linux-stable/drivers/spi/spi-lantiq-ssc.c
Amit Kumar Mahapatra via Alsa-devel 9e264f3f85
spi: Replace all spi->chip_select and spi->cs_gpiod references with function call
Supporting multi-cs in spi drivers would require the chip_select & cs_gpiod
members of struct spi_device to be an array. But changing the type of these
members to array would break the spi driver functionality. To make the
transition smoother introduced four new APIs to get/set the
spi->chip_select & spi->cs_gpiod and replaced all spi->chip_select and
spi->cs_gpiod references with get or set API calls.
While adding multi-cs support in further patches the chip_select & cs_gpiod
members of the spi_device structure would be converted to arrays & the
"idx" parameter of the APIs would be used as array index i.e.,
spi->chip_select[idx] & spi->cs_gpiod[idx] respectively.

Signed-off-by: Amit Kumar Mahapatra <amit.kumar-mahapatra@amd.com>
Acked-by: Heiko Stuebner <heiko@sntech.de> # Rockchip drivers
Reviewed-by: Michal Simek <michal.simek@amd.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org> # Aspeed driver
Reviewed-by: Dhruva Gole <d-gole@ti.com> # SPI Cadence QSPI
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com> # spi-stm32-qspi
Acked-by: William Zhang <william.zhang@broadcom.com> # bcm63xx-hsspi driver
Reviewed-by: Serge Semin <fancer.lancer@gmail.com> # DW SSI part
Link: https://lore.kernel.org/r/167847070432.26.15076794204368669839@mailman-core.alsa-project.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-11 12:34:01 +00:00

1049 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
* Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#ifdef CONFIG_LANTIQ
#include <lantiq_soc.h>
#endif
#define LTQ_SPI_RX_IRQ_NAME "spi_rx"
#define LTQ_SPI_TX_IRQ_NAME "spi_tx"
#define LTQ_SPI_ERR_IRQ_NAME "spi_err"
#define LTQ_SPI_FRM_IRQ_NAME "spi_frm"
#define LTQ_SPI_CLC 0x00
#define LTQ_SPI_PISEL 0x04
#define LTQ_SPI_ID 0x08
#define LTQ_SPI_CON 0x10
#define LTQ_SPI_STAT 0x14
#define LTQ_SPI_WHBSTATE 0x18
#define LTQ_SPI_TB 0x20
#define LTQ_SPI_RB 0x24
#define LTQ_SPI_RXFCON 0x30
#define LTQ_SPI_TXFCON 0x34
#define LTQ_SPI_FSTAT 0x38
#define LTQ_SPI_BRT 0x40
#define LTQ_SPI_BRSTAT 0x44
#define LTQ_SPI_SFCON 0x60
#define LTQ_SPI_SFSTAT 0x64
#define LTQ_SPI_GPOCON 0x70
#define LTQ_SPI_GPOSTAT 0x74
#define LTQ_SPI_FPGO 0x78
#define LTQ_SPI_RXREQ 0x80
#define LTQ_SPI_RXCNT 0x84
#define LTQ_SPI_DMACON 0xec
#define LTQ_SPI_IRNEN 0xf4
#define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
#define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
#define LTQ_SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
#define LTQ_SPI_CLC_RMC_M (0xFF << LTQ_SPI_CLC_RMC_S)
#define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
#define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
#define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
#define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
#define LTQ_SPI_ID_MOD_S 8 /* Module ID */
#define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
#define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
#define LTQ_SPI_ID_CFG_M (1 << LTQ_SPI_ID_CFG_S)
#define LTQ_SPI_ID_REV_M 0x1F /* Hardware revision number */
#define LTQ_SPI_CON_BM_S 16 /* Data width selection */
#define LTQ_SPI_CON_BM_M (0x1F << LTQ_SPI_CON_BM_S)
#define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
#define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
#define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
#define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
#define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
#define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
#define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
#define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
#define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
#define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
#define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
#define LTQ_SPI_CON_HB BIT(4) /* Heading control */
#define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
#define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
#define LTQ_SPI_STAT_RXBV_S 28
#define LTQ_SPI_STAT_RXBV_M (0x7 << LTQ_SPI_STAT_RXBV_S)
#define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
#define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
#define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
#define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
#define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
#define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
#define LTQ_SPI_STAT_ME BIT(7) /* Mode error flag */
#define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
#define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
#define LTQ_SPI_STAT_ERRORS (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
#define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
#define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
#define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
#define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
#define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
#define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
#define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
#define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
#define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
#define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
#define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
#define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
#define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
#define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
#define LTQ_SPI_WHBSTATE_CLR_ERRORS (LTQ_SPI_WHBSTATE_CLRRUE | \
LTQ_SPI_WHBSTATE_CLRME | \
LTQ_SPI_WHBSTATE_CLRTE | \
LTQ_SPI_WHBSTATE_CLRRE | \
LTQ_SPI_WHBSTATE_CLRAE | \
LTQ_SPI_WHBSTATE_CLRTUE)
#define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
#define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
#define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
#define LTQ_SPI_FSTAT_RXFFL_S 0
#define LTQ_SPI_FSTAT_TXFFL_S 8
#define LTQ_SPI_GPOCON_ISCSBN_S 8
#define LTQ_SPI_GPOCON_INVOUTN_S 0
#define LTQ_SPI_FGPO_SETOUTN_S 8
#define LTQ_SPI_FGPO_CLROUTN_S 0
#define LTQ_SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
#define LTQ_SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
#define LTQ_SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
#define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
#define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
#define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
#define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
#define LTQ_SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
#define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
#define LTQ_SPI_IRNEN_ALL 0x1F
struct lantiq_ssc_spi;
struct lantiq_ssc_hwcfg {
int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
unsigned int irnen_r;
unsigned int irnen_t;
unsigned int irncr;
unsigned int irnicr;
bool irq_ack;
u32 fifo_size_mask;
};
struct lantiq_ssc_spi {
struct spi_master *master;
struct device *dev;
void __iomem *regbase;
struct clk *spi_clk;
struct clk *fpi_clk;
const struct lantiq_ssc_hwcfg *hwcfg;
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct work;
const u8 *tx;
u8 *rx;
unsigned int tx_todo;
unsigned int rx_todo;
unsigned int bits_per_word;
unsigned int speed_hz;
unsigned int tx_fifo_size;
unsigned int rx_fifo_size;
unsigned int base_cs;
unsigned int fdx_tx_level;
};
static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
{
return __raw_readl(spi->regbase + reg);
}
static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
u32 reg)
{
__raw_writel(val, spi->regbase + reg);
}
static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
u32 set, u32 reg)
{
u32 val = __raw_readl(spi->regbase + reg);
val &= ~clr;
val |= set;
__raw_writel(val, spi->regbase + reg);
}
static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
}
static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
}
static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
{
return spi->tx_fifo_size - tx_fifo_level(spi);
}
static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
}
static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
}
static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
}
static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
}
static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
}
static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
}
static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
unsigned int max_speed_hz)
{
u32 spi_clk, brt;
/*
* SPI module clock is derived from FPI bus clock dependent on
* divider value in CLC.RMS which is always set to 1.
*
* f_SPI
* baudrate = --------------
* 2 * (BR + 1)
*/
spi_clk = clk_get_rate(spi->fpi_clk) / 2;
if (max_speed_hz > spi_clk)
brt = 0;
else
brt = spi_clk / max_speed_hz - 1;
if (brt > 0xFFFF)
brt = 0xFFFF;
dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
spi_clk, max_speed_hz, brt);
lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
}
static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
unsigned int bits_per_word)
{
u32 bm;
/* CON.BM value = bits_per_word - 1 */
bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
}
static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
unsigned int mode)
{
u32 con_set = 0, con_clr = 0;
/*
* SPI mode mapping in CON register:
* Mode CPOL CPHA CON.PO CON.PH
* 0 0 0 0 1
* 1 0 1 0 0
* 2 1 0 1 1
* 3 1 1 1 0
*/
if (mode & SPI_CPHA)
con_clr |= LTQ_SPI_CON_PH;
else
con_set |= LTQ_SPI_CON_PH;
if (mode & SPI_CPOL)
con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
else
con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
/* Set heading control */
if (mode & SPI_LSB_FIRST)
con_clr |= LTQ_SPI_CON_HB;
else
con_set |= LTQ_SPI_CON_HB;
/* Set loopback mode */
if (mode & SPI_LOOP)
con_set |= LTQ_SPI_CON_LB;
else
con_clr |= LTQ_SPI_CON_LB;
lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
}
static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
/*
* Set clock divider for run mode to 1 to
* run at same frequency as FPI bus
*/
lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
/* Put controller into config mode */
hw_enter_config_mode(spi);
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
/* Enable error checking, disable TX/RX */
lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
/* Setup default SPI mode */
hw_setup_bits_per_word(spi, spi->bits_per_word);
hw_setup_clock_mode(spi, SPI_MODE_0);
/* Enable master mode and clear error flags */
lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
LTQ_SPI_WHBSTATE_CLR_ERRORS,
LTQ_SPI_WHBSTATE);
/* Reset GPIO/CS registers */
lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
/* Enable and flush FIFOs */
rx_fifo_reset(spi);
tx_fifo_reset(spi);
/* Enable interrupts */
lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
}
static int lantiq_ssc_setup(struct spi_device *spidev)
{
struct spi_master *master = spidev->master;
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
unsigned int cs = spi_get_chipselect(spidev, 0);
u32 gpocon;
/* GPIOs are used for CS */
if (spi_get_csgpiod(spidev, 0))
return 0;
dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
if (cs < spi->base_cs) {
dev_err(spi->dev,
"chipselect %i too small (min %i)\n", cs, spi->base_cs);
return -EINVAL;
}
/* set GPO pin to CS mode */
gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
/* invert GPO pin */
if (spidev->mode & SPI_CS_HIGH)
gpocon |= 1 << (cs - spi->base_cs);
lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
return 0;
}
static int lantiq_ssc_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_enter_config_mode(spi);
hw_setup_clock_mode(spi, message->spi->mode);
hw_enter_active_mode(spi);
return 0;
}
static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
struct spi_device *spidev, struct spi_transfer *t)
{
unsigned int speed_hz = t->speed_hz;
unsigned int bits_per_word = t->bits_per_word;
u32 con;
if (bits_per_word != spi->bits_per_word ||
speed_hz != spi->speed_hz) {
hw_enter_config_mode(spi);
hw_setup_speed_hz(spi, speed_hz);
hw_setup_bits_per_word(spi, bits_per_word);
hw_enter_active_mode(spi);
spi->speed_hz = speed_hz;
spi->bits_per_word = bits_per_word;
}
/* Configure transmitter and receiver */
con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
if (t->tx_buf)
con &= ~LTQ_SPI_CON_TXOFF;
else
con |= LTQ_SPI_CON_TXOFF;
if (t->rx_buf)
con &= ~LTQ_SPI_CON_RXOFF;
else
con |= LTQ_SPI_CON_RXOFF;
lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
}
static int lantiq_ssc_unprepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
flush_workqueue(spi->wq);
/* Disable transmitter and receiver while idle */
lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
LTQ_SPI_CON);
return 0;
}
static void tx_fifo_write(struct lantiq_ssc_spi *spi)
{
const u8 *tx8;
const u16 *tx16;
const u32 *tx32;
u32 data;
unsigned int tx_free = tx_fifo_free(spi);
spi->fdx_tx_level = 0;
while (spi->tx_todo && tx_free) {
switch (spi->bits_per_word) {
case 2 ... 8:
tx8 = spi->tx;
data = *tx8;
spi->tx_todo--;
spi->tx++;
break;
case 16:
tx16 = (u16 *) spi->tx;
data = *tx16;
spi->tx_todo -= 2;
spi->tx += 2;
break;
case 32:
tx32 = (u32 *) spi->tx;
data = *tx32;
spi->tx_todo -= 4;
spi->tx += 4;
break;
default:
WARN_ON(1);
data = 0;
break;
}
lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
tx_free--;
spi->fdx_tx_level++;
}
}
static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
{
u8 *rx8;
u16 *rx16;
u32 *rx32;
u32 data;
unsigned int rx_fill = rx_fifo_level(spi);
/*
* Wait until all expected data to be shifted in.
* Otherwise, rx overrun may occur.
*/
while (rx_fill != spi->fdx_tx_level)
rx_fill = rx_fifo_level(spi);
while (rx_fill) {
data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
switch (spi->bits_per_word) {
case 2 ... 8:
rx8 = spi->rx;
*rx8 = data;
spi->rx_todo--;
spi->rx++;
break;
case 16:
rx16 = (u16 *) spi->rx;
*rx16 = data;
spi->rx_todo -= 2;
spi->rx += 2;
break;
case 32:
rx32 = (u32 *) spi->rx;
*rx32 = data;
spi->rx_todo -= 4;
spi->rx += 4;
break;
default:
WARN_ON(1);
break;
}
rx_fill--;
}
}
static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
{
u32 data, *rx32;
u8 *rx8;
unsigned int rxbv, shift;
unsigned int rx_fill = rx_fifo_level(spi);
/*
* In RX-only mode the bits per word value is ignored by HW. A value
* of 32 is used instead. Thus all 4 bytes per FIFO must be read.
* If remaining RX bytes are less than 4, the FIFO must be read
* differently. The amount of received and valid bytes is indicated
* by STAT.RXBV register value.
*/
while (rx_fill) {
if (spi->rx_todo < 4) {
rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
shift = (rxbv - 1) * 8;
rx8 = spi->rx;
while (rxbv) {
*rx8++ = (data >> shift) & 0xFF;
rxbv--;
shift -= 8;
spi->rx_todo--;
spi->rx++;
}
} else {
data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
rx32 = (u32 *) spi->rx;
*rx32++ = data;
spi->rx_todo -= 4;
spi->rx += 4;
}
rx_fill--;
}
}
static void rx_request(struct lantiq_ssc_spi *spi)
{
unsigned int rxreq, rxreq_max;
/*
* To avoid receive overflows at high clocks it is better to request
* only the amount of bytes that fits into all FIFOs. This value
* depends on the FIFO size implemented in hardware.
*/
rxreq = spi->rx_todo;
rxreq_max = spi->rx_fifo_size * 4;
if (rxreq > rxreq_max)
rxreq = rxreq_max;
lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
}
static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
spin_lock(&spi->lock);
if (hwcfg->irq_ack)
lantiq_ssc_writel(spi, val, hwcfg->irncr);
if (spi->tx) {
if (spi->rx && spi->rx_todo)
rx_fifo_read_full_duplex(spi);
if (spi->tx_todo)
tx_fifo_write(spi);
else if (!tx_fifo_level(spi))
goto completed;
} else if (spi->rx) {
if (spi->rx_todo) {
rx_fifo_read_half_duplex(spi);
if (spi->rx_todo)
rx_request(spi);
else
goto completed;
} else {
goto completed;
}
}
spin_unlock(&spi->lock);
return IRQ_HANDLED;
completed:
queue_work(spi->wq, &spi->work);
spin_unlock(&spi->lock);
return IRQ_HANDLED;
}
static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
if (!(stat & LTQ_SPI_STAT_ERRORS))
return IRQ_NONE;
spin_lock(&spi->lock);
if (hwcfg->irq_ack)
lantiq_ssc_writel(spi, val, hwcfg->irncr);
if (stat & LTQ_SPI_STAT_RUE)
dev_err(spi->dev, "receive underflow error\n");
if (stat & LTQ_SPI_STAT_TUE)
dev_err(spi->dev, "transmit underflow error\n");
if (stat & LTQ_SPI_STAT_AE)
dev_err(spi->dev, "abort error\n");
if (stat & LTQ_SPI_STAT_RE)
dev_err(spi->dev, "receive overflow error\n");
if (stat & LTQ_SPI_STAT_TE)
dev_err(spi->dev, "transmit overflow error\n");
if (stat & LTQ_SPI_STAT_ME)
dev_err(spi->dev, "mode error\n");
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
/* set bad status so it can be retried */
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
queue_work(spi->wq, &spi->work);
spin_unlock(&spi->lock);
return IRQ_HANDLED;
}
static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
if (!(val & LTQ_SPI_IRNEN_ALL))
return IRQ_NONE;
if (val & LTQ_SPI_IRNEN_E)
return lantiq_ssc_err_interrupt(irq, data);
if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
return lantiq_ssc_xmit_interrupt(irq, data);
return IRQ_HANDLED;
}
static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
struct spi_transfer *t)
{
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
spi->tx = t->tx_buf;
spi->rx = t->rx_buf;
if (t->tx_buf) {
spi->tx_todo = t->len;
/* initially fill TX FIFO */
tx_fifo_write(spi);
}
if (spi->rx) {
spi->rx_todo = t->len;
/* start shift clock in RX-only mode */
if (!spi->tx)
rx_request(spi);
}
spin_unlock_irqrestore(&spi->lock, flags);
return t->len;
}
/*
* The driver only gets an interrupt when the FIFO is empty, but there
* is an additional shift register from which the data is written to
* the wire. We get the last interrupt when the controller starts to
* write the last word to the wire, not when it is finished. Do busy
* waiting till it finishes.
*/
static void lantiq_ssc_bussy_work(struct work_struct *work)
{
struct lantiq_ssc_spi *spi;
unsigned long long timeout = 8LL * 1000LL;
unsigned long end;
spi = container_of(work, typeof(*spi), work);
do_div(timeout, spi->speed_hz);
timeout += timeout + 100; /* some tolerance */
end = jiffies + msecs_to_jiffies(timeout);
do {
u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
if (!(stat & LTQ_SPI_STAT_BSY)) {
spi_finalize_current_transfer(spi->master);
return;
}
cond_resched();
} while (!time_after_eq(jiffies, end));
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(spi->master);
}
static void lantiq_ssc_handle_err(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
/* flush FIFOs on timeout */
rx_fifo_flush(spi);
tx_fifo_flush(spi);
}
static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
unsigned int cs = spi_get_chipselect(spidev, 0);
u32 fgpo;
if (!!(spidev->mode & SPI_CS_HIGH) == enable)
fgpo = (1 << (cs - spi->base_cs));
else
fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
}
static int lantiq_ssc_transfer_one(struct spi_master *master,
struct spi_device *spidev,
struct spi_transfer *t)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_setup_transfer(spi, spidev, t);
return transfer_start(spi, spidev, t);
}
static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
int irq;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
}
static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
{
int irq, err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_RX_IRQ_NAME, spi);
if (err)
return err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
0, LTQ_SPI_TX_IRQ_NAME, spi);
if (err)
return err;
irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
if (irq < 0)
return irq;
err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
0, LTQ_SPI_ERR_IRQ_NAME, spi);
return err;
}
static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
.cfg_irq = lantiq_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XWAY,
.irnen_t = LTQ_SPI_IRNEN_T_XWAY,
.irnicr = 0xF8,
.irncr = 0xFC,
.fifo_size_mask = GENMASK(5, 0),
.irq_ack = false,
};
static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
.cfg_irq = lantiq_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XRX,
.irnen_t = LTQ_SPI_IRNEN_T_XRX,
.irnicr = 0xF8,
.irncr = 0xFC,
.fifo_size_mask = GENMASK(5, 0),
.irq_ack = false,
};
static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
.cfg_irq = intel_lgm_cfg_irq,
.irnen_r = LTQ_SPI_IRNEN_R_XRX,
.irnen_t = LTQ_SPI_IRNEN_T_XRX,
.irnicr = 0xFC,
.irncr = 0xF8,
.fifo_size_mask = GENMASK(7, 0),
.irq_ack = true,
};
static const struct of_device_id lantiq_ssc_match[] = {
{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
{},
};
MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
static int lantiq_ssc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct lantiq_ssc_spi *spi;
const struct lantiq_ssc_hwcfg *hwcfg;
u32 id, supports_dma, revision;
unsigned int num_cs;
int err;
hwcfg = of_device_get_match_data(dev);
master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
if (!master)
return -ENOMEM;
spi = spi_master_get_devdata(master);
spi->master = master;
spi->dev = dev;
spi->hwcfg = hwcfg;
platform_set_drvdata(pdev, spi);
spi->regbase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spi->regbase)) {
err = PTR_ERR(spi->regbase);
goto err_master_put;
}
err = hwcfg->cfg_irq(pdev, spi);
if (err)
goto err_master_put;
spi->spi_clk = devm_clk_get(dev, "gate");
if (IS_ERR(spi->spi_clk)) {
err = PTR_ERR(spi->spi_clk);
goto err_master_put;
}
err = clk_prepare_enable(spi->spi_clk);
if (err)
goto err_master_put;
/*
* Use the old clk_get_fpi() function on Lantiq platform, till it
* supports common clk.
*/
#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
spi->fpi_clk = clk_get_fpi();
#else
spi->fpi_clk = clk_get(dev, "freq");
#endif
if (IS_ERR(spi->fpi_clk)) {
err = PTR_ERR(spi->fpi_clk);
goto err_clk_disable;
}
num_cs = 8;
of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
spi->base_cs = 1;
of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
spin_lock_init(&spi->lock);
spi->bits_per_word = 8;
spi->speed_hz = 0;
master->dev.of_node = pdev->dev.of_node;
master->num_chipselect = num_cs;
master->use_gpio_descriptors = true;
master->setup = lantiq_ssc_setup;
master->set_cs = lantiq_ssc_set_cs;
master->handle_err = lantiq_ssc_handle_err;
master->prepare_message = lantiq_ssc_prepare_message;
master->unprepare_message = lantiq_ssc_unprepare_message;
master->transfer_one = lantiq_ssc_transfer_one;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
if (!spi->wq) {
err = -ENOMEM;
goto err_clk_put;
}
INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
revision = id & LTQ_SPI_ID_REV_M;
lantiq_ssc_hw_init(spi);
dev_info(dev,
"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
err = devm_spi_register_master(dev, master);
if (err) {
dev_err(dev, "failed to register spi_master\n");
goto err_wq_destroy;
}
return 0;
err_wq_destroy:
destroy_workqueue(spi->wq);
err_clk_put:
clk_put(spi->fpi_clk);
err_clk_disable:
clk_disable_unprepare(spi->spi_clk);
err_master_put:
spi_master_put(master);
return err;
}
static void lantiq_ssc_remove(struct platform_device *pdev)
{
struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
rx_fifo_flush(spi);
tx_fifo_flush(spi);
hw_enter_config_mode(spi);
destroy_workqueue(spi->wq);
clk_disable_unprepare(spi->spi_clk);
clk_put(spi->fpi_clk);
}
static struct platform_driver lantiq_ssc_driver = {
.probe = lantiq_ssc_probe,
.remove_new = lantiq_ssc_remove,
.driver = {
.name = "spi-lantiq-ssc",
.of_match_table = lantiq_ssc_match,
},
};
module_platform_driver(lantiq_ssc_driver);
MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:spi-lantiq-ssc");