linux-stable/crypto/xctr.c
Nathan Huckleberry 17fee07a2a crypto: xctr - Add XCTR support
Add a generic implementation of XCTR mode as a template.  XCTR is a
blockcipher mode similar to CTR mode.  XCTR uses XORs and little-endian
addition rather than big-endian arithmetic which has two advantages:  It
is slightly faster on little-endian CPUs and it is less likely to be
implemented incorrect since integer overflows are not possible on
practical input sizes.  XCTR is used as a component to implement HCTR2.

More information on XCTR mode can be found in the HCTR2 paper:
https://eprint.iacr.org/2021/1441.pdf

Signed-off-by: Nathan Huckleberry <nhuck@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-06-10 16:40:16 +08:00

191 lines
5.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* XCTR: XOR Counter mode - Adapted from ctr.c
*
* (C) Copyright IBM Corp. 2007 - Joy Latten <latten@us.ibm.com>
* Copyright 2021 Google LLC
*/
/*
* XCTR mode is a blockcipher mode of operation used to implement HCTR2. XCTR is
* closely related to the CTR mode of operation; the main difference is that CTR
* generates the keystream using E(CTR + IV) whereas XCTR generates the
* keystream using E(CTR ^ IV). This allows implementations to avoid dealing
* with multi-limb integers (as is required in CTR mode). XCTR is also specified
* using little-endian arithmetic which makes it slightly faster on LE machines.
*
* See the HCTR2 paper for more details:
* Length-preserving encryption with HCTR2
* (https://eprint.iacr.org/2021/1441.pdf)
*/
#include <crypto/algapi.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/skcipher.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
/* For now this implementation is limited to 16-byte blocks for simplicity */
#define XCTR_BLOCKSIZE 16
static void crypto_xctr_crypt_final(struct skcipher_walk *walk,
struct crypto_cipher *tfm, u32 byte_ctr)
{
u8 keystream[XCTR_BLOCKSIZE];
const u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
crypto_cipher_encrypt_one(tfm, keystream, walk->iv);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
}
static int crypto_xctr_crypt_segment(struct skcipher_walk *walk,
struct crypto_cipher *tfm, u32 byte_ctr)
{
void (*fn)(struct crypto_tfm *, u8 *, const u8 *) =
crypto_cipher_alg(tfm)->cia_encrypt;
const u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
do {
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
fn(crypto_cipher_tfm(tfm), dst, walk->iv);
crypto_xor(dst, src, XCTR_BLOCKSIZE);
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
le32_add_cpu(&ctr32, 1);
src += XCTR_BLOCKSIZE;
dst += XCTR_BLOCKSIZE;
} while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE);
return nbytes;
}
static int crypto_xctr_crypt_inplace(struct skcipher_walk *walk,
struct crypto_cipher *tfm, u32 byte_ctr)
{
void (*fn)(struct crypto_tfm *, u8 *, const u8 *) =
crypto_cipher_alg(tfm)->cia_encrypt;
unsigned long alignmask = crypto_cipher_alignmask(tfm);
unsigned int nbytes = walk->nbytes;
u8 *data = walk->src.virt.addr;
u8 tmp[XCTR_BLOCKSIZE + MAX_CIPHER_ALIGNMASK];
u8 *keystream = PTR_ALIGN(tmp + 0, alignmask + 1);
__le32 ctr32 = cpu_to_le32(byte_ctr / XCTR_BLOCKSIZE + 1);
do {
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
fn(crypto_cipher_tfm(tfm), keystream, walk->iv);
crypto_xor(data, keystream, XCTR_BLOCKSIZE);
crypto_xor(walk->iv, (u8 *)&ctr32, sizeof(ctr32));
le32_add_cpu(&ctr32, 1);
data += XCTR_BLOCKSIZE;
} while ((nbytes -= XCTR_BLOCKSIZE) >= XCTR_BLOCKSIZE);
return nbytes;
}
static int crypto_xctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
u32 byte_ctr = 0;
err = skcipher_walk_virt(&walk, req, false);
while (walk.nbytes >= XCTR_BLOCKSIZE) {
if (walk.src.virt.addr == walk.dst.virt.addr)
nbytes = crypto_xctr_crypt_inplace(&walk, cipher,
byte_ctr);
else
nbytes = crypto_xctr_crypt_segment(&walk, cipher,
byte_ctr);
byte_ctr += walk.nbytes - nbytes;
err = skcipher_walk_done(&walk, nbytes);
}
if (walk.nbytes) {
crypto_xctr_crypt_final(&walk, cipher, byte_ctr);
err = skcipher_walk_done(&walk, 0);
}
return err;
}
static int crypto_xctr_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct skcipher_instance *inst;
struct crypto_alg *alg;
int err;
inst = skcipher_alloc_instance_simple(tmpl, tb);
if (IS_ERR(inst))
return PTR_ERR(inst);
alg = skcipher_ialg_simple(inst);
/* Block size must be 16 bytes. */
err = -EINVAL;
if (alg->cra_blocksize != XCTR_BLOCKSIZE)
goto out_free_inst;
/* XCTR mode is a stream cipher. */
inst->alg.base.cra_blocksize = 1;
/*
* To simplify the implementation, configure the skcipher walk to only
* give a partial block at the very end, never earlier.
*/
inst->alg.chunksize = alg->cra_blocksize;
inst->alg.encrypt = crypto_xctr_crypt;
inst->alg.decrypt = crypto_xctr_crypt;
err = skcipher_register_instance(tmpl, inst);
if (err) {
out_free_inst:
inst->free(inst);
}
return err;
}
static struct crypto_template crypto_xctr_tmpl = {
.name = "xctr",
.create = crypto_xctr_create,
.module = THIS_MODULE,
};
static int __init crypto_xctr_module_init(void)
{
return crypto_register_template(&crypto_xctr_tmpl);
}
static void __exit crypto_xctr_module_exit(void)
{
crypto_unregister_template(&crypto_xctr_tmpl);
}
subsys_initcall(crypto_xctr_module_init);
module_exit(crypto_xctr_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("XCTR block cipher mode of operation");
MODULE_ALIAS_CRYPTO("xctr");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);