_range(950, 1050);
return 0;
}
}
if (!cond_resched())
usleep_range(950, 1050);
} while (--timeout);
return -ETIMEDOUT;
}
static void samsung_dsim_set_cmd_lpm(struct samsung_dsim *dsi, bool lpm)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
if (lpm)
v |= DSIM_CMD_LPDT_LP;
else
v &= ~DSIM_CMD_LPDT_LP;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_force_bta(struct samsung_dsim *dsi)
{
u32 v = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
v |= DSIM_FORCE_BTA;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, v);
}
static void samsung_dsim_send_to_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
struct device *dev = dsi->dev;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload = pkt->payload + xfer->tx_done;
u16 length = pkt->payload_length - xfer->tx_done;
bool first = !xfer->tx_done;
u32 reg;
dev_dbg(dev, "< xfer %pK: tx len %u, done %u, rx len %u, done %u\n",
xfer, length, xfer->tx_done, xfer->rx_len, xfer->rx_done);
if (length > DSI_TX_FIFO_SIZE)
length = DSI_TX_FIFO_SIZE;
xfer->tx_done += length;
/* Send payload */
while (length >= 4) {
reg = get_unaligned_le32(payload);
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
payload += 4;
length -= 4;
}
reg = 0;
switch (length) {
case 3:
reg |= payload[2] << 16;
fallthrough;
case 2:
reg |= payload[1] << 8;
fallthrough;
case 1:
reg |= payload[0];
samsung_dsim_write(dsi, DSIM_PAYLOAD_REG, reg);
break;
}
/* Send packet header */
if (!first)
return;
reg = get_unaligned_le32(pkt->header);
if (samsung_dsim_wait_for_hdr_fifo(dsi)) {
dev_err(dev, "waiting for header FIFO timed out\n");
return;
}
if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM,
dsi->state & DSIM_STATE_CMD_LPM)) {
samsung_dsim_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM);
dsi->state ^= DSIM_STATE_CMD_LPM;
}
samsung_dsim_write(dsi, DSIM_PKTHDR_REG, reg);
if (xfer->flags & MIPI_DSI_MSG_REQ_ACK)
samsung_dsim_force_bta(dsi);
}
static void samsung_dsim_read_from_fifo(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
u8 *payload = xfer->rx_payload + xfer->rx_done;
bool first = !xfer->rx_done;
struct device *dev = dsi->dev;
u16 length;
u32 reg;
if (first) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (reg & 0x3f) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->rx_len >= 2) {
payload[1] = reg >> 16;
++xfer->rx_done;
}
fallthrough;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
payload[0] = reg >> 8;
++xfer->rx_done;
xfer->rx_len = xfer->rx_done;
xfer->result = 0;
goto clear_fifo;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
dev_err(dev, "DSI Error Report: 0x%04x\n", (reg >> 8) & 0xffff);
xfer->result = 0;
goto clear_fifo;
}
length = (reg >> 8) & 0xffff;
if (length > xfer->rx_len) {
dev_err(dev,
"response too long (%u > %u bytes), stripping\n",
xfer->rx_len, length);
length = xfer->rx_len;
} else if (length < xfer->rx_len) {
xfer->rx_len = length;
}
}
length = xfer->rx_len - xfer->rx_done;
xfer->rx_done += length;
/* Receive payload */
while (length >= 4) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
payload[0] = (reg >> 0) & 0xff;
payload[1] = (reg >> 8) & 0xff;
payload[2] = (reg >> 16) & 0xff;
payload[3] = (reg >> 24) & 0xff;
payload += 4;
length -= 4;
}
if (length) {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
switch (length) {
case 3:
payload[2] = (reg >> 16) & 0xff;
fallthrough;
case 2:
payload[1] = (reg >> 8) & 0xff;
fallthrough;
case 1:
payload[0] = reg & 0xff;
}
}
if (xfer->rx_done == xfer->rx_len)
xfer->result = 0;
clear_fifo:
length = DSI_RX_FIFO_SIZE / 4;
do {
reg = samsung_dsim_read(dsi, DSIM_RXFIFO_REG);
if (reg == DSI_RX_FIFO_EMPTY)
break;
} while (--length);
}
static void samsung_dsim_transfer_start(struct samsung_dsim *dsi)
{
unsigned long flags;
struct samsung_dsim_transfer *xfer;
bool start = false;
again:
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (xfer->packet.payload_length &&
xfer->tx_done == xfer->packet.payload_length)
/* waiting for RX */
return;
samsung_dsim_send_to_fifo(dsi, xfer);
if (xfer->packet.payload_length || xfer->rx_len)
return;
xfer->result = 0;
complete(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
goto again;
}
static bool samsung_dsim_transfer_finish(struct samsung_dsim *dsi)
{
struct samsung_dsim_transfer *xfer;
unsigned long flags;
bool start = true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (list_empty(&dsi->transfer_list)) {
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
return false;
}
xfer = list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
dev_dbg(dsi->dev,
"> xfer %pK, tx_len %zu, tx_done %u, rx_len %u, rx_done %u\n",
xfer, xfer->packet.payload_length, xfer->tx_done, xfer->rx_len,
xfer->rx_done);
if (xfer->tx_done != xfer->packet.payload_length)
return true;
if (xfer->rx_done != xfer->rx_len)
samsung_dsim_read_from_fifo(dsi, xfer);
if (xfer->rx_done != xfer->rx_len)
return true;
spin_lock_irqsave(&dsi->transfer_lock, flags);
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (!xfer->rx_len)
xfer->result = 0;
complete(&xfer->completed);
return start;
}
static void samsung_dsim_remove_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool start;
spin_lock_irqsave(&dsi->transfer_lock, flags);
if (!list_empty(&dsi->transfer_list) &&
xfer == list_first_entry(&dsi->transfer_list,
struct samsung_dsim_transfer, list)) {
list_del_init(&xfer->list);
start = !list_empty(&dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (start)
samsung_dsim_transfer_start(dsi);
return;
}
list_del_init(&xfer->list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
}
static int samsung_dsim_transfer(struct samsung_dsim *dsi,
struct samsung_dsim_transfer *xfer)
{
unsigned long flags;
bool stopped;
xfer->tx_done = 0;
xfer->rx_done = 0;
xfer->result = -ETIMEDOUT;
init_completion(&xfer->completed);
spin_lock_irqsave(&dsi->transfer_lock, flags);
stopped = list_empty(&dsi->transfer_list);
list_add_tail(&xfer->list, &dsi->transfer_list);
spin_unlock_irqrestore(&dsi->transfer_lock, flags);
if (stopped)
samsung_dsim_transfer_start(dsi);
wait_for_completion_timeout(&xfer->completed,
msecs_to_jiffies(DSI_XFER_TIMEOUT_MS));
if (xfer->result == -ETIMEDOUT) {
struct mipi_dsi_packet *pkt = &xfer->packet;
samsung_dsim_remove_transfer(dsi, xfer);
dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 4, pkt->header,
(int)pkt->payload_length, pkt->payload);
return -ETIMEDOUT;
}
/* Also covers hardware timeout condition */
return xfer->result;
}
static irqreturn_t samsung_dsim_irq(int irq, void *dev_id)
{
struct samsung_dsim *dsi = dev_id;
u32 status;
status = samsung_dsim_read(dsi, DSIM_INTSRC_REG);
if (!status) {
static unsigned long j;
if (printk_timed_ratelimit(&j, 500))
dev_warn(dsi->dev, "spurious interrupt\n");
return IRQ_HANDLED;
}
samsung_dsim_write(dsi, DSIM_INTSRC_REG, status);
if (status & DSIM_INT_SW_RST_RELEASE) {
unsigned long mask = ~(DSIM_INT_RX_DONE |
DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_SFR_HDR_FIFO_EMPTY |
DSIM_INT_RX_ECC_ERR |
DSIM_INT_SW_RST_RELEASE);
samsung_dsim_write(dsi, DSIM_INTMSK_REG, mask);
complete(&dsi->completed);
return IRQ_HANDLED;
}
if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY |
DSIM_INT_PLL_STABLE)))
return IRQ_HANDLED;
if (samsung_dsim_transfer_finish(dsi))
samsung_dsim_transfer_start(dsi);
return IRQ_HANDLED;
}
static void samsung_dsim_enable_irq(struct samsung_dsim *dsi)
{
enable_irq(dsi->irq);
if (dsi->te_gpio)
enable_irq(gpiod_to_irq(dsi->te_gpio));
}
static void samsung_dsim_disable_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio)
disable_irq(gpiod_to_irq(dsi->te_gpio));
disable_irq(dsi->irq);
}
static int samsung_dsim_init(struct samsung_dsim *dsi)
{
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
if (dsi->state & DSIM_STATE_INITIALIZED)
return 0;
samsung_dsim_reset(dsi);
samsung_dsim_enable_irq(dsi);
if (driver_data->reg_values[RESET_TYPE] == DSIM_FUNCRST)
samsung_dsim_enable_lane(dsi, BIT(dsi->lanes) - 1);
samsung_dsim_enable_clock(dsi);
if (driver_data->wait_for_reset)
samsung_dsim_wait_for_reset(dsi);
samsung_dsim_set_phy_ctrl(dsi);
samsung_dsim_init_link(dsi);
dsi->state |= DSIM_STATE_INITIALIZED;
return 0;
}
static void samsung_dsim_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
int ret;
if (dsi->state & DSIM_STATE_ENABLED)
return;
ret = pm_runtime_resume_and_get(dsi->dev);
if (ret < 0) {
dev_err(dsi->dev, "failed to enable DSI device.\n");
return;
}
dsi->state |= DSIM_STATE_ENABLED;
/*
* For Exynos-DSIM the downstream bridge, or panel are expecting
* the host initialization during DSI transfer.
*/
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
ret = samsung_dsim_init(dsi);
if (ret)
return;
samsung_dsim_set_display_mode(dsi);
samsung_dsim_set_display_enable(dsi, true);
}
}
static void samsung_dsim_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
u32 reg;
if (samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
samsung_dsim_set_display_mode(dsi);
samsung_dsim_set_display_enable(dsi, true);
} else {
reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
reg &= ~DSIM_FORCE_STOP_STATE;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
}
dsi->state |= DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
u32 reg;
if (!(dsi->state & DSIM_STATE_ENABLED))
return;
if (!samsung_dsim_hw_is_exynos(dsi->plat_data->hw_type)) {
reg = samsung_dsim_read(dsi, DSIM_ESCMODE_REG);
reg |= DSIM_FORCE_STOP_STATE;
samsung_dsim_write(dsi, DSIM_ESCMODE_REG, reg);
}
dsi->state &= ~DSIM_STATE_VIDOUT_AVAILABLE;
}
static void samsung_dsim_atomic_post_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
samsung_dsim_set_display_enable(dsi, false);
dsi->state &= ~DSIM_STATE_ENABLED;
pm_runtime_put_sync(dsi->dev);
}
/*
* This pixel output formats list referenced from,
* AN13573 i.MX 8/RT MIPI DSI/CSI-2, Rev. 0, 21 March 2022
* 3.7.4 Pixel formats
* Table 14. DSI pixel packing formats
*/
static const u32 samsung_dsim_pixel_output_fmts[] = {
MEDIA_BUS_FMT_YUYV10_1X20,
MEDIA_BUS_FMT_YUYV12_1X24,
MEDIA_BUS_FMT_UYVY8_1X16,
MEDIA_BUS_FMT_RGB101010_1X30,
MEDIA_BUS_FMT_RGB121212_1X36,
MEDIA_BUS_FMT_RGB565_1X16,
MEDIA_BUS_FMT_RGB666_1X18,
MEDIA_BUS_FMT_RGB888_1X24,
};
static bool samsung_dsim_pixel_output_fmt_supported(u32 fmt)
{
int i;
if (fmt == MEDIA_BUS_FMT_FIXED)
return false;
for (i = 0; i < ARRAY_SIZE(samsung_dsim_pixel_output_fmts); i++) {
if (samsung_dsim_pixel_output_fmts[i] == fmt)
return true;
}
return false;
}
static u32 *
samsung_dsim_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
input_fmts = kmalloc(sizeof(*input_fmts), GFP_KERNEL);
if (!input_fmts)
return NULL;
if (!samsung_dsim_pixel_output_fmt_supported(output_fmt))
/*
* Some bridge/display drivers are still not able to pass the
* correct format, so handle those pipelines by falling back
* to the default format till the supported formats finalized.
*/
output_fmt = MEDIA_BUS_FMT_RGB888_1X24;
input_fmts[0] = output_fmt;
*num_input_fmts = 1;
return input_fmts;
}
static int samsung_dsim_atomic_check(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
/*
* The i.MX8M Mini/Nano glue logic between LCDIF and DSIM
* inverts HS/VS/DE sync signals polarity, therefore, while
* i.MX 8M Mini Applications Processor Reference Manual Rev. 3, 11/2020
* 13.6.3.5.2 RGB interface
* i.MX 8M Nano Applications Processor Reference Manual Rev. 2, 07/2022
* 13.6.2.7.2 RGB interface
* both claim "Vsync, Hsync, and VDEN are active high signals.", the
* LCDIF must generate inverted HS/VS/DE signals, i.e. active LOW.
*
* The i.MX8M Plus glue logic between LCDIFv3 and DSIM does not
* implement the same behavior, therefore LCDIFv3 must generate
* HS/VS/DE signals active HIGH.
*/
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM) {
adjusted_mode->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
} else if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MP) {
adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
}
return 0;
}
static void samsung_dsim_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
drm_mode_copy(&dsi->mode, adjusted_mode);
}
static int samsung_dsim_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct samsung_dsim *dsi = bridge_to_dsi(bridge);
return drm_bridge_attach(bridge->encoder, dsi->out_bridge, bridge,
flags);
}
static const struct drm_bridge_funcs samsung_dsim_bridge_funcs = {
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = samsung_dsim_atomic_get_input_bus_fmts,
.atomic_check = samsung_dsim_atomic_check,
.atomic_pre_enable = samsung_dsim_atomic_pre_enable,
.atomic_enable = samsung_dsim_atomic_enable,
.atomic_disable = samsung_dsim_atomic_disable,
.atomic_post_disable = samsung_dsim_atomic_post_disable,
.mode_set = samsung_dsim_mode_set,
.attach = samsung_dsim_attach,
};
static irqreturn_t samsung_dsim_te_irq_handler(int irq, void *dev_id)
{
struct samsung_dsim *dsi = (struct samsung_dsim *)dev_id;
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
if (pdata->host_ops && pdata->host_ops->te_irq_handler)
return pdata->host_ops->te_irq_handler(dsi);
return IRQ_HANDLED;
}
static int samsung_dsim_register_te_irq(struct samsung_dsim *dsi, struct device *dev)
{
int te_gpio_irq;
int ret;
dsi->te_gpio = devm_gpiod_get_optional(dev, "te", GPIOD_IN);
if (!dsi->te_gpio)
return 0;
else if (IS_ERR(dsi->te_gpio))
return dev_err_probe(dev, PTR_ERR(dsi->te_gpio), "failed to get te GPIO\n");
te_gpio_irq = gpiod_to_irq(dsi->te_gpio);
ret = request_threaded_irq(te_gpio_irq, samsung_dsim_te_irq_handler, NULL,
IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN, "TE", dsi);
if (ret) {
dev_err(dsi->dev, "request interrupt failed with %d\n", ret);
gpiod_put(dsi->te_gpio);
return ret;
}
return 0;
}
static int samsung_dsim_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
struct device *dev = dsi->dev;
struct device_node *np = dev->of_node;
struct device_node *remote;
struct drm_panel *panel;
int ret;
/*
* Devices can also be child nodes when we also control that device
* through the upstream device (ie, MIPI-DCS for a MIPI-DSI device).
*
* Lookup for a child node of the given parent that isn't either port
* or ports.
*/
for_each_available_child_of_node(np, remote) {
if (of_node_name_eq(remote, "port") ||
of_node_name_eq(remote, "ports"))
continue;
goto of_find_panel_or_bridge;
}
/*
* of_graph_get_remote_node() produces a noisy error message if port
* node isn't found and the absence of the port is a legit case here,
* so at first we silently check whether graph presents in the
* device-tree node.
*/
if (!of_graph_is_present(np))
return -ENODEV;
remote = of_graph_get_remote_node(np, 1, 0);
of_find_panel_or_bridge:
if (!remote)
return -ENODEV;
panel = of_drm_find_panel(remote);
if (!IS_ERR(panel)) {
dsi->out_bridge = devm_drm_panel_bridge_add(dev, panel);
} else {
dsi->out_bridge = of_drm_find_bridge(remote);
if (!dsi->out_bridge)
dsi->out_bridge = ERR_PTR(-EINVAL);
}
of_node_put(remote);
if (IS_ERR(dsi->out_bridge)) {
ret = PTR_ERR(dsi->out_bridge);
DRM_DEV_ERROR(dev, "failed to find the bridge: %d\n", ret);
return ret;
}
DRM_DEV_INFO(dev, "Attached %s device\n", device->name);
drm_bridge_add(&dsi->bridge);
/*
* This is a temporary solution and should be made by more generic way.
*
* If attached panel device is for command mode one, dsi should register
* TE interrupt handler.
*/
if (!(device->mode_flags & MIPI_DSI_MODE_VIDEO)) {
ret = samsung_dsim_register_te_irq(dsi, &device->dev);
if (ret)
return ret;
}
if (pdata->host_ops && pdata->host_ops->attach) {
ret = pdata->host_ops->attach(dsi, device);
if (ret)
return ret;
}
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->mode_flags = device->mode_flags;
return 0;
}
static void samsung_dsim_unregister_te_irq(struct samsung_dsim *dsi)
{
if (dsi->te_gpio) {
free_irq(gpiod_to_irq(dsi->te_gpio), dsi);
gpiod_put(dsi->te_gpio);
}
}
static int samsung_dsim_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct samsung_dsim *dsi = host_to_dsi(host);
const struct samsung_dsim_plat_data *pdata = dsi->plat_data;
dsi->out_bridge = NULL;
if (pdata->host_ops && pdata->host_ops->detach)
pdata->host_ops->detach(dsi, device);
samsung_dsim_unregister_te_irq(dsi);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static ssize_t samsung_dsim_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct samsung_dsim *dsi = host_to_dsi(host);
struct samsung_dsim_transfer xfer;
int ret;
if (!(dsi->state & DSIM_STATE_ENABLED))
return -EINVAL;
ret = samsung_dsim_init(dsi);
if (ret)
return ret;
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0)
return ret;
xfer.rx_len = msg->rx_len;
xfer.rx_payload = msg->rx_buf;
xfer.flags = msg->flags;
ret = samsung_dsim_transfer(dsi, &xfer);
return (ret < 0) ? ret : xfer.rx_done;
}
static const struct mipi_dsi_host_ops samsung_dsim_ops = {
.attach = samsung_dsim_host_attach,
.detach = samsung_dsim_host_detach,
.transfer = samsung_dsim_host_transfer,
};
static int samsung_dsim_of_read_u32(const struct device_node *np,
const char *propname, u32 *out_value, bool optional)
{
int ret = of_property_read_u32(np, propname, out_value);
if (ret < 0 && !optional)
pr_err("%pOF: failed to get '%s' property\n", np, propname);
return ret;
}
static int samsung_dsim_parse_dt(struct samsung_dsim *dsi)
{
struct device *dev = dsi->dev;
struct device_node *node = dev->of_node;
u32 lane_polarities[5] = { 0 };
struct device_node *endpoint;
int i, nr_lanes, ret;
struct clk *pll_clk;
ret = samsung_dsim_of_read_u32(node, "samsung,pll-clock-frequency",
&dsi->pll_clk_rate, 1);
/* If it doesn't exist, read it from the clock instead of failing */
if (ret < 0) {
dev_dbg(dev, "Using sclk_mipi for pll clock frequency\n");
pll_clk = devm_clk_get(dev, "sclk_mipi");
if (!IS_ERR(pll_clk))
dsi->pll_clk_rate = clk_get_rate(pll_clk);
else
return PTR_ERR(pll_clk);
}
/* If it doesn't exist, use pixel clock instead of failing */
ret = samsung_dsim_of_read_u32(node, "samsung,burst-clock-frequency",
&dsi->burst_clk_rate, 1);
if (ret < 0) {
dev_dbg(dev, "Using pixel clock for HS clock frequency\n");
dsi->burst_clk_rate = 0;
}
ret = samsung_dsim_of_read_u32(node, "samsung,esc-clock-frequency",
&dsi->esc_clk_rate, 0);
if (ret < 0)
return ret;
endpoint = of_graph_get_endpoint_by_regs(node, 1, -1);
nr_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
if (nr_lanes > 0 && nr_lanes <= 4) {
/* Polarity 0 is clock lane, 1..4 are data lanes. */
of_property_read_u32_array(endpoint, "lane-polarities",
lane_polarities, nr_lanes + 1);
for (i = 1; i <= nr_lanes; i++) {
if (lane_polarities[1] != lane_polarities[i])
DRM_DEV_ERROR(dsi->dev, "Data lanes polarities do not match");
}
if (lane_polarities[0])
dsi->swap_dn_dp_clk = true;
if (lane_polarities[1])
dsi->swap_dn_dp_data = true;
}
return 0;
}
static int generic_dsim_register_host(struct samsung_dsim *dsi)
{
return mipi_dsi_host_register(&dsi->dsi_host);
}
static void generic_dsim_unregister_host(struct samsung_dsim *dsi)
{
mipi_dsi_host_unregister(&dsi->dsi_host);
}
static const struct samsung_dsim_host_ops generic_dsim_host_ops = {
.register_host = generic_dsim_register_host,
.unregister_host = generic_dsim_unregister_host,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_high = {
.input_bus_flags = DRM_BUS_FLAG_DE_HIGH,
};
static const struct drm_bridge_timings samsung_dsim_bridge_timings_de_low = {
.input_bus_flags = DRM_BUS_FLAG_DE_LOW,
};
int samsung_dsim_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct samsung_dsim *dsi;
int ret, i;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
init_completion(&dsi->completed);
spin_lock_init(&dsi->transfer_lock);
INIT_LIST_HEAD(&dsi->transfer_list);
dsi->dsi_host.ops = &samsung_dsim_ops;
dsi->dsi_host.dev = dev;
dsi->dev = dev;
dsi->plat_data = of_device_get_match_data(dev);
dsi->driver_data = samsung_dsim_types[dsi->plat_data->hw_type];
dsi->supplies[0].supply = "vddcore";
dsi->supplies[1].supply = "vddio";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies),
dsi->supplies);
if (ret)
return dev_err_probe(dev, ret, "failed to get regulators\n");
dsi->clks = devm_kcalloc(dev, dsi->driver_data->num_clks,
sizeof(*dsi->clks), GFP_KERNEL);
if (!dsi->clks)
return -ENOMEM;
for (i = 0; i < dsi->driver_data->num_clks; i++) {
dsi->clks[i] = devm_clk_get(dev, clk_names[i]);
if (IS_ERR(dsi->clks[i])) {
if (strcmp(clk_names[i], "sclk_mipi") == 0) {
dsi->clks[i] = devm_clk_get(dev, OLD_SCLK_MIPI_CLK_NAME);
if (!IS_ERR(dsi->clks[i]))
continue;
}
dev_info(dev, "failed to get the clock: %s\n", clk_names[i]);
return PTR_ERR(dsi->clks[i]);
}
}
dsi->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dsi->reg_base))
return PTR_ERR(dsi->reg_base);
dsi->phy = devm_phy_optional_get(dev, "dsim");
if (IS_ERR(dsi->phy)) {
dev_info(dev, "failed to get dsim phy\n");
return PTR_ERR(dsi->phy);
}
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0)
return dsi->irq;
ret = devm_request_threaded_irq(dev, dsi->irq, NULL,
samsung_dsim_irq,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
dev_name(dev), dsi);
if (ret) {
dev_err(dev, "failed to request dsi irq\n");
return ret;
}
ret = samsung_dsim_parse_dt(dsi);
if (ret)
return ret;
platform_set_drvdata(pdev, dsi);
pm_runtime_enable(dev);
dsi->bridge.funcs = &samsung_dsim_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
/* DE_LOW: i.MX8M Mini/Nano LCDIF-DSIM glue logic inverts HS/VS/DE */
if (dsi->plat_data->hw_type == DSIM_TYPE_IMX8MM)
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_low;
else
dsi->bridge.timings = &samsung_dsim_bridge_timings_de_high;
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->register_host)
ret = dsi->plat_data->host_ops->register_host(dsi);
if (ret)
goto err_disable_runtime;
return 0;
err_disable_runtime:
pm_runtime_disable(dev);
return ret;
}
EXPORT_SYMBOL_GPL(samsung_dsim_probe);
int samsung_dsim_remove(struct platform_device *pdev)
{
struct samsung_dsim *dsi = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
if (dsi->plat_data->host_ops && dsi->plat_data->host_ops->unregister_host)
dsi->plat_data->host_ops->unregister_host(dsi);
return 0;
}
EXPORT_SYMBOL_GPL(samsung_dsim_remove);
static int __maybe_unused samsung_dsim_suspend(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
usleep_range(10000, 20000);
if (dsi->state & DSIM_STATE_INITIALIZED) {
dsi->state &= ~DSIM_STATE_INITIALIZED;
samsung_dsim_disable_clock(dsi);
samsung_dsim_disable_irq(dsi);
}
dsi->state &= ~DSIM_STATE_CMD_LPM;
phy_power_off(dsi->phy);
for (i = driver_data->num_clks - 1; i > -1; i--)
clk_disable_unprepare(dsi->clks[i]);
ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0)
dev_err(dsi->dev, "cannot disable regulators %d\n", ret);
return 0;
}
static int __maybe_unused samsung_dsim_resume(struct device *dev)
{
struct samsung_dsim *dsi = dev_get_drvdata(dev);
const struct samsung_dsim_driver_data *driver_data = dsi->driver_data;
int ret, i;
ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable regulators %d\n", ret);
return ret;
}
for (i = 0; i < driver_data->num_clks; i++) {
ret = clk_prepare_enable(dsi->clks[i]);
if (ret < 0)
goto err_clk;
}
ret = phy_power_on(dsi->phy);
if (ret < 0) {
dev_err(dsi->dev, "cannot enable phy %d\n", ret);
goto err_clk;
}
return 0;
err_clk:
while (--i > -1)
clk_disable_unprepare(dsi->clks[i]);
regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies);
return ret;
}
const struct dev_pm_ops samsung_dsim_pm_ops = {
SET_RUNTIME_PM_OPS(samsung_dsim_suspend, samsung_dsim_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
EXPORT_SYMBOL_GPL(samsung_dsim_pm_ops);
static const struct samsung_dsim_plat_data samsung_dsim_imx8mm_pdata = {
.hw_type = DSIM_TYPE_IMX8MM,
.host_ops = &generic_dsim_host_ops,
};
static const struct samsung_dsim_plat_data samsung_dsim_imx8mp_pdata = {
.hw_type = DSIM_TYPE_IMX8MP,
.host_ops = &generic_dsim_host_ops,
};
static const struct of_device_id samsung_dsim_of_match[] = {
{
.compatible = "fsl,imx8mm-mipi-dsim",
.data = &samsung_dsim_imx8mm_pdata,
},
{
.compatible = "fsl,imx8mp-mipi-dsim",
.data = &samsung_dsim_imx8mp_pdata,
},
{ /* sentinel. */ }
};
MODULE_DEVICE_TABLE(of, samsung_dsim_of_match);
static struct platform_driver samsung_dsim_driver = {
.probe = samsung_dsim_probe,
.remove = samsung_dsim_remove,
.driver = {
.name = "samsung-dsim",
.pm = &samsung_dsim_pm_ops,
.of_match_table = samsung_dsim_of_match,
},
};
module_platform_driver(samsung_dsim_driver);
MODULE_AUTHOR("Jagan Teki <jagan@amarulasolutions.com>");
MODULE_DESCRIPTION("Samsung MIPI DSIM controller bridge");
MODULE_LICENSE("GPL");