linux-stable/arch/x86/mm/kasan_init_64.c
Jann Horn 2f004eea0f x86/kasan: Print original address on #GP
Make #GP exceptions caused by out-of-bounds KASAN shadow accesses easier
to understand by computing the address of the original access and
printing that. More details are in the comments in the patch.

This turns an error like this:

  kasan: CONFIG_KASAN_INLINE enabled
  kasan: GPF could be caused by NULL-ptr deref or user memory access
  general protection fault, probably for non-canonical address
      0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI

into this:

  general protection fault, probably for non-canonical address
      0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI
  KASAN: maybe wild-memory-access in range
      [0x00badbeefbadbee8-0x00badbeefbadbeef]

The hook is placed in architecture-independent code, but is currently
only wired up to the X86 exception handler because I'm not sufficiently
familiar with the address space layout and exception handling mechanisms
on other architectures.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm <linux-mm@kvack.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191218231150.12139-4-jannh@google.com
2019-12-31 13:15:38 +01:00

436 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0
#define DISABLE_BRANCH_PROFILING
#define pr_fmt(fmt) "kasan: " fmt
/* cpu_feature_enabled() cannot be used this early */
#define USE_EARLY_PGTABLE_L5
#include <linux/memblock.h>
#include <linux/kasan.h>
#include <linux/kdebug.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/vmalloc.h>
#include <asm/e820/types.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
#include <asm/pgtable.h>
#include <asm/cpu_entry_area.h>
extern struct range pfn_mapped[E820_MAX_ENTRIES];
static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
static __init void *early_alloc(size_t size, int nid, bool should_panic)
{
void *ptr = memblock_alloc_try_nid(size, size,
__pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
if (!ptr && should_panic)
panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
(void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
return ptr;
}
static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
unsigned long end, int nid)
{
pte_t *pte;
if (pmd_none(*pmd)) {
void *p;
if (boot_cpu_has(X86_FEATURE_PSE) &&
((end - addr) == PMD_SIZE) &&
IS_ALIGNED(addr, PMD_SIZE)) {
p = early_alloc(PMD_SIZE, nid, false);
if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
return;
else if (p)
memblock_free(__pa(p), PMD_SIZE);
}
p = early_alloc(PAGE_SIZE, nid, true);
pmd_populate_kernel(&init_mm, pmd, p);
}
pte = pte_offset_kernel(pmd, addr);
do {
pte_t entry;
void *p;
if (!pte_none(*pte))
continue;
p = early_alloc(PAGE_SIZE, nid, true);
entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
set_pte_at(&init_mm, addr, pte, entry);
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
unsigned long end, int nid)
{
pmd_t *pmd;
unsigned long next;
if (pud_none(*pud)) {
void *p;
if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
((end - addr) == PUD_SIZE) &&
IS_ALIGNED(addr, PUD_SIZE)) {
p = early_alloc(PUD_SIZE, nid, false);
if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
return;
else if (p)
memblock_free(__pa(p), PUD_SIZE);
}
p = early_alloc(PAGE_SIZE, nid, true);
pud_populate(&init_mm, pud, p);
}
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
if (!pmd_large(*pmd))
kasan_populate_pmd(pmd, addr, next, nid);
} while (pmd++, addr = next, addr != end);
}
static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
unsigned long end, int nid)
{
pud_t *pud;
unsigned long next;
if (p4d_none(*p4d)) {
void *p = early_alloc(PAGE_SIZE, nid, true);
p4d_populate(&init_mm, p4d, p);
}
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (!pud_large(*pud))
kasan_populate_pud(pud, addr, next, nid);
} while (pud++, addr = next, addr != end);
}
static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
unsigned long end, int nid)
{
void *p;
p4d_t *p4d;
unsigned long next;
if (pgd_none(*pgd)) {
p = early_alloc(PAGE_SIZE, nid, true);
pgd_populate(&init_mm, pgd, p);
}
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
kasan_populate_p4d(p4d, addr, next, nid);
} while (p4d++, addr = next, addr != end);
}
static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
int nid)
{
pgd_t *pgd;
unsigned long next;
addr = addr & PAGE_MASK;
end = round_up(end, PAGE_SIZE);
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, end);
kasan_populate_pgd(pgd, addr, next, nid);
} while (pgd++, addr = next, addr != end);
}
static void __init map_range(struct range *range)
{
unsigned long start;
unsigned long end;
start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
}
static void __init clear_pgds(unsigned long start,
unsigned long end)
{
pgd_t *pgd;
/* See comment in kasan_init() */
unsigned long pgd_end = end & PGDIR_MASK;
for (; start < pgd_end; start += PGDIR_SIZE) {
pgd = pgd_offset_k(start);
/*
* With folded p4d, pgd_clear() is nop, use p4d_clear()
* instead.
*/
if (pgtable_l5_enabled())
pgd_clear(pgd);
else
p4d_clear(p4d_offset(pgd, start));
}
pgd = pgd_offset_k(start);
for (; start < end; start += P4D_SIZE)
p4d_clear(p4d_offset(pgd, start));
}
static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
{
unsigned long p4d;
if (!pgtable_l5_enabled())
return (p4d_t *)pgd;
p4d = pgd_val(*pgd) & PTE_PFN_MASK;
p4d += __START_KERNEL_map - phys_base;
return (p4d_t *)p4d + p4d_index(addr);
}
static void __init kasan_early_p4d_populate(pgd_t *pgd,
unsigned long addr,
unsigned long end)
{
pgd_t pgd_entry;
p4d_t *p4d, p4d_entry;
unsigned long next;
if (pgd_none(*pgd)) {
pgd_entry = __pgd(_KERNPG_TABLE |
__pa_nodebug(kasan_early_shadow_p4d));
set_pgd(pgd, pgd_entry);
}
p4d = early_p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (!p4d_none(*p4d))
continue;
p4d_entry = __p4d(_KERNPG_TABLE |
__pa_nodebug(kasan_early_shadow_pud));
set_p4d(p4d, p4d_entry);
} while (p4d++, addr = next, addr != end && p4d_none(*p4d));
}
static void __init kasan_map_early_shadow(pgd_t *pgd)
{
/* See comment in kasan_init() */
unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
unsigned long end = KASAN_SHADOW_END;
unsigned long next;
pgd += pgd_index(addr);
do {
next = pgd_addr_end(addr, end);
kasan_early_p4d_populate(pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
unsigned long addr,
unsigned long end)
{
p4d_t *p4d;
unsigned long next;
void *p;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none(*p4d)) {
p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
p4d_populate(&init_mm, p4d, p);
}
} while (p4d++, addr = next, addr != end);
}
static void __init kasan_shallow_populate_pgds(void *start, void *end)
{
unsigned long addr, next;
pgd_t *pgd;
void *p;
addr = (unsigned long)start;
pgd = pgd_offset_k(addr);
do {
next = pgd_addr_end(addr, (unsigned long)end);
if (pgd_none(*pgd)) {
p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
pgd_populate(&init_mm, pgd, p);
}
/*
* we need to populate p4ds to be synced when running in
* four level mode - see sync_global_pgds_l4()
*/
kasan_shallow_populate_p4ds(pgd, addr, next);
} while (pgd++, addr = next, addr != (unsigned long)end);
}
void __init kasan_early_init(void)
{
int i;
pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
__PAGE_KERNEL | _PAGE_ENC;
pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
/* Mask out unsupported __PAGE_KERNEL bits: */
pte_val &= __default_kernel_pte_mask;
pmd_val &= __default_kernel_pte_mask;
pud_val &= __default_kernel_pte_mask;
p4d_val &= __default_kernel_pte_mask;
for (i = 0; i < PTRS_PER_PTE; i++)
kasan_early_shadow_pte[i] = __pte(pte_val);
for (i = 0; i < PTRS_PER_PMD; i++)
kasan_early_shadow_pmd[i] = __pmd(pmd_val);
for (i = 0; i < PTRS_PER_PUD; i++)
kasan_early_shadow_pud[i] = __pud(pud_val);
for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
kasan_early_shadow_p4d[i] = __p4d(p4d_val);
kasan_map_early_shadow(early_top_pgt);
kasan_map_early_shadow(init_top_pgt);
}
void __init kasan_init(void)
{
int i;
void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
/*
* We use the same shadow offset for 4- and 5-level paging to
* facilitate boot-time switching between paging modes.
* As result in 5-level paging mode KASAN_SHADOW_START and
* KASAN_SHADOW_END are not aligned to PGD boundary.
*
* KASAN_SHADOW_START doesn't share PGD with anything else.
* We claim whole PGD entry to make things easier.
*
* KASAN_SHADOW_END lands in the last PGD entry and it collides with
* bunch of things like kernel code, modules, EFI mapping, etc.
* We need to take extra steps to not overwrite them.
*/
if (pgtable_l5_enabled()) {
void *ptr;
ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
__pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
}
load_cr3(early_top_pgt);
__flush_tlb_all();
clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
kasan_mem_to_shadow((void *)PAGE_OFFSET));
for (i = 0; i < E820_MAX_ENTRIES; i++) {
if (pfn_mapped[i].end == 0)
break;
map_range(&pfn_mapped[i]);
}
shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
shadow_cpu_entry_begin = (void *)round_down(
(unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
CPU_ENTRY_AREA_MAP_SIZE);
shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
shadow_cpu_entry_end = (void *)round_up(
(unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
kasan_populate_early_shadow(
kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
kasan_mem_to_shadow((void *)VMALLOC_START));
/*
* If we're in full vmalloc mode, don't back vmalloc space with early
* shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
* the global table and we can populate the lower levels on demand.
*/
if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
kasan_shallow_populate_pgds(
kasan_mem_to_shadow((void *)VMALLOC_START),
kasan_mem_to_shadow((void *)VMALLOC_END));
else
kasan_populate_early_shadow(
kasan_mem_to_shadow((void *)VMALLOC_START),
kasan_mem_to_shadow((void *)VMALLOC_END));
kasan_populate_early_shadow(
kasan_mem_to_shadow((void *)VMALLOC_END + 1),
shadow_cpu_entry_begin);
kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
(unsigned long)shadow_cpu_entry_end, 0);
kasan_populate_early_shadow(shadow_cpu_entry_end,
kasan_mem_to_shadow((void *)__START_KERNEL_map));
kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
(unsigned long)kasan_mem_to_shadow(_end),
early_pfn_to_nid(__pa(_stext)));
kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
(void *)KASAN_SHADOW_END);
load_cr3(init_top_pgt);
__flush_tlb_all();
/*
* kasan_early_shadow_page has been used as early shadow memory, thus
* it may contain some garbage. Now we can clear and write protect it,
* since after the TLB flush no one should write to it.
*/
memset(kasan_early_shadow_page, 0, PAGE_SIZE);
for (i = 0; i < PTRS_PER_PTE; i++) {
pte_t pte;
pgprot_t prot;
prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
pgprot_val(prot) &= __default_kernel_pte_mask;
pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
set_pte(&kasan_early_shadow_pte[i], pte);
}
/* Flush TLBs again to be sure that write protection applied. */
__flush_tlb_all();
init_task.kasan_depth = 0;
pr_info("KernelAddressSanitizer initialized\n");
}