linux-stable/arch/x86/kernel/head64.c
Michael Roth 469693d8f6 x86/head/64: Re-enable stack protection
Due to

  103a4908ad ("x86/head/64: Disable stack protection for head$(BITS).o")

kernel/head{32,64}.c are compiled with -fno-stack-protector to allow
a call to set_bringup_idt_handler(), which would otherwise have stack
protection enabled with CONFIG_STACKPROTECTOR_STRONG.

While sufficient for that case, there may still be issues with calls to
any external functions that were compiled with stack protection enabled
that in-turn make stack-protected calls, or if the exception handlers
set up by set_bringup_idt_handler() make calls to stack-protected
functions.

Subsequent patches for SEV-SNP CPUID validation support will introduce
both such cases. Attempting to disable stack protection for everything
in scope to address that is prohibitive since much of the code, like the
SEV-ES #VC handler, is shared code that remains in use after boot and
could benefit from having stack protection enabled. Attempting to inline
calls is brittle and can quickly balloon out to library/helper code
where that's not really an option.

Instead, re-enable stack protection for head32.c/head64.c, and make the
appropriate changes to ensure the segment used for the stack canary is
initialized in advance of any stack-protected C calls.

For head64.c:

- The BSP will enter from startup_64() and call into C code
  (startup_64_setup_env()) shortly after setting up the stack, which
  may result in calls to stack-protected code. Set up %gs early to allow
  for this safely.
- APs will enter from secondary_startup_64*(), and %gs will be set up
  soon after. There is one call to C code prior to %gs being setup
  (__startup_secondary_64()), but it is only to fetch 'sme_me_mask'
  global, so just load 'sme_me_mask' directly instead, and remove the
  now-unused __startup_secondary_64() function.

For head32.c:

- BSPs/APs will set %fs to __BOOT_DS prior to any C calls. In recent
  kernels, the compiler is configured to access the stack canary at
  %fs:__stack_chk_guard [1], which overlaps with the initial per-cpu
  '__stack_chk_guard' variable in the initial/"master" .data..percpu
  area. This is sufficient to allow access to the canary for use
  during initial startup, so no changes are needed there.

[1] 3fb0fdb3bb ("x86/stackprotector/32: Make the canary into a regular percpu variable")

  [ bp: Massage commit message. ]

Suggested-by: Joerg Roedel <jroedel@suse.de> #for 64-bit %gs set up
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-24-brijesh.singh@amd.com
2022-04-06 17:06:55 +02:00

628 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* prepare to run common code
*
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
*/
#define DISABLE_BRANCH_PROFILING
/* cpu_feature_enabled() cannot be used this early */
#define USE_EARLY_PGTABLE_L5
#include <linux/init.h>
#include <linux/linkage.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/percpu.h>
#include <linux/start_kernel.h>
#include <linux/io.h>
#include <linux/memblock.h>
#include <linux/cc_platform.h>
#include <linux/pgtable.h>
#include <asm/processor.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/setup.h>
#include <asm/desc.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/e820/api.h>
#include <asm/bios_ebda.h>
#include <asm/bootparam_utils.h>
#include <asm/microcode.h>
#include <asm/kasan.h>
#include <asm/fixmap.h>
#include <asm/realmode.h>
#include <asm/extable.h>
#include <asm/trapnr.h>
#include <asm/sev.h>
/*
* Manage page tables very early on.
*/
extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
static unsigned int __initdata next_early_pgt;
pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
#ifdef CONFIG_X86_5LEVEL
unsigned int __pgtable_l5_enabled __ro_after_init;
unsigned int pgdir_shift __ro_after_init = 39;
EXPORT_SYMBOL(pgdir_shift);
unsigned int ptrs_per_p4d __ro_after_init = 1;
EXPORT_SYMBOL(ptrs_per_p4d);
#endif
#ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
EXPORT_SYMBOL(page_offset_base);
unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
EXPORT_SYMBOL(vmalloc_base);
unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
EXPORT_SYMBOL(vmemmap_base);
#endif
/*
* GDT used on the boot CPU before switching to virtual addresses.
*/
static struct desc_struct startup_gdt[GDT_ENTRIES] = {
[GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
[GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
};
/*
* Address needs to be set at runtime because it references the startup_gdt
* while the kernel still uses a direct mapping.
*/
static struct desc_ptr startup_gdt_descr = {
.size = sizeof(startup_gdt),
.address = 0,
};
#define __head __section(".head.text")
static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
{
return ptr - (void *)_text + (void *)physaddr;
}
static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
{
return fixup_pointer(ptr, physaddr);
}
#ifdef CONFIG_X86_5LEVEL
static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
{
return fixup_pointer(ptr, physaddr);
}
static bool __head check_la57_support(unsigned long physaddr)
{
/*
* 5-level paging is detected and enabled at kernel decompression
* stage. Only check if it has been enabled there.
*/
if (!(native_read_cr4() & X86_CR4_LA57))
return false;
*fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
*fixup_int(&pgdir_shift, physaddr) = 48;
*fixup_int(&ptrs_per_p4d, physaddr) = 512;
*fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
*fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
*fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
return true;
}
#else
static bool __head check_la57_support(unsigned long physaddr)
{
return false;
}
#endif
static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd)
{
unsigned long vaddr, vaddr_end;
int i;
/* Encrypt the kernel and related (if SME is active) */
sme_encrypt_kernel(bp);
/*
* Clear the memory encryption mask from the .bss..decrypted section.
* The bss section will be memset to zero later in the initialization so
* there is no need to zero it after changing the memory encryption
* attribute.
*/
if (sme_get_me_mask()) {
vaddr = (unsigned long)__start_bss_decrypted;
vaddr_end = (unsigned long)__end_bss_decrypted;
for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
/*
* On SNP, transition the page to shared in the RMP table so that
* it is consistent with the page table attribute change.
*
* __start_bss_decrypted has a virtual address in the high range
* mapping (kernel .text). PVALIDATE, by way of
* early_snp_set_memory_shared(), requires a valid virtual
* address but the kernel is currently running off of the identity
* mapping so use __pa() to get a *currently* valid virtual address.
*/
early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD);
i = pmd_index(vaddr);
pmd[i] -= sme_get_me_mask();
}
}
/*
* Return the SME encryption mask (if SME is active) to be used as a
* modifier for the initial pgdir entry programmed into CR3.
*/
return sme_get_me_mask();
}
/* Code in __startup_64() can be relocated during execution, but the compiler
* doesn't have to generate PC-relative relocations when accessing globals from
* that function. Clang actually does not generate them, which leads to
* boot-time crashes. To work around this problem, every global pointer must
* be adjusted using fixup_pointer().
*/
unsigned long __head __startup_64(unsigned long physaddr,
struct boot_params *bp)
{
unsigned long load_delta, *p;
unsigned long pgtable_flags;
pgdval_t *pgd;
p4dval_t *p4d;
pudval_t *pud;
pmdval_t *pmd, pmd_entry;
pteval_t *mask_ptr;
bool la57;
int i;
unsigned int *next_pgt_ptr;
la57 = check_la57_support(physaddr);
/* Is the address too large? */
if (physaddr >> MAX_PHYSMEM_BITS)
for (;;);
/*
* Compute the delta between the address I am compiled to run at
* and the address I am actually running at.
*/
load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
/* Is the address not 2M aligned? */
if (load_delta & ~PMD_PAGE_MASK)
for (;;);
/* Include the SME encryption mask in the fixup value */
load_delta += sme_get_me_mask();
/* Fixup the physical addresses in the page table */
pgd = fixup_pointer(&early_top_pgt, physaddr);
p = pgd + pgd_index(__START_KERNEL_map);
if (la57)
*p = (unsigned long)level4_kernel_pgt;
else
*p = (unsigned long)level3_kernel_pgt;
*p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
if (la57) {
p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
p4d[511] += load_delta;
}
pud = fixup_pointer(&level3_kernel_pgt, physaddr);
pud[510] += load_delta;
pud[511] += load_delta;
pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
pmd[i] += load_delta;
/*
* Set up the identity mapping for the switchover. These
* entries should *NOT* have the global bit set! This also
* creates a bunch of nonsense entries but that is fine --
* it avoids problems around wraparound.
*/
next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
if (la57) {
p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
physaddr);
i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
i = physaddr >> P4D_SHIFT;
p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
} else {
i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
}
i = physaddr >> PUD_SHIFT;
pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
/* Filter out unsupported __PAGE_KERNEL_* bits: */
mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
pmd_entry &= *mask_ptr;
pmd_entry += sme_get_me_mask();
pmd_entry += physaddr;
for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
int idx = i + (physaddr >> PMD_SHIFT);
pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
}
/*
* Fixup the kernel text+data virtual addresses. Note that
* we might write invalid pmds, when the kernel is relocated
* cleanup_highmap() fixes this up along with the mappings
* beyond _end.
*
* Only the region occupied by the kernel image has so far
* been checked against the table of usable memory regions
* provided by the firmware, so invalidate pages outside that
* region. A page table entry that maps to a reserved area of
* memory would allow processor speculation into that area,
* and on some hardware (particularly the UV platform) even
* speculative access to some reserved areas is caught as an
* error, causing the BIOS to halt the system.
*/
pmd = fixup_pointer(level2_kernel_pgt, physaddr);
/* invalidate pages before the kernel image */
for (i = 0; i < pmd_index((unsigned long)_text); i++)
pmd[i] &= ~_PAGE_PRESENT;
/* fixup pages that are part of the kernel image */
for (; i <= pmd_index((unsigned long)_end); i++)
if (pmd[i] & _PAGE_PRESENT)
pmd[i] += load_delta;
/* invalidate pages after the kernel image */
for (; i < PTRS_PER_PMD; i++)
pmd[i] &= ~_PAGE_PRESENT;
/*
* Fixup phys_base - remove the memory encryption mask to obtain
* the true physical address.
*/
*fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
return sme_postprocess_startup(bp, pmd);
}
/* Wipe all early page tables except for the kernel symbol map */
static void __init reset_early_page_tables(void)
{
memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
next_early_pgt = 0;
write_cr3(__sme_pa_nodebug(early_top_pgt));
}
/* Create a new PMD entry */
bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
{
unsigned long physaddr = address - __PAGE_OFFSET;
pgdval_t pgd, *pgd_p;
p4dval_t p4d, *p4d_p;
pudval_t pud, *pud_p;
pmdval_t *pmd_p;
/* Invalid address or early pgt is done ? */
if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
return false;
again:
pgd_p = &early_top_pgt[pgd_index(address)].pgd;
pgd = *pgd_p;
/*
* The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
* critical -- __PAGE_OFFSET would point us back into the dynamic
* range and we might end up looping forever...
*/
if (!pgtable_l5_enabled())
p4d_p = pgd_p;
else if (pgd)
p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
else {
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;
}
p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
}
p4d_p += p4d_index(address);
p4d = *p4d_p;
if (p4d)
pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
else {
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;
}
pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
}
pud_p += pud_index(address);
pud = *pud_p;
if (pud)
pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
else {
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
reset_early_page_tables();
goto again;
}
pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
}
pmd_p[pmd_index(address)] = pmd;
return true;
}
static bool __init early_make_pgtable(unsigned long address)
{
unsigned long physaddr = address - __PAGE_OFFSET;
pmdval_t pmd;
pmd = (physaddr & PMD_MASK) + early_pmd_flags;
return __early_make_pgtable(address, pmd);
}
void __init do_early_exception(struct pt_regs *regs, int trapnr)
{
if (trapnr == X86_TRAP_PF &&
early_make_pgtable(native_read_cr2()))
return;
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
return;
early_fixup_exception(regs, trapnr);
}
/* Don't add a printk in there. printk relies on the PDA which is not initialized
yet. */
static void __init clear_bss(void)
{
memset(__bss_start, 0,
(unsigned long) __bss_stop - (unsigned long) __bss_start);
}
static unsigned long get_cmd_line_ptr(void)
{
unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
return cmd_line_ptr;
}
static void __init copy_bootdata(char *real_mode_data)
{
char * command_line;
unsigned long cmd_line_ptr;
/*
* If SME is active, this will create decrypted mappings of the
* boot data in advance of the copy operations.
*/
sme_map_bootdata(real_mode_data);
memcpy(&boot_params, real_mode_data, sizeof(boot_params));
sanitize_boot_params(&boot_params);
cmd_line_ptr = get_cmd_line_ptr();
if (cmd_line_ptr) {
command_line = __va(cmd_line_ptr);
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
}
/*
* The old boot data is no longer needed and won't be reserved,
* freeing up that memory for use by the system. If SME is active,
* we need to remove the mappings that were created so that the
* memory doesn't remain mapped as decrypted.
*/
sme_unmap_bootdata(real_mode_data);
}
asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data)
{
/*
* Build-time sanity checks on the kernel image and module
* area mappings. (these are purely build-time and produce no code)
*/
BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
(__START_KERNEL & PGDIR_MASK)));
BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
cr4_init_shadow();
/* Kill off the identity-map trampoline */
reset_early_page_tables();
clear_bss();
/*
* This needs to happen *before* kasan_early_init() because latter maps stuff
* into that page.
*/
clear_page(init_top_pgt);
/*
* SME support may update early_pmd_flags to include the memory
* encryption mask, so it needs to be called before anything
* that may generate a page fault.
*/
sme_early_init();
kasan_early_init();
/*
* Flush global TLB entries which could be left over from the trampoline page
* table.
*
* This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
* instrument native_write_cr4() so KASAN must be initialized for that
* instrumentation to work.
*/
__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
idt_setup_early_handler();
copy_bootdata(__va(real_mode_data));
/*
* Load microcode early on BSP.
*/
load_ucode_bsp();
/* set init_top_pgt kernel high mapping*/
init_top_pgt[511] = early_top_pgt[511];
x86_64_start_reservations(real_mode_data);
}
void __init x86_64_start_reservations(char *real_mode_data)
{
/* version is always not zero if it is copied */
if (!boot_params.hdr.version)
copy_bootdata(__va(real_mode_data));
x86_early_init_platform_quirks();
switch (boot_params.hdr.hardware_subarch) {
case X86_SUBARCH_INTEL_MID:
x86_intel_mid_early_setup();
break;
default:
break;
}
start_kernel();
}
/*
* Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
* used until the idt_table takes over. On the boot CPU this happens in
* x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
* this happens in the functions called from head_64.S.
*
* The idt_table can't be used that early because all the code modifying it is
* in idt.c and can be instrumented by tracing or KASAN, which both don't work
* during early CPU bringup. Also the idt_table has the runtime vectors
* configured which require certain CPU state to be setup already (like TSS),
* which also hasn't happened yet in early CPU bringup.
*/
static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
static struct desc_ptr bringup_idt_descr = {
.size = (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
.address = 0, /* Set at runtime */
};
static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
{
#ifdef CONFIG_AMD_MEM_ENCRYPT
struct idt_data data;
gate_desc desc;
init_idt_data(&data, n, handler);
idt_init_desc(&desc, &data);
native_write_idt_entry(idt, n, &desc);
#endif
}
/* This runs while still in the direct mapping */
static void startup_64_load_idt(unsigned long physbase)
{
struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
void *handler;
/* VMM Communication Exception */
handler = fixup_pointer(vc_no_ghcb, physbase);
set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
}
desc->address = (unsigned long)idt;
native_load_idt(desc);
}
/* This is used when running on kernel addresses */
void early_setup_idt(void)
{
/* VMM Communication Exception */
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
setup_ghcb();
set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
}
bringup_idt_descr.address = (unsigned long)bringup_idt_table;
native_load_idt(&bringup_idt_descr);
}
/*
* Setup boot CPU state needed before kernel switches to virtual addresses.
*/
void __head startup_64_setup_env(unsigned long physbase)
{
/* Load GDT */
startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
native_load_gdt(&startup_gdt_descr);
/* New GDT is live - reload data segment registers */
asm volatile("movl %%eax, %%ds\n"
"movl %%eax, %%ss\n"
"movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
startup_64_load_idt(physbase);
}