linux-stable/drivers/gpu/drm/i915/gem/i915_gem_ttm.c
Jason Ekstrand 75e382850b drm/i915/gem/ttm: Only call __i915_gem_object_set_pages if needed
__i915_ttm_get_pages does two things.  First, it calls ttm_bo_validate()
to check the given placement and migrate the BO if needed.  Then, it
updates the GEM object to match, in case the object was migrated.  If
no migration occured, however, we might still have pages on the GEM
object in which case we don't need to fetch them from TTM and call
__i915_gem_object_set_pages.  This hasn't been a problem before because
the primary user of __i915_ttm_get_pages is __i915_gem_object_get_pages
which only calls it if the GEM object doesn't have pages.

However, i915_ttm_migrate also uses __i915_ttm_get_pages to do the
migration so this meant it was unsafe to call on an already populated
object.  This patch checks i915_gem_object_has_pages() before trying to
__i915_gem_object_set_pages so i915_ttm_migrate is safe to call, even on
populated objects.

Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210723172142.3273510-6-jason@jlekstrand.net
2021-07-26 16:37:34 +01:00

965 lines
26 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include "i915_drv.h"
#include "intel_memory_region.h"
#include "intel_region_ttm.h"
#include "gem/i915_gem_object.h"
#include "gem/i915_gem_region.h"
#include "gem/i915_gem_ttm.h"
#include "gem/i915_gem_mman.h"
#include "gt/intel_migrate.h"
#include "gt/intel_engine_pm.h"
#define I915_PL_LMEM0 TTM_PL_PRIV
#define I915_PL_SYSTEM TTM_PL_SYSTEM
#define I915_PL_STOLEN TTM_PL_VRAM
#define I915_PL_GGTT TTM_PL_TT
#define I915_TTM_PRIO_PURGE 0
#define I915_TTM_PRIO_NO_PAGES 1
#define I915_TTM_PRIO_HAS_PAGES 2
/*
* Size of struct ttm_place vector in on-stack struct ttm_placement allocs
*/
#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
/**
* struct i915_ttm_tt - TTM page vector with additional private information
* @ttm: The base TTM page vector.
* @dev: The struct device used for dma mapping and unmapping.
* @cached_st: The cached scatter-gather table.
*
* Note that DMA may be going on right up to the point where the page-
* vector is unpopulated in delayed destroy. Hence keep the
* scatter-gather table mapped and cached up to that point. This is
* different from the cached gem object io scatter-gather table which
* doesn't have an associated dma mapping.
*/
struct i915_ttm_tt {
struct ttm_tt ttm;
struct device *dev;
struct sg_table *cached_st;
};
static const struct ttm_place sys_placement_flags = {
.fpfn = 0,
.lpfn = 0,
.mem_type = I915_PL_SYSTEM,
.flags = 0,
};
static struct ttm_placement i915_sys_placement = {
.num_placement = 1,
.placement = &sys_placement_flags,
.num_busy_placement = 1,
.busy_placement = &sys_placement_flags,
};
static int i915_ttm_err_to_gem(int err)
{
/* Fastpath */
if (likely(!err))
return 0;
switch (err) {
case -EBUSY:
/*
* TTM likes to convert -EDEADLK to -EBUSY, and wants us to
* restart the operation, since we don't record the contending
* lock. We use -EAGAIN to restart.
*/
return -EAGAIN;
case -ENOSPC:
/*
* Memory type / region is full, and we can't evict.
* Except possibly system, that returns -ENOMEM;
*/
return -ENXIO;
default:
break;
}
return err;
}
static bool gpu_binds_iomem(struct ttm_resource *mem)
{
return mem->mem_type != TTM_PL_SYSTEM;
}
static bool cpu_maps_iomem(struct ttm_resource *mem)
{
/* Once / if we support GGTT, this is also false for cached ttm_tts */
return mem->mem_type != TTM_PL_SYSTEM;
}
static enum i915_cache_level
i915_ttm_cache_level(struct drm_i915_private *i915, struct ttm_resource *res,
struct ttm_tt *ttm)
{
return ((HAS_LLC(i915) || HAS_SNOOP(i915)) && !gpu_binds_iomem(res) &&
ttm->caching == ttm_cached) ? I915_CACHE_LLC :
I915_CACHE_NONE;
}
static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj);
static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
{
/*
* Objects only allowed in system get cached cpu-mappings.
* Other objects get WC mapping for now. Even if in system.
*/
if (obj->mm.region->type == INTEL_MEMORY_SYSTEM &&
obj->mm.n_placements <= 1)
return ttm_cached;
return ttm_write_combined;
}
static void
i915_ttm_place_from_region(const struct intel_memory_region *mr,
struct ttm_place *place,
unsigned int flags)
{
memset(place, 0, sizeof(*place));
place->mem_type = intel_region_to_ttm_type(mr);
if (flags & I915_BO_ALLOC_CONTIGUOUS)
place->flags = TTM_PL_FLAG_CONTIGUOUS;
}
static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
struct ttm_place *requested,
struct ttm_place *busy,
struct ttm_placement *placement)
{
unsigned int num_allowed = obj->mm.n_placements;
unsigned int flags = obj->flags;
unsigned int i;
placement->num_placement = 1;
i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
obj->mm.region, requested, flags);
/* Cache this on object? */
placement->num_busy_placement = num_allowed;
for (i = 0; i < placement->num_busy_placement; ++i)
i915_ttm_place_from_region(obj->mm.placements[i], busy + i, flags);
if (num_allowed == 0) {
*busy = *requested;
placement->num_busy_placement = 1;
}
placement->placement = requested;
placement->busy_placement = busy;
}
static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
uint32_t page_flags)
{
struct ttm_resource_manager *man =
ttm_manager_type(bo->bdev, bo->resource->mem_type);
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct i915_ttm_tt *i915_tt;
int ret;
i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
if (!i915_tt)
return NULL;
if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
man->use_tt)
page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags,
i915_ttm_select_tt_caching(obj));
if (ret) {
kfree(i915_tt);
return NULL;
}
i915_tt->dev = obj->base.dev->dev;
return &i915_tt->ttm;
}
static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
if (i915_tt->cached_st) {
dma_unmap_sgtable(i915_tt->dev, i915_tt->cached_st,
DMA_BIDIRECTIONAL, 0);
sg_free_table(i915_tt->cached_st);
kfree(i915_tt->cached_st);
i915_tt->cached_st = NULL;
}
ttm_pool_free(&bdev->pool, ttm);
}
static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
ttm_tt_destroy_common(bdev, ttm);
ttm_tt_fini(ttm);
kfree(i915_tt);
}
static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
const struct ttm_place *place)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
/* Will do for now. Our pinned objects are still on TTM's LRU lists */
return i915_gem_object_evictable(obj);
}
static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
struct ttm_placement *placement)
{
*placement = i915_sys_placement;
}
static int i915_ttm_move_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
int ret;
ret = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
if (ret)
return ret;
ret = __i915_gem_object_put_pages(obj);
if (ret)
return ret;
return 0;
}
static void i915_ttm_free_cached_io_st(struct drm_i915_gem_object *obj)
{
struct radix_tree_iter iter;
void __rcu **slot;
if (!obj->ttm.cached_io_st)
return;
rcu_read_lock();
radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
rcu_read_unlock();
sg_free_table(obj->ttm.cached_io_st);
kfree(obj->ttm.cached_io_st);
obj->ttm.cached_io_st = NULL;
}
static void
i915_ttm_adjust_domains_after_move(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
if (cpu_maps_iomem(bo->resource) || bo->ttm->caching != ttm_cached) {
obj->write_domain = I915_GEM_DOMAIN_WC;
obj->read_domains = I915_GEM_DOMAIN_WC;
} else {
obj->write_domain = I915_GEM_DOMAIN_CPU;
obj->read_domains = I915_GEM_DOMAIN_CPU;
}
}
static void i915_ttm_adjust_gem_after_move(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
unsigned int cache_level;
unsigned int i;
/*
* If object was moved to an allowable region, update the object
* region to consider it migrated. Note that if it's currently not
* in an allowable region, it's evicted and we don't update the
* object region.
*/
if (intel_region_to_ttm_type(obj->mm.region) != bo->resource->mem_type) {
for (i = 0; i < obj->mm.n_placements; ++i) {
struct intel_memory_region *mr = obj->mm.placements[i];
if (intel_region_to_ttm_type(mr) == bo->resource->mem_type &&
mr != obj->mm.region) {
i915_gem_object_release_memory_region(obj);
i915_gem_object_init_memory_region(obj, mr);
break;
}
}
}
obj->mem_flags &= ~(I915_BO_FLAG_STRUCT_PAGE | I915_BO_FLAG_IOMEM);
obj->mem_flags |= cpu_maps_iomem(bo->resource) ? I915_BO_FLAG_IOMEM :
I915_BO_FLAG_STRUCT_PAGE;
cache_level = i915_ttm_cache_level(to_i915(bo->base.dev), bo->resource,
bo->ttm);
i915_gem_object_set_cache_coherency(obj, cache_level);
}
static void i915_ttm_purge(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
struct ttm_placement place = {};
int ret;
if (obj->mm.madv == __I915_MADV_PURGED)
return;
/* TTM's purge interface. Note that we might be reentering. */
ret = ttm_bo_validate(bo, &place, &ctx);
if (!ret) {
obj->write_domain = 0;
obj->read_domains = 0;
i915_ttm_adjust_gem_after_move(obj);
i915_ttm_free_cached_io_st(obj);
obj->mm.madv = __I915_MADV_PURGED;
}
}
static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
int ret = i915_ttm_move_notify(bo);
GEM_WARN_ON(ret);
GEM_WARN_ON(obj->ttm.cached_io_st);
if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
i915_ttm_purge(obj);
}
static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
if (likely(obj)) {
/* This releases all gem object bindings to the backend. */
i915_ttm_free_cached_io_st(obj);
__i915_gem_free_object(obj);
}
}
static struct intel_memory_region *
i915_ttm_region(struct ttm_device *bdev, int ttm_mem_type)
{
struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
/* There's some room for optimization here... */
GEM_BUG_ON(ttm_mem_type != I915_PL_SYSTEM &&
ttm_mem_type < I915_PL_LMEM0);
if (ttm_mem_type == I915_PL_SYSTEM)
return intel_memory_region_lookup(i915, INTEL_MEMORY_SYSTEM,
0);
return intel_memory_region_lookup(i915, INTEL_MEMORY_LOCAL,
ttm_mem_type - I915_PL_LMEM0);
}
static struct sg_table *i915_ttm_tt_get_st(struct ttm_tt *ttm)
{
struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
struct scatterlist *sg;
struct sg_table *st;
int ret;
if (i915_tt->cached_st)
return i915_tt->cached_st;
st = kzalloc(sizeof(*st), GFP_KERNEL);
if (!st)
return ERR_PTR(-ENOMEM);
sg = __sg_alloc_table_from_pages
(st, ttm->pages, ttm->num_pages, 0,
(unsigned long)ttm->num_pages << PAGE_SHIFT,
i915_sg_segment_size(), NULL, 0, GFP_KERNEL);
if (IS_ERR(sg)) {
kfree(st);
return ERR_CAST(sg);
}
ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
if (ret) {
sg_free_table(st);
kfree(st);
return ERR_PTR(ret);
}
i915_tt->cached_st = st;
return st;
}
static struct sg_table *
i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
struct ttm_resource *res)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
if (!gpu_binds_iomem(res))
return i915_ttm_tt_get_st(bo->ttm);
/*
* If CPU mapping differs, we need to add the ttm_tt pages to
* the resulting st. Might make sense for GGTT.
*/
GEM_WARN_ON(!cpu_maps_iomem(res));
return intel_region_ttm_resource_to_st(obj->mm.region, res);
}
static int i915_ttm_accel_move(struct ttm_buffer_object *bo,
struct ttm_resource *dst_mem,
struct sg_table *dst_st)
{
struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
bdev);
struct ttm_resource_manager *src_man =
ttm_manager_type(bo->bdev, bo->resource->mem_type);
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct sg_table *src_st;
struct i915_request *rq;
struct ttm_tt *ttm = bo->ttm;
enum i915_cache_level src_level, dst_level;
int ret;
if (!i915->gt.migrate.context)
return -EINVAL;
dst_level = i915_ttm_cache_level(i915, dst_mem, ttm);
if (!ttm || !ttm_tt_is_populated(ttm)) {
if (bo->type == ttm_bo_type_kernel)
return -EINVAL;
if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC))
return 0;
intel_engine_pm_get(i915->gt.migrate.context->engine);
ret = intel_context_migrate_clear(i915->gt.migrate.context, NULL,
dst_st->sgl, dst_level,
gpu_binds_iomem(dst_mem),
0, &rq);
if (!ret && rq) {
i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
i915_request_put(rq);
}
intel_engine_pm_put(i915->gt.migrate.context->engine);
} else {
src_st = src_man->use_tt ? i915_ttm_tt_get_st(ttm) :
obj->ttm.cached_io_st;
src_level = i915_ttm_cache_level(i915, bo->resource, ttm);
intel_engine_pm_get(i915->gt.migrate.context->engine);
ret = intel_context_migrate_copy(i915->gt.migrate.context,
NULL, src_st->sgl, src_level,
gpu_binds_iomem(bo->resource),
dst_st->sgl, dst_level,
gpu_binds_iomem(dst_mem),
&rq);
if (!ret && rq) {
i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
i915_request_put(rq);
}
intel_engine_pm_put(i915->gt.migrate.context->engine);
}
return ret;
}
static int i915_ttm_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *dst_mem,
struct ttm_place *hop)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
struct ttm_resource_manager *dst_man =
ttm_manager_type(bo->bdev, dst_mem->mem_type);
struct intel_memory_region *dst_reg, *src_reg;
union {
struct ttm_kmap_iter_tt tt;
struct ttm_kmap_iter_iomap io;
} _dst_iter, _src_iter;
struct ttm_kmap_iter *dst_iter, *src_iter;
struct sg_table *dst_st;
int ret;
dst_reg = i915_ttm_region(bo->bdev, dst_mem->mem_type);
src_reg = i915_ttm_region(bo->bdev, bo->resource->mem_type);
GEM_BUG_ON(!dst_reg || !src_reg);
/* Sync for now. We could do the actual copy async. */
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
return ret;
ret = i915_ttm_move_notify(bo);
if (ret)
return ret;
if (obj->mm.madv != I915_MADV_WILLNEED) {
i915_ttm_purge(obj);
ttm_resource_free(bo, &dst_mem);
return 0;
}
/* Populate ttm with pages if needed. Typically system memory. */
if (bo->ttm && (dst_man->use_tt ||
(bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED))) {
ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx);
if (ret)
return ret;
}
dst_st = i915_ttm_resource_get_st(obj, dst_mem);
if (IS_ERR(dst_st))
return PTR_ERR(dst_st);
ret = i915_ttm_accel_move(bo, dst_mem, dst_st);
if (ret) {
/* If we start mapping GGTT, we can no longer use man::use_tt here. */
dst_iter = !cpu_maps_iomem(dst_mem) ?
ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm) :
ttm_kmap_iter_iomap_init(&_dst_iter.io, &dst_reg->iomap,
dst_st, dst_reg->region.start);
src_iter = !cpu_maps_iomem(bo->resource) ?
ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm) :
ttm_kmap_iter_iomap_init(&_src_iter.io, &src_reg->iomap,
obj->ttm.cached_io_st,
src_reg->region.start);
ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter);
}
/* Below dst_mem becomes bo->resource. */
ttm_bo_move_sync_cleanup(bo, dst_mem);
i915_ttm_adjust_domains_after_move(obj);
i915_ttm_free_cached_io_st(obj);
if (gpu_binds_iomem(dst_mem) || cpu_maps_iomem(dst_mem)) {
obj->ttm.cached_io_st = dst_st;
obj->ttm.get_io_page.sg_pos = dst_st->sgl;
obj->ttm.get_io_page.sg_idx = 0;
}
i915_ttm_adjust_gem_after_move(obj);
return 0;
}
static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
{
if (!cpu_maps_iomem(mem))
return 0;
mem->bus.caching = ttm_write_combined;
mem->bus.is_iomem = true;
return 0;
}
static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
unsigned long page_offset)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
unsigned long base = obj->mm.region->iomap.base - obj->mm.region->region.start;
struct scatterlist *sg;
unsigned int ofs;
GEM_WARN_ON(bo->ttm);
sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
}
static struct ttm_device_funcs i915_ttm_bo_driver = {
.ttm_tt_create = i915_ttm_tt_create,
.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
.ttm_tt_destroy = i915_ttm_tt_destroy,
.eviction_valuable = i915_ttm_eviction_valuable,
.evict_flags = i915_ttm_evict_flags,
.move = i915_ttm_move,
.swap_notify = i915_ttm_swap_notify,
.delete_mem_notify = i915_ttm_delete_mem_notify,
.io_mem_reserve = i915_ttm_io_mem_reserve,
.io_mem_pfn = i915_ttm_io_mem_pfn,
};
/**
* i915_ttm_driver - Return a pointer to the TTM device funcs
*
* Return: Pointer to statically allocated TTM device funcs.
*/
struct ttm_device_funcs *i915_ttm_driver(void)
{
return &i915_ttm_bo_driver;
}
static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
struct ttm_placement *placement)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
struct sg_table *st;
int real_num_busy;
int ret;
/* First try only the requested placement. No eviction. */
real_num_busy = fetch_and_zero(&placement->num_busy_placement);
ret = ttm_bo_validate(bo, placement, &ctx);
if (ret) {
ret = i915_ttm_err_to_gem(ret);
/*
* Anything that wants to restart the operation gets to
* do that.
*/
if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
ret == -EAGAIN)
return ret;
/*
* If the initial attempt fails, allow all accepted placements,
* evicting if necessary.
*/
placement->num_busy_placement = real_num_busy;
ret = ttm_bo_validate(bo, placement, &ctx);
if (ret)
return i915_ttm_err_to_gem(ret);
}
i915_ttm_adjust_lru(obj);
if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
if (ret)
return ret;
i915_ttm_adjust_domains_after_move(obj);
i915_ttm_adjust_gem_after_move(obj);
}
if (!i915_gem_object_has_pages(obj)) {
/* Object either has a page vector or is an iomem object */
st = bo->ttm ? i915_ttm_tt_get_st(bo->ttm) : obj->ttm.cached_io_st;
if (IS_ERR(st))
return PTR_ERR(st);
__i915_gem_object_set_pages(obj, st, i915_sg_dma_sizes(st->sgl));
}
return ret;
}
static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
{
struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
struct ttm_placement placement;
GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
/* Move to the requested placement. */
i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
return __i915_ttm_get_pages(obj, &placement);
}
/**
* DOC: Migration vs eviction
*
* GEM migration may not be the same as TTM migration / eviction. If
* the TTM core decides to evict an object it may be evicted to a
* TTM memory type that is not in the object's allowable GEM regions, or
* in fact theoretically to a TTM memory type that doesn't correspond to
* a GEM memory region. In that case the object's GEM region is not
* updated, and the data is migrated back to the GEM region at
* get_pages time. TTM may however set up CPU ptes to the object even
* when it is evicted.
* Gem forced migration using the i915_ttm_migrate() op, is allowed even
* to regions that are not in the object's list of allowable placements.
*/
static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
struct intel_memory_region *mr)
{
struct ttm_place requested;
struct ttm_placement placement;
int ret;
i915_ttm_place_from_region(mr, &requested, obj->flags);
placement.num_placement = 1;
placement.num_busy_placement = 1;
placement.placement = &requested;
placement.busy_placement = &requested;
ret = __i915_ttm_get_pages(obj, &placement);
if (ret)
return ret;
/*
* Reinitialize the region bindings. This is primarily
* required for objects where the new region is not in
* its allowable placements.
*/
if (obj->mm.region != mr) {
i915_gem_object_release_memory_region(obj);
i915_gem_object_init_memory_region(obj, mr);
}
return 0;
}
static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
struct sg_table *st)
{
/*
* We're currently not called from a shrinker, so put_pages()
* typically means the object is about to destroyed, or called
* from move_notify(). So just avoid doing much for now.
* If the object is not destroyed next, The TTM eviction logic
* and shrinkers will move it out if needed.
*/
i915_ttm_adjust_lru(obj);
}
static void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
{
struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
/*
* Don't manipulate the TTM LRUs while in TTM bo destruction.
* We're called through i915_ttm_delete_mem_notify().
*/
if (!kref_read(&bo->kref))
return;
/*
* Put on the correct LRU list depending on the MADV status
*/
spin_lock(&bo->bdev->lru_lock);
if (obj->mm.madv != I915_MADV_WILLNEED) {
bo->priority = I915_TTM_PRIO_PURGE;
} else if (!i915_gem_object_has_pages(obj)) {
if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
bo->priority = I915_TTM_PRIO_HAS_PAGES;
} else {
if (bo->priority > I915_TTM_PRIO_NO_PAGES)
bo->priority = I915_TTM_PRIO_NO_PAGES;
}
ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
spin_unlock(&bo->bdev->lru_lock);
}
/*
* TTM-backed gem object destruction requires some clarification.
* Basically we have two possibilities here. We can either rely on the
* i915 delayed destruction and put the TTM object when the object
* is idle. This would be detected by TTM which would bypass the
* TTM delayed destroy handling. The other approach is to put the TTM
* object early and rely on the TTM destroyed handling, and then free
* the leftover parts of the GEM object once TTM's destroyed list handling is
* complete. For now, we rely on the latter for two reasons:
* a) TTM can evict an object even when it's on the delayed destroy list,
* which in theory allows for complete eviction.
* b) There is work going on in TTM to allow freeing an object even when
* it's not idle, and using the TTM destroyed list handling could help us
* benefit from that.
*/
static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
{
if (obj->ttm.created) {
ttm_bo_put(i915_gem_to_ttm(obj));
} else {
__i915_gem_free_object(obj);
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
}
static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
{
struct vm_area_struct *area = vmf->vma;
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(area->vm_private_data);
/* Sanity check that we allow writing into this object */
if (unlikely(i915_gem_object_is_readonly(obj) &&
area->vm_flags & VM_WRITE))
return VM_FAULT_SIGBUS;
return ttm_bo_vm_fault(vmf);
}
static int
vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
void *buf, int len, int write)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(area->vm_private_data);
if (i915_gem_object_is_readonly(obj) && write)
return -EACCES;
return ttm_bo_vm_access(area, addr, buf, len, write);
}
static void ttm_vm_open(struct vm_area_struct *vma)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(vma->vm_private_data);
GEM_BUG_ON(!obj);
i915_gem_object_get(obj);
}
static void ttm_vm_close(struct vm_area_struct *vma)
{
struct drm_i915_gem_object *obj =
i915_ttm_to_gem(vma->vm_private_data);
GEM_BUG_ON(!obj);
i915_gem_object_put(obj);
}
static const struct vm_operations_struct vm_ops_ttm = {
.fault = vm_fault_ttm,
.access = vm_access_ttm,
.open = ttm_vm_open,
.close = ttm_vm_close,
};
static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
{
/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
return drm_vma_node_offset_addr(&obj->base.vma_node);
}
static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
.name = "i915_gem_object_ttm",
.get_pages = i915_ttm_get_pages,
.put_pages = i915_ttm_put_pages,
.truncate = i915_ttm_purge,
.adjust_lru = i915_ttm_adjust_lru,
.delayed_free = i915_ttm_delayed_free,
.migrate = i915_ttm_migrate,
.mmap_offset = i915_ttm_mmap_offset,
.mmap_ops = &vm_ops_ttm,
};
void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
{
struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
i915_gem_object_release_memory_region(obj);
mutex_destroy(&obj->ttm.get_io_page.lock);
if (obj->ttm.created)
call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
}
/**
* __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
* @mem: The initial memory region for the object.
* @obj: The gem object.
* @size: Object size in bytes.
* @flags: gem object flags.
*
* Return: 0 on success, negative error code on failure.
*/
int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
struct drm_i915_gem_object *obj,
resource_size_t size,
resource_size_t page_size,
unsigned int flags)
{
static struct lock_class_key lock_class;
struct drm_i915_private *i915 = mem->i915;
struct ttm_operation_ctx ctx = {
.interruptible = true,
.no_wait_gpu = false,
};
enum ttm_bo_type bo_type;
int ret;
drm_gem_private_object_init(&i915->drm, &obj->base, size);
i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
i915_gem_object_init_memory_region(obj, mem);
i915_gem_object_make_unshrinkable(obj);
INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
mutex_init(&obj->ttm.get_io_page.lock);
bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
ttm_bo_type_kernel;
obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
/* Forcing the page size is kernel internal only */
GEM_BUG_ON(page_size && obj->mm.n_placements);
/*
* If this function fails, it will call the destructor, but
* our caller still owns the object. So no freeing in the
* destructor until obj->ttm.created is true.
* Similarly, in delayed_destroy, we can't call ttm_bo_put()
* until successful initialization.
*/
ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
bo_type, &i915_sys_placement,
page_size >> PAGE_SHIFT,
&ctx, NULL, NULL, i915_ttm_bo_destroy);
if (ret)
return i915_ttm_err_to_gem(ret);
obj->ttm.created = true;
i915_ttm_adjust_domains_after_move(obj);
i915_ttm_adjust_gem_after_move(obj);
i915_gem_object_unlock(obj);
return 0;
}
static const struct intel_memory_region_ops ttm_system_region_ops = {
.init_object = __i915_gem_ttm_object_init,
};
struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private *i915,
u16 type, u16 instance)
{
struct intel_memory_region *mr;
mr = intel_memory_region_create(i915, 0,
totalram_pages() << PAGE_SHIFT,
PAGE_SIZE, 0,
type, instance,
&ttm_system_region_ops);
if (IS_ERR(mr))
return mr;
intel_memory_region_set_name(mr, "system-ttm");
return mr;
}