linux-stable/drivers/spi/spi-meson-spicc.c
Amit Kumar Mahapatra via Alsa-devel 9e264f3f85
spi: Replace all spi->chip_select and spi->cs_gpiod references with function call
Supporting multi-cs in spi drivers would require the chip_select & cs_gpiod
members of struct spi_device to be an array. But changing the type of these
members to array would break the spi driver functionality. To make the
transition smoother introduced four new APIs to get/set the
spi->chip_select & spi->cs_gpiod and replaced all spi->chip_select and
spi->cs_gpiod references with get or set API calls.
While adding multi-cs support in further patches the chip_select & cs_gpiod
members of the spi_device structure would be converted to arrays & the
"idx" parameter of the APIs would be used as array index i.e.,
spi->chip_select[idx] & spi->cs_gpiod[idx] respectively.

Signed-off-by: Amit Kumar Mahapatra <amit.kumar-mahapatra@amd.com>
Acked-by: Heiko Stuebner <heiko@sntech.de> # Rockchip drivers
Reviewed-by: Michal Simek <michal.simek@amd.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org> # Aspeed driver
Reviewed-by: Dhruva Gole <d-gole@ti.com> # SPI Cadence QSPI
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com> # spi-stm32-qspi
Acked-by: William Zhang <william.zhang@broadcom.com> # bcm63xx-hsspi driver
Reviewed-by: Serge Semin <fancer.lancer@gmail.com> # DW SSI part
Link: https://lore.kernel.org/r/167847070432.26.15076794204368669839@mailman-core.alsa-project.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-11 12:34:01 +00:00

979 lines
26 KiB
C

/*
* Driver for Amlogic Meson SPI communication controller (SPICC)
*
* Copyright (C) BayLibre, SAS
* Author: Neil Armstrong <narmstrong@baylibre.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/pinctrl/consumer.h>
/*
* The Meson SPICC controller could support DMA based transfers, but is not
* implemented by the vendor code, and while having the registers documentation
* it has never worked on the GXL Hardware.
* The PIO mode is the only mode implemented, and due to badly designed HW :
* - all transfers are cutted in 16 words burst because the FIFO hangs on
* TX underflow, and there is no TX "Half-Empty" interrupt, so we go by
* FIFO max size chunk only
* - CS management is dumb, and goes UP between every burst, so is really a
* "Data Valid" signal than a Chip Select, GPIO link should be used instead
* to have a CS go down over the full transfer
*/
#define SPICC_MAX_BURST 128
/* Register Map */
#define SPICC_RXDATA 0x00
#define SPICC_TXDATA 0x04
#define SPICC_CONREG 0x08
#define SPICC_ENABLE BIT(0)
#define SPICC_MODE_MASTER BIT(1)
#define SPICC_XCH BIT(2)
#define SPICC_SMC BIT(3)
#define SPICC_POL BIT(4)
#define SPICC_PHA BIT(5)
#define SPICC_SSCTL BIT(6)
#define SPICC_SSPOL BIT(7)
#define SPICC_DRCTL_MASK GENMASK(9, 8)
#define SPICC_DRCTL_IGNORE 0
#define SPICC_DRCTL_FALLING 1
#define SPICC_DRCTL_LOWLEVEL 2
#define SPICC_CS_MASK GENMASK(13, 12)
#define SPICC_DATARATE_MASK GENMASK(18, 16)
#define SPICC_DATARATE_DIV4 0
#define SPICC_DATARATE_DIV8 1
#define SPICC_DATARATE_DIV16 2
#define SPICC_DATARATE_DIV32 3
#define SPICC_BITLENGTH_MASK GENMASK(24, 19)
#define SPICC_BURSTLENGTH_MASK GENMASK(31, 25)
#define SPICC_INTREG 0x0c
#define SPICC_TE_EN BIT(0) /* TX FIFO Empty Interrupt */
#define SPICC_TH_EN BIT(1) /* TX FIFO Half-Full Interrupt */
#define SPICC_TF_EN BIT(2) /* TX FIFO Full Interrupt */
#define SPICC_RR_EN BIT(3) /* RX FIFO Ready Interrupt */
#define SPICC_RH_EN BIT(4) /* RX FIFO Half-Full Interrupt */
#define SPICC_RF_EN BIT(5) /* RX FIFO Full Interrupt */
#define SPICC_RO_EN BIT(6) /* RX FIFO Overflow Interrupt */
#define SPICC_TC_EN BIT(7) /* Transfert Complete Interrupt */
#define SPICC_DMAREG 0x10
#define SPICC_DMA_ENABLE BIT(0)
#define SPICC_TXFIFO_THRESHOLD_MASK GENMASK(5, 1)
#define SPICC_RXFIFO_THRESHOLD_MASK GENMASK(10, 6)
#define SPICC_READ_BURST_MASK GENMASK(14, 11)
#define SPICC_WRITE_BURST_MASK GENMASK(18, 15)
#define SPICC_DMA_URGENT BIT(19)
#define SPICC_DMA_THREADID_MASK GENMASK(25, 20)
#define SPICC_DMA_BURSTNUM_MASK GENMASK(31, 26)
#define SPICC_STATREG 0x14
#define SPICC_TE BIT(0) /* TX FIFO Empty Interrupt */
#define SPICC_TH BIT(1) /* TX FIFO Half-Full Interrupt */
#define SPICC_TF BIT(2) /* TX FIFO Full Interrupt */
#define SPICC_RR BIT(3) /* RX FIFO Ready Interrupt */
#define SPICC_RH BIT(4) /* RX FIFO Half-Full Interrupt */
#define SPICC_RF BIT(5) /* RX FIFO Full Interrupt */
#define SPICC_RO BIT(6) /* RX FIFO Overflow Interrupt */
#define SPICC_TC BIT(7) /* Transfert Complete Interrupt */
#define SPICC_PERIODREG 0x18
#define SPICC_PERIOD GENMASK(14, 0) /* Wait cycles */
#define SPICC_TESTREG 0x1c
#define SPICC_TXCNT_MASK GENMASK(4, 0) /* TX FIFO Counter */
#define SPICC_RXCNT_MASK GENMASK(9, 5) /* RX FIFO Counter */
#define SPICC_SMSTATUS_MASK GENMASK(12, 10) /* State Machine Status */
#define SPICC_LBC_RO BIT(13) /* Loop Back Control Read-Only */
#define SPICC_LBC_W1 BIT(14) /* Loop Back Control Write-Only */
#define SPICC_SWAP_RO BIT(14) /* RX FIFO Data Swap Read-Only */
#define SPICC_SWAP_W1 BIT(15) /* RX FIFO Data Swap Write-Only */
#define SPICC_DLYCTL_RO_MASK GENMASK(20, 15) /* Delay Control Read-Only */
#define SPICC_MO_DELAY_MASK GENMASK(17, 16) /* Master Output Delay */
#define SPICC_MO_NO_DELAY 0
#define SPICC_MO_DELAY_1_CYCLE 1
#define SPICC_MO_DELAY_2_CYCLE 2
#define SPICC_MO_DELAY_3_CYCLE 3
#define SPICC_MI_DELAY_MASK GENMASK(19, 18) /* Master Input Delay */
#define SPICC_MI_NO_DELAY 0
#define SPICC_MI_DELAY_1_CYCLE 1
#define SPICC_MI_DELAY_2_CYCLE 2
#define SPICC_MI_DELAY_3_CYCLE 3
#define SPICC_MI_CAP_DELAY_MASK GENMASK(21, 20) /* Master Capture Delay */
#define SPICC_CAP_AHEAD_2_CYCLE 0
#define SPICC_CAP_AHEAD_1_CYCLE 1
#define SPICC_CAP_NO_DELAY 2
#define SPICC_CAP_DELAY_1_CYCLE 3
#define SPICC_FIFORST_RO_MASK GENMASK(22, 21) /* FIFO Softreset Read-Only */
#define SPICC_FIFORST_W1_MASK GENMASK(23, 22) /* FIFO Softreset Write-Only */
#define SPICC_DRADDR 0x20 /* Read Address of DMA */
#define SPICC_DWADDR 0x24 /* Write Address of DMA */
#define SPICC_ENH_CTL0 0x38 /* Enhanced Feature */
#define SPICC_ENH_CLK_CS_DELAY_MASK GENMASK(15, 0)
#define SPICC_ENH_DATARATE_MASK GENMASK(23, 16)
#define SPICC_ENH_DATARATE_EN BIT(24)
#define SPICC_ENH_MOSI_OEN BIT(25)
#define SPICC_ENH_CLK_OEN BIT(26)
#define SPICC_ENH_CS_OEN BIT(27)
#define SPICC_ENH_CLK_CS_DELAY_EN BIT(28)
#define SPICC_ENH_MAIN_CLK_AO BIT(29)
#define writel_bits_relaxed(mask, val, addr) \
writel_relaxed((readl_relaxed(addr) & ~(mask)) | (val), addr)
struct meson_spicc_data {
unsigned int max_speed_hz;
unsigned int min_speed_hz;
unsigned int fifo_size;
bool has_oen;
bool has_enhance_clk_div;
bool has_pclk;
};
struct meson_spicc_device {
struct spi_master *master;
struct platform_device *pdev;
void __iomem *base;
struct clk *core;
struct clk *pclk;
struct clk_divider pow2_div;
struct clk *clk;
struct spi_message *message;
struct spi_transfer *xfer;
struct completion done;
const struct meson_spicc_data *data;
u8 *tx_buf;
u8 *rx_buf;
unsigned int bytes_per_word;
unsigned long tx_remain;
unsigned long rx_remain;
unsigned long xfer_remain;
struct pinctrl *pinctrl;
struct pinctrl_state *pins_idle_high;
struct pinctrl_state *pins_idle_low;
};
#define pow2_clk_to_spicc(_div) container_of(_div, struct meson_spicc_device, pow2_div)
static void meson_spicc_oen_enable(struct meson_spicc_device *spicc)
{
u32 conf;
if (!spicc->data->has_oen) {
/* Try to get pinctrl states for idle high/low */
spicc->pins_idle_high = pinctrl_lookup_state(spicc->pinctrl,
"idle-high");
if (IS_ERR(spicc->pins_idle_high)) {
dev_warn(&spicc->pdev->dev, "can't get idle-high pinctrl\n");
spicc->pins_idle_high = NULL;
}
spicc->pins_idle_low = pinctrl_lookup_state(spicc->pinctrl,
"idle-low");
if (IS_ERR(spicc->pins_idle_low)) {
dev_warn(&spicc->pdev->dev, "can't get idle-low pinctrl\n");
spicc->pins_idle_low = NULL;
}
return;
}
conf = readl_relaxed(spicc->base + SPICC_ENH_CTL0) |
SPICC_ENH_MOSI_OEN | SPICC_ENH_CLK_OEN | SPICC_ENH_CS_OEN;
writel_relaxed(conf, spicc->base + SPICC_ENH_CTL0);
}
static inline bool meson_spicc_txfull(struct meson_spicc_device *spicc)
{
return !!FIELD_GET(SPICC_TF,
readl_relaxed(spicc->base + SPICC_STATREG));
}
static inline bool meson_spicc_rxready(struct meson_spicc_device *spicc)
{
return FIELD_GET(SPICC_RH | SPICC_RR | SPICC_RF,
readl_relaxed(spicc->base + SPICC_STATREG));
}
static inline u32 meson_spicc_pull_data(struct meson_spicc_device *spicc)
{
unsigned int bytes = spicc->bytes_per_word;
unsigned int byte_shift = 0;
u32 data = 0;
u8 byte;
while (bytes--) {
byte = *spicc->tx_buf++;
data |= (byte & 0xff) << byte_shift;
byte_shift += 8;
}
spicc->tx_remain--;
return data;
}
static inline void meson_spicc_push_data(struct meson_spicc_device *spicc,
u32 data)
{
unsigned int bytes = spicc->bytes_per_word;
unsigned int byte_shift = 0;
u8 byte;
while (bytes--) {
byte = (data >> byte_shift) & 0xff;
*spicc->rx_buf++ = byte;
byte_shift += 8;
}
spicc->rx_remain--;
}
static inline void meson_spicc_rx(struct meson_spicc_device *spicc)
{
/* Empty RX FIFO */
while (spicc->rx_remain &&
meson_spicc_rxready(spicc))
meson_spicc_push_data(spicc,
readl_relaxed(spicc->base + SPICC_RXDATA));
}
static inline void meson_spicc_tx(struct meson_spicc_device *spicc)
{
/* Fill Up TX FIFO */
while (spicc->tx_remain &&
!meson_spicc_txfull(spicc))
writel_relaxed(meson_spicc_pull_data(spicc),
spicc->base + SPICC_TXDATA);
}
static inline void meson_spicc_setup_burst(struct meson_spicc_device *spicc)
{
unsigned int burst_len = min_t(unsigned int,
spicc->xfer_remain /
spicc->bytes_per_word,
spicc->data->fifo_size);
/* Setup Xfer variables */
spicc->tx_remain = burst_len;
spicc->rx_remain = burst_len;
spicc->xfer_remain -= burst_len * spicc->bytes_per_word;
/* Setup burst length */
writel_bits_relaxed(SPICC_BURSTLENGTH_MASK,
FIELD_PREP(SPICC_BURSTLENGTH_MASK,
burst_len - 1),
spicc->base + SPICC_CONREG);
/* Fill TX FIFO */
meson_spicc_tx(spicc);
}
static irqreturn_t meson_spicc_irq(int irq, void *data)
{
struct meson_spicc_device *spicc = (void *) data;
writel_bits_relaxed(SPICC_TC, SPICC_TC, spicc->base + SPICC_STATREG);
/* Empty RX FIFO */
meson_spicc_rx(spicc);
if (!spicc->xfer_remain) {
/* Disable all IRQs */
writel(0, spicc->base + SPICC_INTREG);
complete(&spicc->done);
return IRQ_HANDLED;
}
/* Setup burst */
meson_spicc_setup_burst(spicc);
/* Start burst */
writel_bits_relaxed(SPICC_XCH, SPICC_XCH, spicc->base + SPICC_CONREG);
return IRQ_HANDLED;
}
static void meson_spicc_auto_io_delay(struct meson_spicc_device *spicc)
{
u32 div, hz;
u32 mi_delay, cap_delay;
u32 conf;
if (spicc->data->has_enhance_clk_div) {
div = FIELD_GET(SPICC_ENH_DATARATE_MASK,
readl_relaxed(spicc->base + SPICC_ENH_CTL0));
div++;
div <<= 1;
} else {
div = FIELD_GET(SPICC_DATARATE_MASK,
readl_relaxed(spicc->base + SPICC_CONREG));
div += 2;
div = 1 << div;
}
mi_delay = SPICC_MI_NO_DELAY;
cap_delay = SPICC_CAP_AHEAD_2_CYCLE;
hz = clk_get_rate(spicc->clk);
if (hz >= 100000000)
cap_delay = SPICC_CAP_DELAY_1_CYCLE;
else if (hz >= 80000000)
cap_delay = SPICC_CAP_NO_DELAY;
else if (hz >= 40000000)
cap_delay = SPICC_CAP_AHEAD_1_CYCLE;
else if (div >= 16)
mi_delay = SPICC_MI_DELAY_3_CYCLE;
else if (div >= 8)
mi_delay = SPICC_MI_DELAY_2_CYCLE;
else if (div >= 6)
mi_delay = SPICC_MI_DELAY_1_CYCLE;
conf = readl_relaxed(spicc->base + SPICC_TESTREG);
conf &= ~(SPICC_MO_DELAY_MASK | SPICC_MI_DELAY_MASK
| SPICC_MI_CAP_DELAY_MASK);
conf |= FIELD_PREP(SPICC_MI_DELAY_MASK, mi_delay);
conf |= FIELD_PREP(SPICC_MI_CAP_DELAY_MASK, cap_delay);
writel_relaxed(conf, spicc->base + SPICC_TESTREG);
}
static void meson_spicc_setup_xfer(struct meson_spicc_device *spicc,
struct spi_transfer *xfer)
{
u32 conf, conf_orig;
/* Read original configuration */
conf = conf_orig = readl_relaxed(spicc->base + SPICC_CONREG);
/* Setup word width */
conf &= ~SPICC_BITLENGTH_MASK;
conf |= FIELD_PREP(SPICC_BITLENGTH_MASK,
(spicc->bytes_per_word << 3) - 1);
/* Ignore if unchanged */
if (conf != conf_orig)
writel_relaxed(conf, spicc->base + SPICC_CONREG);
clk_set_rate(spicc->clk, xfer->speed_hz);
meson_spicc_auto_io_delay(spicc);
writel_relaxed(0, spicc->base + SPICC_DMAREG);
}
static void meson_spicc_reset_fifo(struct meson_spicc_device *spicc)
{
if (spicc->data->has_oen)
writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO,
SPICC_ENH_MAIN_CLK_AO,
spicc->base + SPICC_ENH_CTL0);
writel_bits_relaxed(SPICC_FIFORST_W1_MASK, SPICC_FIFORST_W1_MASK,
spicc->base + SPICC_TESTREG);
while (meson_spicc_rxready(spicc))
readl_relaxed(spicc->base + SPICC_RXDATA);
if (spicc->data->has_oen)
writel_bits_relaxed(SPICC_ENH_MAIN_CLK_AO, 0,
spicc->base + SPICC_ENH_CTL0);
}
static int meson_spicc_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
uint64_t timeout;
/* Store current transfer */
spicc->xfer = xfer;
/* Setup transfer parameters */
spicc->tx_buf = (u8 *)xfer->tx_buf;
spicc->rx_buf = (u8 *)xfer->rx_buf;
spicc->xfer_remain = xfer->len;
/* Pre-calculate word size */
spicc->bytes_per_word =
DIV_ROUND_UP(spicc->xfer->bits_per_word, 8);
if (xfer->len % spicc->bytes_per_word)
return -EINVAL;
/* Setup transfer parameters */
meson_spicc_setup_xfer(spicc, xfer);
meson_spicc_reset_fifo(spicc);
/* Setup burst */
meson_spicc_setup_burst(spicc);
/* Setup wait for completion */
reinit_completion(&spicc->done);
/* For each byte we wait for 8 cycles of the SPI clock */
timeout = 8LL * MSEC_PER_SEC * xfer->len;
do_div(timeout, xfer->speed_hz);
/* Add 10us delay between each fifo bursts */
timeout += ((xfer->len >> 4) * 10) / MSEC_PER_SEC;
/* Increase it twice and add 200 ms tolerance */
timeout += timeout + 200;
/* Start burst */
writel_bits_relaxed(SPICC_XCH, SPICC_XCH, spicc->base + SPICC_CONREG);
/* Enable interrupts */
writel_relaxed(SPICC_TC_EN, spicc->base + SPICC_INTREG);
if (!wait_for_completion_timeout(&spicc->done, msecs_to_jiffies(timeout)))
return -ETIMEDOUT;
return 0;
}
static int meson_spicc_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
struct spi_device *spi = message->spi;
u32 conf = readl_relaxed(spicc->base + SPICC_CONREG) & SPICC_DATARATE_MASK;
/* Store current message */
spicc->message = message;
/* Enable Master */
conf |= SPICC_ENABLE;
conf |= SPICC_MODE_MASTER;
/* SMC = 0 */
/* Setup transfer mode */
if (spi->mode & SPI_CPOL)
conf |= SPICC_POL;
else
conf &= ~SPICC_POL;
if (!spicc->data->has_oen) {
if (spi->mode & SPI_CPOL) {
if (spicc->pins_idle_high)
pinctrl_select_state(spicc->pinctrl, spicc->pins_idle_high);
} else {
if (spicc->pins_idle_low)
pinctrl_select_state(spicc->pinctrl, spicc->pins_idle_low);
}
}
if (spi->mode & SPI_CPHA)
conf |= SPICC_PHA;
else
conf &= ~SPICC_PHA;
/* SSCTL = 0 */
if (spi->mode & SPI_CS_HIGH)
conf |= SPICC_SSPOL;
else
conf &= ~SPICC_SSPOL;
if (spi->mode & SPI_READY)
conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_LOWLEVEL);
else
conf |= FIELD_PREP(SPICC_DRCTL_MASK, SPICC_DRCTL_IGNORE);
/* Select CS */
conf |= FIELD_PREP(SPICC_CS_MASK, spi_get_chipselect(spi, 0));
/* Default 8bit word */
conf |= FIELD_PREP(SPICC_BITLENGTH_MASK, 8 - 1);
writel_relaxed(conf, spicc->base + SPICC_CONREG);
/* Setup no wait cycles by default */
writel_relaxed(0, spicc->base + SPICC_PERIODREG);
writel_bits_relaxed(SPICC_LBC_W1, 0, spicc->base + SPICC_TESTREG);
return 0;
}
static int meson_spicc_unprepare_transfer(struct spi_master *master)
{
struct meson_spicc_device *spicc = spi_master_get_devdata(master);
u32 conf = readl_relaxed(spicc->base + SPICC_CONREG) & SPICC_DATARATE_MASK;
/* Disable all IRQs */
writel(0, spicc->base + SPICC_INTREG);
device_reset_optional(&spicc->pdev->dev);
/* Set default configuration, keeping datarate field */
writel_relaxed(conf, spicc->base + SPICC_CONREG);
if (!spicc->data->has_oen)
pinctrl_select_default_state(&spicc->pdev->dev);
return 0;
}
static int meson_spicc_setup(struct spi_device *spi)
{
if (!spi->controller_state)
spi->controller_state = spi_master_get_devdata(spi->master);
return 0;
}
static void meson_spicc_cleanup(struct spi_device *spi)
{
spi->controller_state = NULL;
}
/*
* The Clock Mux
* x-----------------x x------------x x------\
* |---| pow2 fixed div |---| pow2 div |----| |
* | x-----------------x x------------x | |
* src ---| | mux |-- out
* | x-----------------x x------------x | |
* |---| enh fixed div |---| enh div |0---| |
* x-----------------x x------------x x------/
*
* Clk path for GX series:
* src -> pow2 fixed div -> pow2 div -> out
*
* Clk path for AXG series:
* src -> pow2 fixed div -> pow2 div -> mux -> out
* src -> enh fixed div -> enh div -> mux -> out
*
* Clk path for G12A series:
* pclk -> pow2 fixed div -> pow2 div -> mux -> out
* pclk -> enh fixed div -> enh div -> mux -> out
*
* The pow2 divider is tied to the controller HW state, and the
* divider is only valid when the controller is initialized.
*
* A set of clock ops is added to make sure we don't read/set this
* clock rate while the controller is in an unknown state.
*/
static unsigned long meson_spicc_pow2_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_divider *divider = to_clk_divider(hw);
struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider);
if (!spicc->master->cur_msg)
return 0;
return clk_divider_ops.recalc_rate(hw, parent_rate);
}
static int meson_spicc_pow2_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
struct clk_divider *divider = to_clk_divider(hw);
struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider);
if (!spicc->master->cur_msg)
return -EINVAL;
return clk_divider_ops.determine_rate(hw, req);
}
static int meson_spicc_pow2_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_divider *divider = to_clk_divider(hw);
struct meson_spicc_device *spicc = pow2_clk_to_spicc(divider);
if (!spicc->master->cur_msg)
return -EINVAL;
return clk_divider_ops.set_rate(hw, rate, parent_rate);
}
static const struct clk_ops meson_spicc_pow2_clk_ops = {
.recalc_rate = meson_spicc_pow2_recalc_rate,
.determine_rate = meson_spicc_pow2_determine_rate,
.set_rate = meson_spicc_pow2_set_rate,
};
static int meson_spicc_pow2_clk_init(struct meson_spicc_device *spicc)
{
struct device *dev = &spicc->pdev->dev;
struct clk_fixed_factor *pow2_fixed_div;
struct clk_init_data init;
struct clk *clk;
struct clk_parent_data parent_data[2];
char name[64];
memset(&init, 0, sizeof(init));
memset(&parent_data, 0, sizeof(parent_data));
init.parent_data = parent_data;
/* algorithm for pow2 div: rate = freq / 4 / (2 ^ N) */
pow2_fixed_div = devm_kzalloc(dev, sizeof(*pow2_fixed_div), GFP_KERNEL);
if (!pow2_fixed_div)
return -ENOMEM;
snprintf(name, sizeof(name), "%s#pow2_fixed_div", dev_name(dev));
init.name = name;
init.ops = &clk_fixed_factor_ops;
init.flags = 0;
if (spicc->data->has_pclk)
parent_data[0].hw = __clk_get_hw(spicc->pclk);
else
parent_data[0].hw = __clk_get_hw(spicc->core);
init.num_parents = 1;
pow2_fixed_div->mult = 1,
pow2_fixed_div->div = 4,
pow2_fixed_div->hw.init = &init;
clk = devm_clk_register(dev, &pow2_fixed_div->hw);
if (WARN_ON(IS_ERR(clk)))
return PTR_ERR(clk);
snprintf(name, sizeof(name), "%s#pow2_div", dev_name(dev));
init.name = name;
init.ops = &meson_spicc_pow2_clk_ops;
/*
* Set NOCACHE here to make sure we read the actual HW value
* since we reset the HW after each transfer.
*/
init.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE;
parent_data[0].hw = &pow2_fixed_div->hw;
init.num_parents = 1;
spicc->pow2_div.shift = 16,
spicc->pow2_div.width = 3,
spicc->pow2_div.flags = CLK_DIVIDER_POWER_OF_TWO,
spicc->pow2_div.reg = spicc->base + SPICC_CONREG;
spicc->pow2_div.hw.init = &init;
spicc->clk = devm_clk_register(dev, &spicc->pow2_div.hw);
if (WARN_ON(IS_ERR(spicc->clk)))
return PTR_ERR(spicc->clk);
return 0;
}
static int meson_spicc_enh_clk_init(struct meson_spicc_device *spicc)
{
struct device *dev = &spicc->pdev->dev;
struct clk_fixed_factor *enh_fixed_div;
struct clk_divider *enh_div;
struct clk_mux *mux;
struct clk_init_data init;
struct clk *clk;
struct clk_parent_data parent_data[2];
char name[64];
memset(&init, 0, sizeof(init));
memset(&parent_data, 0, sizeof(parent_data));
init.parent_data = parent_data;
/* algorithm for enh div: rate = freq / 2 / (N + 1) */
enh_fixed_div = devm_kzalloc(dev, sizeof(*enh_fixed_div), GFP_KERNEL);
if (!enh_fixed_div)
return -ENOMEM;
snprintf(name, sizeof(name), "%s#enh_fixed_div", dev_name(dev));
init.name = name;
init.ops = &clk_fixed_factor_ops;
init.flags = 0;
if (spicc->data->has_pclk)
parent_data[0].hw = __clk_get_hw(spicc->pclk);
else
parent_data[0].hw = __clk_get_hw(spicc->core);
init.num_parents = 1;
enh_fixed_div->mult = 1,
enh_fixed_div->div = 2,
enh_fixed_div->hw.init = &init;
clk = devm_clk_register(dev, &enh_fixed_div->hw);
if (WARN_ON(IS_ERR(clk)))
return PTR_ERR(clk);
enh_div = devm_kzalloc(dev, sizeof(*enh_div), GFP_KERNEL);
if (!enh_div)
return -ENOMEM;
snprintf(name, sizeof(name), "%s#enh_div", dev_name(dev));
init.name = name;
init.ops = &clk_divider_ops;
init.flags = CLK_SET_RATE_PARENT;
parent_data[0].hw = &enh_fixed_div->hw;
init.num_parents = 1;
enh_div->shift = 16,
enh_div->width = 8,
enh_div->reg = spicc->base + SPICC_ENH_CTL0;
enh_div->hw.init = &init;
clk = devm_clk_register(dev, &enh_div->hw);
if (WARN_ON(IS_ERR(clk)))
return PTR_ERR(clk);
mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return -ENOMEM;
snprintf(name, sizeof(name), "%s#sel", dev_name(dev));
init.name = name;
init.ops = &clk_mux_ops;
parent_data[0].hw = &spicc->pow2_div.hw;
parent_data[1].hw = &enh_div->hw;
init.num_parents = 2;
init.flags = CLK_SET_RATE_PARENT;
mux->mask = 0x1,
mux->shift = 24,
mux->reg = spicc->base + SPICC_ENH_CTL0;
mux->hw.init = &init;
spicc->clk = devm_clk_register(dev, &mux->hw);
if (WARN_ON(IS_ERR(spicc->clk)))
return PTR_ERR(spicc->clk);
return 0;
}
static int meson_spicc_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct meson_spicc_device *spicc;
int ret, irq;
master = spi_alloc_master(&pdev->dev, sizeof(*spicc));
if (!master) {
dev_err(&pdev->dev, "master allocation failed\n");
return -ENOMEM;
}
spicc = spi_master_get_devdata(master);
spicc->master = master;
spicc->data = of_device_get_match_data(&pdev->dev);
if (!spicc->data) {
dev_err(&pdev->dev, "failed to get match data\n");
ret = -EINVAL;
goto out_master;
}
spicc->pdev = pdev;
platform_set_drvdata(pdev, spicc);
init_completion(&spicc->done);
spicc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spicc->base)) {
dev_err(&pdev->dev, "io resource mapping failed\n");
ret = PTR_ERR(spicc->base);
goto out_master;
}
/* Set master mode and enable controller */
writel_relaxed(SPICC_ENABLE | SPICC_MODE_MASTER,
spicc->base + SPICC_CONREG);
/* Disable all IRQs */
writel_relaxed(0, spicc->base + SPICC_INTREG);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_master;
}
ret = devm_request_irq(&pdev->dev, irq, meson_spicc_irq,
0, NULL, spicc);
if (ret) {
dev_err(&pdev->dev, "irq request failed\n");
goto out_master;
}
spicc->core = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(spicc->core)) {
dev_err(&pdev->dev, "core clock request failed\n");
ret = PTR_ERR(spicc->core);
goto out_master;
}
if (spicc->data->has_pclk) {
spicc->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(spicc->pclk)) {
dev_err(&pdev->dev, "pclk clock request failed\n");
ret = PTR_ERR(spicc->pclk);
goto out_master;
}
}
ret = clk_prepare_enable(spicc->core);
if (ret) {
dev_err(&pdev->dev, "core clock enable failed\n");
goto out_master;
}
ret = clk_prepare_enable(spicc->pclk);
if (ret) {
dev_err(&pdev->dev, "pclk clock enable failed\n");
goto out_core_clk;
}
spicc->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(spicc->pinctrl)) {
ret = PTR_ERR(spicc->pinctrl);
goto out_clk;
}
device_reset_optional(&pdev->dev);
master->num_chipselect = 4;
master->dev.of_node = pdev->dev.of_node;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_MASK(32) |
SPI_BPW_MASK(24) |
SPI_BPW_MASK(16) |
SPI_BPW_MASK(8);
master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
master->min_speed_hz = spicc->data->min_speed_hz;
master->max_speed_hz = spicc->data->max_speed_hz;
master->setup = meson_spicc_setup;
master->cleanup = meson_spicc_cleanup;
master->prepare_message = meson_spicc_prepare_message;
master->unprepare_transfer_hardware = meson_spicc_unprepare_transfer;
master->transfer_one = meson_spicc_transfer_one;
master->use_gpio_descriptors = true;
meson_spicc_oen_enable(spicc);
ret = meson_spicc_pow2_clk_init(spicc);
if (ret) {
dev_err(&pdev->dev, "pow2 clock registration failed\n");
goto out_clk;
}
if (spicc->data->has_enhance_clk_div) {
ret = meson_spicc_enh_clk_init(spicc);
if (ret) {
dev_err(&pdev->dev, "clock registration failed\n");
goto out_clk;
}
}
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&pdev->dev, "spi master registration failed\n");
goto out_clk;
}
return 0;
out_clk:
clk_disable_unprepare(spicc->pclk);
out_core_clk:
clk_disable_unprepare(spicc->core);
out_master:
spi_master_put(master);
return ret;
}
static void meson_spicc_remove(struct platform_device *pdev)
{
struct meson_spicc_device *spicc = platform_get_drvdata(pdev);
/* Disable SPI */
writel(0, spicc->base + SPICC_CONREG);
clk_disable_unprepare(spicc->core);
clk_disable_unprepare(spicc->pclk);
spi_master_put(spicc->master);
}
static const struct meson_spicc_data meson_spicc_gx_data = {
.max_speed_hz = 30000000,
.min_speed_hz = 325000,
.fifo_size = 16,
};
static const struct meson_spicc_data meson_spicc_axg_data = {
.max_speed_hz = 80000000,
.min_speed_hz = 325000,
.fifo_size = 16,
.has_oen = true,
.has_enhance_clk_div = true,
};
static const struct meson_spicc_data meson_spicc_g12a_data = {
.max_speed_hz = 166666666,
.min_speed_hz = 50000,
.fifo_size = 15,
.has_oen = true,
.has_enhance_clk_div = true,
.has_pclk = true,
};
static const struct of_device_id meson_spicc_of_match[] = {
{
.compatible = "amlogic,meson-gx-spicc",
.data = &meson_spicc_gx_data,
},
{
.compatible = "amlogic,meson-axg-spicc",
.data = &meson_spicc_axg_data,
},
{
.compatible = "amlogic,meson-g12a-spicc",
.data = &meson_spicc_g12a_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, meson_spicc_of_match);
static struct platform_driver meson_spicc_driver = {
.probe = meson_spicc_probe,
.remove_new = meson_spicc_remove,
.driver = {
.name = "meson-spicc",
.of_match_table = of_match_ptr(meson_spicc_of_match),
},
};
module_platform_driver(meson_spicc_driver);
MODULE_DESCRIPTION("Meson SPI Communication Controller driver");
MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
MODULE_LICENSE("GPL");