linux-stable/mm/memory_hotplug.c
Anshuman Khandual bca3feaa07 mm/memory_hotplug: prevalidate the address range being added with platform
Patch series "mm/memory_hotplug: Pre-validate the address range with platform", v5.

This series adds a mechanism allowing platforms to weigh in and
prevalidate incoming address range before proceeding further with the
memory hotplug.  This helps prevent potential platform errors for the
given address range, down the hotplug call chain, which inevitably fails
the hotplug itself.

This mechanism was suggested by David Hildenbrand during another
discussion with respect to a memory hotplug fix on arm64 platform.

https://lore.kernel.org/linux-arm-kernel/1600332402-30123-1-git-send-email-anshuman.khandual@arm.com/

This mechanism focuses on the addressibility aspect and not [sub] section
alignment aspect.  Hence check_hotplug_memory_range() and check_pfn_span()
have been left unchanged.

This patch (of 4):

This introduces mhp_range_allowed() which can be called in various memory
hotplug paths to prevalidate the address range which is being added, with
the platform.  Then mhp_range_allowed() calls mhp_get_pluggable_range()
which provides applicable address range depending on whether linear
mapping is required or not.  For ranges that require linear mapping, it
calls a new arch callback arch_get_mappable_range() which the platform can
override.  So the new callback, in turn provides the platform an
opportunity to configure acceptable memory hotplug address ranges in case
there are constraints.

This mechanism will help prevent platform specific errors deep down during
hotplug calls.  This drops now redundant
check_hotplug_memory_addressable() check in __add_pages() but instead adds
a VM_BUG_ON() check which would ensure that the range has been validated
with mhp_range_allowed() earlier in the call chain.  Besides
mhp_get_pluggable_range() also can be used by potential memory hotplug
callers to avail the allowed physical range which would go through on a
given platform.

This does not really add any new range check in generic memory hotplug but
instead compensates for lost checks in arch_add_memory() where applicable
and check_hotplug_memory_addressable(), with unified mhp_range_allowed().

[akpm@linux-foundation.org: make pagemap_range() return -EINVAL when mhp_range_allowed() fails]

Link: https://lkml.kernel.org/r/1612149902-7867-1-git-send-email-anshuman.khandual@arm.com
Link: https://lkml.kernel.org/r/1612149902-7867-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com> # s390
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta@cloud.ionos.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: teawater <teawaterz@linux.alibaba.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:00 -08:00

2011 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/mm/memory_hotplug.c
*
* Copyright (C)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/pagevec.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/memory.h>
#include <linux/memremap.h>
#include <linux/memory_hotplug.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/migrate.h>
#include <linux/page-isolation.h>
#include <linux/pfn.h>
#include <linux/suspend.h>
#include <linux/mm_inline.h>
#include <linux/firmware-map.h>
#include <linux/stop_machine.h>
#include <linux/hugetlb.h>
#include <linux/memblock.h>
#include <linux/compaction.h>
#include <linux/rmap.h>
#include <asm/tlbflush.h>
#include "internal.h"
#include "shuffle.h"
/*
* online_page_callback contains pointer to current page onlining function.
* Initially it is generic_online_page(). If it is required it could be
* changed by calling set_online_page_callback() for callback registration
* and restore_online_page_callback() for generic callback restore.
*/
static online_page_callback_t online_page_callback = generic_online_page;
static DEFINE_MUTEX(online_page_callback_lock);
DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
void get_online_mems(void)
{
percpu_down_read(&mem_hotplug_lock);
}
void put_online_mems(void)
{
percpu_up_read(&mem_hotplug_lock);
}
bool movable_node_enabled = false;
#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
int mhp_default_online_type = MMOP_OFFLINE;
#else
int mhp_default_online_type = MMOP_ONLINE;
#endif
static int __init setup_memhp_default_state(char *str)
{
const int online_type = mhp_online_type_from_str(str);
if (online_type >= 0)
mhp_default_online_type = online_type;
return 1;
}
__setup("memhp_default_state=", setup_memhp_default_state);
void mem_hotplug_begin(void)
{
cpus_read_lock();
percpu_down_write(&mem_hotplug_lock);
}
void mem_hotplug_done(void)
{
percpu_up_write(&mem_hotplug_lock);
cpus_read_unlock();
}
u64 max_mem_size = U64_MAX;
/* add this memory to iomem resource */
static struct resource *register_memory_resource(u64 start, u64 size,
const char *resource_name)
{
struct resource *res;
unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
if (strcmp(resource_name, "System RAM"))
flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
if (!mhp_range_allowed(start, size, true))
return ERR_PTR(-E2BIG);
/*
* Make sure value parsed from 'mem=' only restricts memory adding
* while booting, so that memory hotplug won't be impacted. Please
* refer to document of 'mem=' in kernel-parameters.txt for more
* details.
*/
if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
return ERR_PTR(-E2BIG);
/*
* Request ownership of the new memory range. This might be
* a child of an existing resource that was present but
* not marked as busy.
*/
res = __request_region(&iomem_resource, start, size,
resource_name, flags);
if (!res) {
pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
start, start + size);
return ERR_PTR(-EEXIST);
}
return res;
}
static void release_memory_resource(struct resource *res)
{
if (!res)
return;
release_resource(res);
kfree(res);
}
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
void get_page_bootmem(unsigned long info, struct page *page,
unsigned long type)
{
page->freelist = (void *)type;
SetPagePrivate(page);
set_page_private(page, info);
page_ref_inc(page);
}
void put_page_bootmem(struct page *page)
{
unsigned long type;
type = (unsigned long) page->freelist;
BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
if (page_ref_dec_return(page) == 1) {
page->freelist = NULL;
ClearPagePrivate(page);
set_page_private(page, 0);
INIT_LIST_HEAD(&page->lru);
free_reserved_page(page);
}
}
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
#ifndef CONFIG_SPARSEMEM_VMEMMAP
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
struct mem_section_usage *usage;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
/* Get section's memmap address */
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
/*
* Get page for the memmap's phys address
* XXX: need more consideration for sparse_vmemmap...
*/
page = virt_to_page(memmap);
mapsize = sizeof(struct page) * PAGES_PER_SECTION;
mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
/* remember memmap's page */
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, SECTION_INFO);
usage = ms->usage;
page = virt_to_page(usage);
mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#else /* CONFIG_SPARSEMEM_VMEMMAP */
static void register_page_bootmem_info_section(unsigned long start_pfn)
{
unsigned long mapsize, section_nr, i;
struct mem_section *ms;
struct page *page, *memmap;
struct mem_section_usage *usage;
section_nr = pfn_to_section_nr(start_pfn);
ms = __nr_to_section(section_nr);
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
usage = ms->usage;
page = virt_to_page(usage);
mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
for (i = 0; i < mapsize; i++, page++)
get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
{
unsigned long i, pfn, end_pfn, nr_pages;
int node = pgdat->node_id;
struct page *page;
nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
page = virt_to_page(pgdat);
for (i = 0; i < nr_pages; i++, page++)
get_page_bootmem(node, page, NODE_INFO);
pfn = pgdat->node_start_pfn;
end_pfn = pgdat_end_pfn(pgdat);
/* register section info */
for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
/*
* Some platforms can assign the same pfn to multiple nodes - on
* node0 as well as nodeN. To avoid registering a pfn against
* multiple nodes we check that this pfn does not already
* reside in some other nodes.
*/
if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
register_page_bootmem_info_section(pfn);
}
}
#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
const char *reason)
{
/*
* Disallow all operations smaller than a sub-section and only
* allow operations smaller than a section for
* SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
* enforces a larger memory_block_size_bytes() granularity for
* memory that will be marked online, so this check should only
* fire for direct arch_{add,remove}_memory() users outside of
* add_memory_resource().
*/
unsigned long min_align;
if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
min_align = PAGES_PER_SUBSECTION;
else
min_align = PAGES_PER_SECTION;
if (!IS_ALIGNED(pfn, min_align)
|| !IS_ALIGNED(nr_pages, min_align)) {
WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
reason, pfn, pfn + nr_pages - 1);
return -EINVAL;
}
return 0;
}
/*
* Return page for the valid pfn only if the page is online. All pfn
* walkers which rely on the fully initialized page->flags and others
* should use this rather than pfn_valid && pfn_to_page
*/
struct page *pfn_to_online_page(unsigned long pfn)
{
unsigned long nr = pfn_to_section_nr(pfn);
struct dev_pagemap *pgmap;
struct mem_section *ms;
if (nr >= NR_MEM_SECTIONS)
return NULL;
ms = __nr_to_section(nr);
if (!online_section(ms))
return NULL;
/*
* Save some code text when online_section() +
* pfn_section_valid() are sufficient.
*/
if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
return NULL;
if (!pfn_section_valid(ms, pfn))
return NULL;
if (!online_device_section(ms))
return pfn_to_page(pfn);
/*
* Slowpath: when ZONE_DEVICE collides with
* ZONE_{NORMAL,MOVABLE} within the same section some pfns in
* the section may be 'offline' but 'valid'. Only
* get_dev_pagemap() can determine sub-section online status.
*/
pgmap = get_dev_pagemap(pfn, NULL);
put_dev_pagemap(pgmap);
/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
if (pgmap)
return NULL;
return pfn_to_page(pfn);
}
EXPORT_SYMBOL_GPL(pfn_to_online_page);
/*
* Reasonably generic function for adding memory. It is
* expected that archs that support memory hotplug will
* call this function after deciding the zone to which to
* add the new pages.
*/
int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
struct mhp_params *params)
{
const unsigned long end_pfn = pfn + nr_pages;
unsigned long cur_nr_pages;
int err;
struct vmem_altmap *altmap = params->altmap;
if (WARN_ON_ONCE(!params->pgprot.pgprot))
return -EINVAL;
VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
if (altmap) {
/*
* Validate altmap is within bounds of the total request
*/
if (altmap->base_pfn != pfn
|| vmem_altmap_offset(altmap) > nr_pages) {
pr_warn_once("memory add fail, invalid altmap\n");
return -EINVAL;
}
altmap->alloc = 0;
}
err = check_pfn_span(pfn, nr_pages, "add");
if (err)
return err;
for (; pfn < end_pfn; pfn += cur_nr_pages) {
/* Select all remaining pages up to the next section boundary */
cur_nr_pages = min(end_pfn - pfn,
SECTION_ALIGN_UP(pfn + 1) - pfn);
err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
if (err)
break;
cond_resched();
}
vmemmap_populate_print_last();
return err;
}
/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
if (unlikely(!pfn_to_online_page(start_pfn)))
continue;
if (unlikely(pfn_to_nid(start_pfn) != nid))
continue;
if (zone != page_zone(pfn_to_page(start_pfn)))
continue;
return start_pfn;
}
return 0;
}
/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
/* pfn is the end pfn of a memory section. */
pfn = end_pfn - 1;
for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
if (unlikely(!pfn_to_online_page(pfn)))
continue;
if (unlikely(pfn_to_nid(pfn) != nid))
continue;
if (zone != page_zone(pfn_to_page(pfn)))
continue;
return pfn;
}
return 0;
}
static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn;
int nid = zone_to_nid(zone);
zone_span_writelock(zone);
if (zone->zone_start_pfn == start_pfn) {
/*
* If the section is smallest section in the zone, it need
* shrink zone->zone_start_pfn and zone->zone_spanned_pages.
* In this case, we find second smallest valid mem_section
* for shrinking zone.
*/
pfn = find_smallest_section_pfn(nid, zone, end_pfn,
zone_end_pfn(zone));
if (pfn) {
zone->spanned_pages = zone_end_pfn(zone) - pfn;
zone->zone_start_pfn = pfn;
} else {
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
}
} else if (zone_end_pfn(zone) == end_pfn) {
/*
* If the section is biggest section in the zone, it need
* shrink zone->spanned_pages.
* In this case, we find second biggest valid mem_section for
* shrinking zone.
*/
pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
start_pfn);
if (pfn)
zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
else {
zone->zone_start_pfn = 0;
zone->spanned_pages = 0;
}
}
zone_span_writeunlock(zone);
}
static void update_pgdat_span(struct pglist_data *pgdat)
{
unsigned long node_start_pfn = 0, node_end_pfn = 0;
struct zone *zone;
for (zone = pgdat->node_zones;
zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
unsigned long end_pfn = zone_end_pfn(zone);
/* No need to lock the zones, they can't change. */
if (!zone->spanned_pages)
continue;
if (!node_end_pfn) {
node_start_pfn = zone->zone_start_pfn;
node_end_pfn = end_pfn;
continue;
}
if (end_pfn > node_end_pfn)
node_end_pfn = end_pfn;
if (zone->zone_start_pfn < node_start_pfn)
node_start_pfn = zone->zone_start_pfn;
}
pgdat->node_start_pfn = node_start_pfn;
pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
}
void __ref remove_pfn_range_from_zone(struct zone *zone,
unsigned long start_pfn,
unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long pfn, cur_nr_pages, flags;
/* Poison struct pages because they are now uninitialized again. */
for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
cond_resched();
/* Select all remaining pages up to the next section boundary */
cur_nr_pages =
min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
page_init_poison(pfn_to_page(pfn),
sizeof(struct page) * cur_nr_pages);
}
#ifdef CONFIG_ZONE_DEVICE
/*
* Zone shrinking code cannot properly deal with ZONE_DEVICE. So
* we will not try to shrink the zones - which is okay as
* set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
*/
if (zone_idx(zone) == ZONE_DEVICE)
return;
#endif
clear_zone_contiguous(zone);
pgdat_resize_lock(zone->zone_pgdat, &flags);
shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
update_pgdat_span(pgdat);
pgdat_resize_unlock(zone->zone_pgdat, &flags);
set_zone_contiguous(zone);
}
static void __remove_section(unsigned long pfn, unsigned long nr_pages,
unsigned long map_offset,
struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
if (WARN_ON_ONCE(!valid_section(ms)))
return;
sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
}
/**
* __remove_pages() - remove sections of pages
* @pfn: starting pageframe (must be aligned to start of a section)
* @nr_pages: number of pages to remove (must be multiple of section size)
* @altmap: alternative device page map or %NULL if default memmap is used
*
* Generic helper function to remove section mappings and sysfs entries
* for the section of the memory we are removing. Caller needs to make
* sure that pages are marked reserved and zones are adjust properly by
* calling offline_pages().
*/
void __remove_pages(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
const unsigned long end_pfn = pfn + nr_pages;
unsigned long cur_nr_pages;
unsigned long map_offset = 0;
map_offset = vmem_altmap_offset(altmap);
if (check_pfn_span(pfn, nr_pages, "remove"))
return;
for (; pfn < end_pfn; pfn += cur_nr_pages) {
cond_resched();
/* Select all remaining pages up to the next section boundary */
cur_nr_pages = min(end_pfn - pfn,
SECTION_ALIGN_UP(pfn + 1) - pfn);
__remove_section(pfn, cur_nr_pages, map_offset, altmap);
map_offset = 0;
}
}
int set_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == generic_online_page) {
online_page_callback = callback;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(set_online_page_callback);
int restore_online_page_callback(online_page_callback_t callback)
{
int rc = -EINVAL;
get_online_mems();
mutex_lock(&online_page_callback_lock);
if (online_page_callback == callback) {
online_page_callback = generic_online_page;
rc = 0;
}
mutex_unlock(&online_page_callback_lock);
put_online_mems();
return rc;
}
EXPORT_SYMBOL_GPL(restore_online_page_callback);
void generic_online_page(struct page *page, unsigned int order)
{
/*
* Freeing the page with debug_pagealloc enabled will try to unmap it,
* so we should map it first. This is better than introducing a special
* case in page freeing fast path.
*/
debug_pagealloc_map_pages(page, 1 << order);
__free_pages_core(page, order);
totalram_pages_add(1UL << order);
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page))
totalhigh_pages_add(1UL << order);
#endif
}
EXPORT_SYMBOL_GPL(generic_online_page);
static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
unsigned long pfn;
/*
* Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
* decide to not expose all pages to the buddy (e.g., expose them
* later). We account all pages as being online and belonging to this
* zone ("present").
*/
for (pfn = start_pfn; pfn < end_pfn; pfn += MAX_ORDER_NR_PAGES)
(*online_page_callback)(pfn_to_page(pfn), MAX_ORDER - 1);
/* mark all involved sections as online */
online_mem_sections(start_pfn, end_pfn);
}
/* check which state of node_states will be changed when online memory */
static void node_states_check_changes_online(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
int nid = zone_to_nid(zone);
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
if (!node_state(nid, N_MEMORY))
arg->status_change_nid = nid;
if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
arg->status_change_nid_normal = nid;
#ifdef CONFIG_HIGHMEM
if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
arg->status_change_nid_high = nid;
#endif
}
static void node_states_set_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_set_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_set_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_set_state(node, N_MEMORY);
}
static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = zone_end_pfn(zone);
if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
zone->zone_start_pfn = start_pfn;
zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
}
static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
unsigned long nr_pages)
{
unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
pgdat->node_start_pfn = start_pfn;
pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
}
static void section_taint_zone_device(unsigned long pfn)
{
struct mem_section *ms = __pfn_to_section(pfn);
ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
}
/*
* Associate the pfn range with the given zone, initializing the memmaps
* and resizing the pgdat/zone data to span the added pages. After this
* call, all affected pages are PG_reserved.
*
* All aligned pageblocks are initialized to the specified migratetype
* (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
* zone stats (e.g., nr_isolate_pageblock) are touched.
*/
void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
unsigned long nr_pages,
struct vmem_altmap *altmap, int migratetype)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int nid = pgdat->node_id;
unsigned long flags;
clear_zone_contiguous(zone);
/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
pgdat_resize_lock(pgdat, &flags);
zone_span_writelock(zone);
if (zone_is_empty(zone))
init_currently_empty_zone(zone, start_pfn, nr_pages);
resize_zone_range(zone, start_pfn, nr_pages);
zone_span_writeunlock(zone);
resize_pgdat_range(pgdat, start_pfn, nr_pages);
pgdat_resize_unlock(pgdat, &flags);
/*
* Subsection population requires care in pfn_to_online_page().
* Set the taint to enable the slow path detection of
* ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
* section.
*/
if (zone_is_zone_device(zone)) {
if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
section_taint_zone_device(start_pfn);
if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
section_taint_zone_device(start_pfn + nr_pages);
}
/*
* TODO now we have a visible range of pages which are not associated
* with their zone properly. Not nice but set_pfnblock_flags_mask
* expects the zone spans the pfn range. All the pages in the range
* are reserved so nobody should be touching them so we should be safe
*/
memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
MEMINIT_HOTPLUG, altmap, migratetype);
set_zone_contiguous(zone);
}
/*
* Returns a default kernel memory zone for the given pfn range.
* If no kernel zone covers this pfn range it will automatically go
* to the ZONE_NORMAL.
*/
static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
unsigned long nr_pages)
{
struct pglist_data *pgdat = NODE_DATA(nid);
int zid;
for (zid = 0; zid <= ZONE_NORMAL; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (zone_intersects(zone, start_pfn, nr_pages))
return zone;
}
return &pgdat->node_zones[ZONE_NORMAL];
}
static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
unsigned long nr_pages)
{
struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
nr_pages);
struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
/*
* We inherit the existing zone in a simple case where zones do not
* overlap in the given range
*/
if (in_kernel ^ in_movable)
return (in_kernel) ? kernel_zone : movable_zone;
/*
* If the range doesn't belong to any zone or two zones overlap in the
* given range then we use movable zone only if movable_node is
* enabled because we always online to a kernel zone by default.
*/
return movable_node_enabled ? movable_zone : kernel_zone;
}
struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
unsigned long nr_pages)
{
if (online_type == MMOP_ONLINE_KERNEL)
return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
if (online_type == MMOP_ONLINE_MOVABLE)
return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
return default_zone_for_pfn(nid, start_pfn, nr_pages);
}
int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
int online_type, int nid)
{
unsigned long flags;
struct zone *zone;
int need_zonelists_rebuild = 0;
int ret;
struct memory_notify arg;
/* We can only online full sections (e.g., SECTION_IS_ONLINE) */
if (WARN_ON_ONCE(!nr_pages ||
!IS_ALIGNED(pfn | nr_pages, PAGES_PER_SECTION)))
return -EINVAL;
mem_hotplug_begin();
/* associate pfn range with the zone */
zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
arg.start_pfn = pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_online(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_ONLINE, &arg);
ret = notifier_to_errno(ret);
if (ret)
goto failed_addition;
/*
* Fixup the number of isolated pageblocks before marking the sections
* onlining, such that undo_isolate_page_range() works correctly.
*/
spin_lock_irqsave(&zone->lock, flags);
zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
spin_unlock_irqrestore(&zone->lock, flags);
/*
* If this zone is not populated, then it is not in zonelist.
* This means the page allocator ignores this zone.
* So, zonelist must be updated after online.
*/
if (!populated_zone(zone)) {
need_zonelists_rebuild = 1;
setup_zone_pageset(zone);
}
online_pages_range(pfn, nr_pages);
zone->present_pages += nr_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages += nr_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
node_states_set_node(nid, &arg);
if (need_zonelists_rebuild)
build_all_zonelists(NULL);
zone_pcp_update(zone);
/* Basic onlining is complete, allow allocation of onlined pages. */
undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
/*
* Freshly onlined pages aren't shuffled (e.g., all pages are placed to
* the tail of the freelist when undoing isolation). Shuffle the whole
* zone to make sure the just onlined pages are properly distributed
* across the whole freelist - to create an initial shuffle.
*/
shuffle_zone(zone);
init_per_zone_wmark_min();
kswapd_run(nid);
kcompactd_run(nid);
writeback_set_ratelimit();
memory_notify(MEM_ONLINE, &arg);
mem_hotplug_done();
return 0;
failed_addition:
pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
(unsigned long long) pfn << PAGE_SHIFT,
(((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_ONLINE, &arg);
remove_pfn_range_from_zone(zone, pfn, nr_pages);
mem_hotplug_done();
return ret;
}
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
static void reset_node_present_pages(pg_data_t *pgdat)
{
struct zone *z;
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
z->present_pages = 0;
pgdat->node_present_pages = 0;
}
/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
static pg_data_t __ref *hotadd_new_pgdat(int nid)
{
struct pglist_data *pgdat;
pgdat = NODE_DATA(nid);
if (!pgdat) {
pgdat = arch_alloc_nodedata(nid);
if (!pgdat)
return NULL;
pgdat->per_cpu_nodestats =
alloc_percpu(struct per_cpu_nodestat);
arch_refresh_nodedata(nid, pgdat);
} else {
int cpu;
/*
* Reset the nr_zones, order and highest_zoneidx before reuse.
* Note that kswapd will init kswapd_highest_zoneidx properly
* when it starts in the near future.
*/
pgdat->nr_zones = 0;
pgdat->kswapd_order = 0;
pgdat->kswapd_highest_zoneidx = 0;
for_each_online_cpu(cpu) {
struct per_cpu_nodestat *p;
p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
memset(p, 0, sizeof(*p));
}
}
/* we can use NODE_DATA(nid) from here */
pgdat->node_id = nid;
pgdat->node_start_pfn = 0;
/* init node's zones as empty zones, we don't have any present pages.*/
free_area_init_core_hotplug(nid);
/*
* The node we allocated has no zone fallback lists. For avoiding
* to access not-initialized zonelist, build here.
*/
build_all_zonelists(pgdat);
/*
* When memory is hot-added, all the memory is in offline state. So
* clear all zones' present_pages because they will be updated in
* online_pages() and offline_pages().
*/
reset_node_managed_pages(pgdat);
reset_node_present_pages(pgdat);
return pgdat;
}
static void rollback_node_hotadd(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
arch_refresh_nodedata(nid, NULL);
free_percpu(pgdat->per_cpu_nodestats);
arch_free_nodedata(pgdat);
}
/**
* try_online_node - online a node if offlined
* @nid: the node ID
* @set_node_online: Whether we want to online the node
* called by cpu_up() to online a node without onlined memory.
*
* Returns:
* 1 -> a new node has been allocated
* 0 -> the node is already online
* -ENOMEM -> the node could not be allocated
*/
static int __try_online_node(int nid, bool set_node_online)
{
pg_data_t *pgdat;
int ret = 1;
if (node_online(nid))
return 0;
pgdat = hotadd_new_pgdat(nid);
if (!pgdat) {
pr_err("Cannot online node %d due to NULL pgdat\n", nid);
ret = -ENOMEM;
goto out;
}
if (set_node_online) {
node_set_online(nid);
ret = register_one_node(nid);
BUG_ON(ret);
}
out:
return ret;
}
/*
* Users of this function always want to online/register the node
*/
int try_online_node(int nid)
{
int ret;
mem_hotplug_begin();
ret = __try_online_node(nid, true);
mem_hotplug_done();
return ret;
}
static int check_hotplug_memory_range(u64 start, u64 size)
{
/* memory range must be block size aligned */
if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes())) {
pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
memory_block_size_bytes(), start, size);
return -EINVAL;
}
return 0;
}
static int online_memory_block(struct memory_block *mem, void *arg)
{
mem->online_type = mhp_default_online_type;
return device_online(&mem->dev);
}
/*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations (triggered e.g. by sysfs).
*
* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
*/
int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
{
struct mhp_params params = { .pgprot = PAGE_KERNEL };
u64 start, size;
bool new_node = false;
int ret;
start = res->start;
size = resource_size(res);
ret = check_hotplug_memory_range(start, size);
if (ret)
return ret;
if (!node_possible(nid)) {
WARN(1, "node %d was absent from the node_possible_map\n", nid);
return -EINVAL;
}
mem_hotplug_begin();
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
memblock_add_node(start, size, nid);
ret = __try_online_node(nid, false);
if (ret < 0)
goto error;
new_node = ret;
/* call arch's memory hotadd */
ret = arch_add_memory(nid, start, size, &params);
if (ret < 0)
goto error;
/* create memory block devices after memory was added */
ret = create_memory_block_devices(start, size);
if (ret) {
arch_remove_memory(nid, start, size, NULL);
goto error;
}
if (new_node) {
/* If sysfs file of new node can't be created, cpu on the node
* can't be hot-added. There is no rollback way now.
* So, check by BUG_ON() to catch it reluctantly..
* We online node here. We can't roll back from here.
*/
node_set_online(nid);
ret = __register_one_node(nid);
BUG_ON(ret);
}
/* link memory sections under this node.*/
link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
MEMINIT_HOTPLUG);
/* create new memmap entry */
if (!strcmp(res->name, "System RAM"))
firmware_map_add_hotplug(start, start + size, "System RAM");
/* device_online() will take the lock when calling online_pages() */
mem_hotplug_done();
/*
* In case we're allowed to merge the resource, flag it and trigger
* merging now that adding succeeded.
*/
if (mhp_flags & MHP_MERGE_RESOURCE)
merge_system_ram_resource(res);
/* online pages if requested */
if (mhp_default_online_type != MMOP_OFFLINE)
walk_memory_blocks(start, size, NULL, online_memory_block);
return ret;
error:
/* rollback pgdat allocation and others */
if (new_node)
rollback_node_hotadd(nid);
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
memblock_remove(start, size);
mem_hotplug_done();
return ret;
}
/* requires device_hotplug_lock, see add_memory_resource() */
int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
{
struct resource *res;
int ret;
res = register_memory_resource(start, size, "System RAM");
if (IS_ERR(res))
return PTR_ERR(res);
ret = add_memory_resource(nid, res, mhp_flags);
if (ret < 0)
release_memory_resource(res);
return ret;
}
int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
{
int rc;
lock_device_hotplug();
rc = __add_memory(nid, start, size, mhp_flags);
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(add_memory);
/*
* Add special, driver-managed memory to the system as system RAM. Such
* memory is not exposed via the raw firmware-provided memmap as system
* RAM, instead, it is detected and added by a driver - during cold boot,
* after a reboot, and after kexec.
*
* Reasons why this memory should not be used for the initial memmap of a
* kexec kernel or for placing kexec images:
* - The booting kernel is in charge of determining how this memory will be
* used (e.g., use persistent memory as system RAM)
* - Coordination with a hypervisor is required before this memory
* can be used (e.g., inaccessible parts).
*
* For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
* memory map") are created. Also, the created memory resource is flagged
* with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
* this memory as well (esp., not place kexec images onto it).
*
* The resource_name (visible via /proc/iomem) has to have the format
* "System RAM ($DRIVER)".
*/
int add_memory_driver_managed(int nid, u64 start, u64 size,
const char *resource_name, mhp_t mhp_flags)
{
struct resource *res;
int rc;
if (!resource_name ||
strstr(resource_name, "System RAM (") != resource_name ||
resource_name[strlen(resource_name) - 1] != ')')
return -EINVAL;
lock_device_hotplug();
res = register_memory_resource(start, size, resource_name);
if (IS_ERR(res)) {
rc = PTR_ERR(res);
goto out_unlock;
}
rc = add_memory_resource(nid, res, mhp_flags);
if (rc < 0)
release_memory_resource(res);
out_unlock:
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(add_memory_driver_managed);
/*
* Platforms should define arch_get_mappable_range() that provides
* maximum possible addressable physical memory range for which the
* linear mapping could be created. The platform returned address
* range must adhere to these following semantics.
*
* - range.start <= range.end
* - Range includes both end points [range.start..range.end]
*
* There is also a fallback definition provided here, allowing the
* entire possible physical address range in case any platform does
* not define arch_get_mappable_range().
*/
struct range __weak arch_get_mappable_range(void)
{
struct range mhp_range = {
.start = 0UL,
.end = -1ULL,
};
return mhp_range;
}
struct range mhp_get_pluggable_range(bool need_mapping)
{
const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
struct range mhp_range;
if (need_mapping) {
mhp_range = arch_get_mappable_range();
if (mhp_range.start > max_phys) {
mhp_range.start = 0;
mhp_range.end = 0;
}
mhp_range.end = min_t(u64, mhp_range.end, max_phys);
} else {
mhp_range.start = 0;
mhp_range.end = max_phys;
}
return mhp_range;
}
EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
{
struct range mhp_range = mhp_get_pluggable_range(need_mapping);
u64 end = start + size;
if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
return true;
pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
start, end, mhp_range.start, mhp_range.end);
return false;
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
* Confirm all pages in a range [start, end) belong to the same zone (skipping
* memory holes). When true, return the zone.
*/
struct zone *test_pages_in_a_zone(unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long pfn, sec_end_pfn;
struct zone *zone = NULL;
struct page *page;
int i;
for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
pfn < end_pfn;
pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
/* Make sure the memory section is present first */
if (!present_section_nr(pfn_to_section_nr(pfn)))
continue;
for (; pfn < sec_end_pfn && pfn < end_pfn;
pfn += MAX_ORDER_NR_PAGES) {
i = 0;
/* This is just a CONFIG_HOLES_IN_ZONE check.*/
while ((i < MAX_ORDER_NR_PAGES) &&
!pfn_valid_within(pfn + i))
i++;
if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
continue;
/* Check if we got outside of the zone */
if (zone && !zone_spans_pfn(zone, pfn + i))
return NULL;
page = pfn_to_page(pfn + i);
if (zone && page_zone(page) != zone)
return NULL;
zone = page_zone(page);
}
}
return zone;
}
/*
* Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
* non-lru movable pages and hugepages). Will skip over most unmovable
* pages (esp., pages that can be skipped when offlining), but bail out on
* definitely unmovable pages.
*
* Returns:
* 0 in case a movable page is found and movable_pfn was updated.
* -ENOENT in case no movable page was found.
* -EBUSY in case a definitely unmovable page was found.
*/
static int scan_movable_pages(unsigned long start, unsigned long end,
unsigned long *movable_pfn)
{
unsigned long pfn;
for (pfn = start; pfn < end; pfn++) {
struct page *page, *head;
unsigned long skip;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
if (PageLRU(page))
goto found;
if (__PageMovable(page))
goto found;
/*
* PageOffline() pages that are not marked __PageMovable() and
* have a reference count > 0 (after MEM_GOING_OFFLINE) are
* definitely unmovable. If their reference count would be 0,
* they could at least be skipped when offlining memory.
*/
if (PageOffline(page) && page_count(page))
return -EBUSY;
if (!PageHuge(page))
continue;
head = compound_head(page);
/*
* This test is racy as we hold no reference or lock. The
* hugetlb page could have been free'ed and head is no longer
* a hugetlb page before the following check. In such unlikely
* cases false positives and negatives are possible. Calling
* code must deal with these scenarios.
*/
if (HPageMigratable(head))
goto found;
skip = compound_nr(head) - (page - head);
pfn += skip - 1;
}
return -ENOENT;
found:
*movable_pfn = pfn;
return 0;
}
static int
do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
struct page *page, *head;
int ret = 0;
LIST_HEAD(source);
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
head = compound_head(page);
if (PageHuge(page)) {
pfn = page_to_pfn(head) + compound_nr(head) - 1;
isolate_huge_page(head, &source);
continue;
} else if (PageTransHuge(page))
pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
/*
* HWPoison pages have elevated reference counts so the migration would
* fail on them. It also doesn't make any sense to migrate them in the
* first place. Still try to unmap such a page in case it is still mapped
* (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
* the unmap as the catch all safety net).
*/
if (PageHWPoison(page)) {
if (WARN_ON(PageLRU(page)))
isolate_lru_page(page);
if (page_mapped(page))
try_to_unmap(page, TTU_IGNORE_MLOCK);
continue;
}
if (!get_page_unless_zero(page))
continue;
/*
* We can skip free pages. And we can deal with pages on
* LRU and non-lru movable pages.
*/
if (PageLRU(page))
ret = isolate_lru_page(page);
else
ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
if (!ret) { /* Success */
list_add_tail(&page->lru, &source);
if (!__PageMovable(page))
inc_node_page_state(page, NR_ISOLATED_ANON +
page_is_file_lru(page));
} else {
pr_warn("failed to isolate pfn %lx\n", pfn);
dump_page(page, "isolation failed");
}
put_page(page);
}
if (!list_empty(&source)) {
nodemask_t nmask = node_states[N_MEMORY];
struct migration_target_control mtc = {
.nmask = &nmask,
.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
};
/*
* We have checked that migration range is on a single zone so
* we can use the nid of the first page to all the others.
*/
mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
/*
* try to allocate from a different node but reuse this node
* if there are no other online nodes to be used (e.g. we are
* offlining a part of the only existing node)
*/
node_clear(mtc.nid, nmask);
if (nodes_empty(nmask))
node_set(mtc.nid, nmask);
ret = migrate_pages(&source, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
if (ret) {
list_for_each_entry(page, &source, lru) {
pr_warn("migrating pfn %lx failed ret:%d ",
page_to_pfn(page), ret);
dump_page(page, "migration failure");
}
putback_movable_pages(&source);
}
}
return ret;
}
static int __init cmdline_parse_movable_node(char *p)
{
movable_node_enabled = true;
return 0;
}
early_param("movable_node", cmdline_parse_movable_node);
/* check which state of node_states will be changed when offline memory */
static void node_states_check_changes_offline(unsigned long nr_pages,
struct zone *zone, struct memory_notify *arg)
{
struct pglist_data *pgdat = zone->zone_pgdat;
unsigned long present_pages = 0;
enum zone_type zt;
arg->status_change_nid = NUMA_NO_NODE;
arg->status_change_nid_normal = NUMA_NO_NODE;
arg->status_change_nid_high = NUMA_NO_NODE;
/*
* Check whether node_states[N_NORMAL_MEMORY] will be changed.
* If the memory to be offline is within the range
* [0..ZONE_NORMAL], and it is the last present memory there,
* the zones in that range will become empty after the offlining,
* thus we can determine that we need to clear the node from
* node_states[N_NORMAL_MEMORY].
*/
for (zt = 0; zt <= ZONE_NORMAL; zt++)
present_pages += pgdat->node_zones[zt].present_pages;
if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
arg->status_change_nid_normal = zone_to_nid(zone);
#ifdef CONFIG_HIGHMEM
/*
* node_states[N_HIGH_MEMORY] contains nodes which
* have normal memory or high memory.
* Here we add the present_pages belonging to ZONE_HIGHMEM.
* If the zone is within the range of [0..ZONE_HIGHMEM), and
* we determine that the zones in that range become empty,
* we need to clear the node for N_HIGH_MEMORY.
*/
present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
arg->status_change_nid_high = zone_to_nid(zone);
#endif
/*
* We have accounted the pages from [0..ZONE_NORMAL), and
* in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
* as well.
* Here we count the possible pages from ZONE_MOVABLE.
* If after having accounted all the pages, we see that the nr_pages
* to be offlined is over or equal to the accounted pages,
* we know that the node will become empty, and so, we can clear
* it for N_MEMORY as well.
*/
present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
if (nr_pages >= present_pages)
arg->status_change_nid = zone_to_nid(zone);
}
static void node_states_clear_node(int node, struct memory_notify *arg)
{
if (arg->status_change_nid_normal >= 0)
node_clear_state(node, N_NORMAL_MEMORY);
if (arg->status_change_nid_high >= 0)
node_clear_state(node, N_HIGH_MEMORY);
if (arg->status_change_nid >= 0)
node_clear_state(node, N_MEMORY);
}
static int count_system_ram_pages_cb(unsigned long start_pfn,
unsigned long nr_pages, void *data)
{
unsigned long *nr_system_ram_pages = data;
*nr_system_ram_pages += nr_pages;
return 0;
}
int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
const unsigned long end_pfn = start_pfn + nr_pages;
unsigned long pfn, system_ram_pages = 0;
unsigned long flags;
struct zone *zone;
struct memory_notify arg;
int ret, node;
char *reason;
/* We can only offline full sections (e.g., SECTION_IS_ONLINE) */
if (WARN_ON_ONCE(!nr_pages ||
!IS_ALIGNED(start_pfn | nr_pages, PAGES_PER_SECTION)))
return -EINVAL;
mem_hotplug_begin();
/*
* Don't allow to offline memory blocks that contain holes.
* Consequently, memory blocks with holes can never get onlined
* via the hotplug path - online_pages() - as hotplugged memory has
* no holes. This way, we e.g., don't have to worry about marking
* memory holes PG_reserved, don't need pfn_valid() checks, and can
* avoid using walk_system_ram_range() later.
*/
walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
count_system_ram_pages_cb);
if (system_ram_pages != nr_pages) {
ret = -EINVAL;
reason = "memory holes";
goto failed_removal;
}
/* This makes hotplug much easier...and readable.
we assume this for now. .*/
zone = test_pages_in_a_zone(start_pfn, end_pfn);
if (!zone) {
ret = -EINVAL;
reason = "multizone range";
goto failed_removal;
}
node = zone_to_nid(zone);
/*
* Disable pcplists so that page isolation cannot race with freeing
* in a way that pages from isolated pageblock are left on pcplists.
*/
zone_pcp_disable(zone);
/* set above range as isolated */
ret = start_isolate_page_range(start_pfn, end_pfn,
MIGRATE_MOVABLE,
MEMORY_OFFLINE | REPORT_FAILURE);
if (ret) {
reason = "failure to isolate range";
goto failed_removal_pcplists_disabled;
}
arg.start_pfn = start_pfn;
arg.nr_pages = nr_pages;
node_states_check_changes_offline(nr_pages, zone, &arg);
ret = memory_notify(MEM_GOING_OFFLINE, &arg);
ret = notifier_to_errno(ret);
if (ret) {
reason = "notifier failure";
goto failed_removal_isolated;
}
do {
pfn = start_pfn;
do {
if (signal_pending(current)) {
ret = -EINTR;
reason = "signal backoff";
goto failed_removal_isolated;
}
cond_resched();
lru_add_drain_all();
ret = scan_movable_pages(pfn, end_pfn, &pfn);
if (!ret) {
/*
* TODO: fatal migration failures should bail
* out
*/
do_migrate_range(pfn, end_pfn);
}
} while (!ret);
if (ret != -ENOENT) {
reason = "unmovable page";
goto failed_removal_isolated;
}
/*
* Dissolve free hugepages in the memory block before doing
* offlining actually in order to make hugetlbfs's object
* counting consistent.
*/
ret = dissolve_free_huge_pages(start_pfn, end_pfn);
if (ret) {
reason = "failure to dissolve huge pages";
goto failed_removal_isolated;
}
ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
} while (ret);
/* Mark all sections offline and remove free pages from the buddy. */
__offline_isolated_pages(start_pfn, end_pfn);
pr_debug("Offlined Pages %ld\n", nr_pages);
/*
* The memory sections are marked offline, and the pageblock flags
* effectively stale; nobody should be touching them. Fixup the number
* of isolated pageblocks, memory onlining will properly revert this.
*/
spin_lock_irqsave(&zone->lock, flags);
zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
spin_unlock_irqrestore(&zone->lock, flags);
zone_pcp_enable(zone);
/* removal success */
adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
zone->present_pages -= nr_pages;
pgdat_resize_lock(zone->zone_pgdat, &flags);
zone->zone_pgdat->node_present_pages -= nr_pages;
pgdat_resize_unlock(zone->zone_pgdat, &flags);
init_per_zone_wmark_min();
if (!populated_zone(zone)) {
zone_pcp_reset(zone);
build_all_zonelists(NULL);
} else
zone_pcp_update(zone);
node_states_clear_node(node, &arg);
if (arg.status_change_nid >= 0) {
kswapd_stop(node);
kcompactd_stop(node);
}
writeback_set_ratelimit();
memory_notify(MEM_OFFLINE, &arg);
remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
mem_hotplug_done();
return 0;
failed_removal_isolated:
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
memory_notify(MEM_CANCEL_OFFLINE, &arg);
failed_removal_pcplists_disabled:
zone_pcp_enable(zone);
failed_removal:
pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
(unsigned long long) start_pfn << PAGE_SHIFT,
((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
reason);
/* pushback to free area */
mem_hotplug_done();
return ret;
}
static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
{
int ret = !is_memblock_offlined(mem);
if (unlikely(ret)) {
phys_addr_t beginpa, endpa;
beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
endpa = beginpa + memory_block_size_bytes() - 1;
pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
&beginpa, &endpa);
return -EBUSY;
}
return 0;
}
static int check_cpu_on_node(pg_data_t *pgdat)
{
int cpu;
for_each_present_cpu(cpu) {
if (cpu_to_node(cpu) == pgdat->node_id)
/*
* the cpu on this node isn't removed, and we can't
* offline this node.
*/
return -EBUSY;
}
return 0;
}
static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
{
int nid = *(int *)arg;
/*
* If a memory block belongs to multiple nodes, the stored nid is not
* reliable. However, such blocks are always online (e.g., cannot get
* offlined) and, therefore, are still spanned by the node.
*/
return mem->nid == nid ? -EEXIST : 0;
}
/**
* try_offline_node
* @nid: the node ID
*
* Offline a node if all memory sections and cpus of the node are removed.
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call.
*/
void try_offline_node(int nid)
{
pg_data_t *pgdat = NODE_DATA(nid);
int rc;
/*
* If the node still spans pages (especially ZONE_DEVICE), don't
* offline it. A node spans memory after move_pfn_range_to_zone(),
* e.g., after the memory block was onlined.
*/
if (pgdat->node_spanned_pages)
return;
/*
* Especially offline memory blocks might not be spanned by the
* node. They will get spanned by the node once they get onlined.
* However, they link to the node in sysfs and can get onlined later.
*/
rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
if (rc)
return;
if (check_cpu_on_node(pgdat))
return;
/*
* all memory/cpu of this node are removed, we can offline this
* node now.
*/
node_set_offline(nid);
unregister_one_node(nid);
}
EXPORT_SYMBOL(try_offline_node);
static int __ref try_remove_memory(int nid, u64 start, u64 size)
{
int rc = 0;
BUG_ON(check_hotplug_memory_range(start, size));
/*
* All memory blocks must be offlined before removing memory. Check
* whether all memory blocks in question are offline and return error
* if this is not the case.
*/
rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
if (rc)
return rc;
/* remove memmap entry */
firmware_map_remove(start, start + size, "System RAM");
/*
* Memory block device removal under the device_hotplug_lock is
* a barrier against racing online attempts.
*/
remove_memory_block_devices(start, size);
mem_hotplug_begin();
arch_remove_memory(nid, start, size, NULL);
if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
memblock_free(start, size);
memblock_remove(start, size);
}
release_mem_region_adjustable(start, size);
try_offline_node(nid);
mem_hotplug_done();
return 0;
}
/**
* remove_memory
* @nid: the node ID
* @start: physical address of the region to remove
* @size: size of the region to remove
*
* NOTE: The caller must call lock_device_hotplug() to serialize hotplug
* and online/offline operations before this call, as required by
* try_offline_node().
*/
void __remove_memory(int nid, u64 start, u64 size)
{
/*
* trigger BUG() if some memory is not offlined prior to calling this
* function
*/
if (try_remove_memory(nid, start, size))
BUG();
}
/*
* Remove memory if every memory block is offline, otherwise return -EBUSY is
* some memory is not offline
*/
int remove_memory(int nid, u64 start, u64 size)
{
int rc;
lock_device_hotplug();
rc = try_remove_memory(nid, start, size);
unlock_device_hotplug();
return rc;
}
EXPORT_SYMBOL_GPL(remove_memory);
static int try_offline_memory_block(struct memory_block *mem, void *arg)
{
uint8_t online_type = MMOP_ONLINE_KERNEL;
uint8_t **online_types = arg;
struct page *page;
int rc;
/*
* Sense the online_type via the zone of the memory block. Offlining
* with multiple zones within one memory block will be rejected
* by offlining code ... so we don't care about that.
*/
page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
online_type = MMOP_ONLINE_MOVABLE;
rc = device_offline(&mem->dev);
/*
* Default is MMOP_OFFLINE - change it only if offlining succeeded,
* so try_reonline_memory_block() can do the right thing.
*/
if (!rc)
**online_types = online_type;
(*online_types)++;
/* Ignore if already offline. */
return rc < 0 ? rc : 0;
}
static int try_reonline_memory_block(struct memory_block *mem, void *arg)
{
uint8_t **online_types = arg;
int rc;
if (**online_types != MMOP_OFFLINE) {
mem->online_type = **online_types;
rc = device_online(&mem->dev);
if (rc < 0)
pr_warn("%s: Failed to re-online memory: %d",
__func__, rc);
}
/* Continue processing all remaining memory blocks. */
(*online_types)++;
return 0;
}
/*
* Try to offline and remove memory. Might take a long time to finish in case
* memory is still in use. Primarily useful for memory devices that logically
* unplugged all memory (so it's no longer in use) and want to offline + remove
* that memory.
*/
int offline_and_remove_memory(int nid, u64 start, u64 size)
{
const unsigned long mb_count = size / memory_block_size_bytes();
uint8_t *online_types, *tmp;
int rc;
if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
!IS_ALIGNED(size, memory_block_size_bytes()) || !size)
return -EINVAL;
/*
* We'll remember the old online type of each memory block, so we can
* try to revert whatever we did when offlining one memory block fails
* after offlining some others succeeded.
*/
online_types = kmalloc_array(mb_count, sizeof(*online_types),
GFP_KERNEL);
if (!online_types)
return -ENOMEM;
/*
* Initialize all states to MMOP_OFFLINE, so when we abort processing in
* try_offline_memory_block(), we'll skip all unprocessed blocks in
* try_reonline_memory_block().
*/
memset(online_types, MMOP_OFFLINE, mb_count);
lock_device_hotplug();
tmp = online_types;
rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
/*
* In case we succeeded to offline all memory, remove it.
* This cannot fail as it cannot get onlined in the meantime.
*/
if (!rc) {
rc = try_remove_memory(nid, start, size);
if (rc)
pr_err("%s: Failed to remove memory: %d", __func__, rc);
}
/*
* Rollback what we did. While memory onlining might theoretically fail
* (nacked by a notifier), it barely ever happens.
*/
if (rc) {
tmp = online_types;
walk_memory_blocks(start, size, &tmp,
try_reonline_memory_block);
}
unlock_device_hotplug();
kfree(online_types);
return rc;
}
EXPORT_SYMBOL_GPL(offline_and_remove_memory);
#endif /* CONFIG_MEMORY_HOTREMOVE */