linux-stable/fs/ceph/mds_client.c
Al Viro da549bdd15 dentry: switch the lists of children to hlist
Saves a pointer per struct dentry and actually makes the things less
clumsy.  Cleaned the d_walk() and dcache_readdir() a bit by use
of hlist_for_... iterators.

A couple of new helpers - d_first_child() and d_next_sibling(),
to make the expressions less awful.

Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2023-11-25 02:32:13 -05:00

6116 lines
159 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/fs.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/ratelimit.h>
#include <linux/bits.h>
#include <linux/ktime.h>
#include <linux/bitmap.h>
#include <linux/mnt_idmapping.h>
#include "super.h"
#include "mds_client.h"
#include "crypto.h"
#include <linux/ceph/ceph_features.h>
#include <linux/ceph/messenger.h>
#include <linux/ceph/decode.h>
#include <linux/ceph/pagelist.h>
#include <linux/ceph/auth.h>
#include <linux/ceph/debugfs.h>
#define RECONNECT_MAX_SIZE (INT_MAX - PAGE_SIZE)
/*
* A cluster of MDS (metadata server) daemons is responsible for
* managing the file system namespace (the directory hierarchy and
* inodes) and for coordinating shared access to storage. Metadata is
* partitioning hierarchically across a number of servers, and that
* partition varies over time as the cluster adjusts the distribution
* in order to balance load.
*
* The MDS client is primarily responsible to managing synchronous
* metadata requests for operations like open, unlink, and so forth.
* If there is a MDS failure, we find out about it when we (possibly
* request and) receive a new MDS map, and can resubmit affected
* requests.
*
* For the most part, though, we take advantage of a lossless
* communications channel to the MDS, and do not need to worry about
* timing out or resubmitting requests.
*
* We maintain a stateful "session" with each MDS we interact with.
* Within each session, we sent periodic heartbeat messages to ensure
* any capabilities or leases we have been issues remain valid. If
* the session times out and goes stale, our leases and capabilities
* are no longer valid.
*/
struct ceph_reconnect_state {
struct ceph_mds_session *session;
int nr_caps, nr_realms;
struct ceph_pagelist *pagelist;
unsigned msg_version;
bool allow_multi;
};
static void __wake_requests(struct ceph_mds_client *mdsc,
struct list_head *head);
static void ceph_cap_release_work(struct work_struct *work);
static void ceph_cap_reclaim_work(struct work_struct *work);
static const struct ceph_connection_operations mds_con_ops;
/*
* mds reply parsing
*/
static int parse_reply_info_quota(void **p, void *end,
struct ceph_mds_reply_info_in *info)
{
u8 struct_v, struct_compat;
u32 struct_len;
ceph_decode_8_safe(p, end, struct_v, bad);
ceph_decode_8_safe(p, end, struct_compat, bad);
/* struct_v is expected to be >= 1. we only
* understand encoding with struct_compat == 1. */
if (!struct_v || struct_compat != 1)
goto bad;
ceph_decode_32_safe(p, end, struct_len, bad);
ceph_decode_need(p, end, struct_len, bad);
end = *p + struct_len;
ceph_decode_64_safe(p, end, info->max_bytes, bad);
ceph_decode_64_safe(p, end, info->max_files, bad);
*p = end;
return 0;
bad:
return -EIO;
}
/*
* parse individual inode info
*/
static int parse_reply_info_in(void **p, void *end,
struct ceph_mds_reply_info_in *info,
u64 features)
{
int err = 0;
u8 struct_v = 0;
if (features == (u64)-1) {
u32 struct_len;
u8 struct_compat;
ceph_decode_8_safe(p, end, struct_v, bad);
ceph_decode_8_safe(p, end, struct_compat, bad);
/* struct_v is expected to be >= 1. we only understand
* encoding with struct_compat == 1. */
if (!struct_v || struct_compat != 1)
goto bad;
ceph_decode_32_safe(p, end, struct_len, bad);
ceph_decode_need(p, end, struct_len, bad);
end = *p + struct_len;
}
ceph_decode_need(p, end, sizeof(struct ceph_mds_reply_inode), bad);
info->in = *p;
*p += sizeof(struct ceph_mds_reply_inode) +
sizeof(*info->in->fragtree.splits) *
le32_to_cpu(info->in->fragtree.nsplits);
ceph_decode_32_safe(p, end, info->symlink_len, bad);
ceph_decode_need(p, end, info->symlink_len, bad);
info->symlink = *p;
*p += info->symlink_len;
ceph_decode_copy_safe(p, end, &info->dir_layout,
sizeof(info->dir_layout), bad);
ceph_decode_32_safe(p, end, info->xattr_len, bad);
ceph_decode_need(p, end, info->xattr_len, bad);
info->xattr_data = *p;
*p += info->xattr_len;
if (features == (u64)-1) {
/* inline data */
ceph_decode_64_safe(p, end, info->inline_version, bad);
ceph_decode_32_safe(p, end, info->inline_len, bad);
ceph_decode_need(p, end, info->inline_len, bad);
info->inline_data = *p;
*p += info->inline_len;
/* quota */
err = parse_reply_info_quota(p, end, info);
if (err < 0)
goto out_bad;
/* pool namespace */
ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
if (info->pool_ns_len > 0) {
ceph_decode_need(p, end, info->pool_ns_len, bad);
info->pool_ns_data = *p;
*p += info->pool_ns_len;
}
/* btime */
ceph_decode_need(p, end, sizeof(info->btime), bad);
ceph_decode_copy(p, &info->btime, sizeof(info->btime));
/* change attribute */
ceph_decode_64_safe(p, end, info->change_attr, bad);
/* dir pin */
if (struct_v >= 2) {
ceph_decode_32_safe(p, end, info->dir_pin, bad);
} else {
info->dir_pin = -ENODATA;
}
/* snapshot birth time, remains zero for v<=2 */
if (struct_v >= 3) {
ceph_decode_need(p, end, sizeof(info->snap_btime), bad);
ceph_decode_copy(p, &info->snap_btime,
sizeof(info->snap_btime));
} else {
memset(&info->snap_btime, 0, sizeof(info->snap_btime));
}
/* snapshot count, remains zero for v<=3 */
if (struct_v >= 4) {
ceph_decode_64_safe(p, end, info->rsnaps, bad);
} else {
info->rsnaps = 0;
}
if (struct_v >= 5) {
u32 alen;
ceph_decode_32_safe(p, end, alen, bad);
while (alen--) {
u32 len;
/* key */
ceph_decode_32_safe(p, end, len, bad);
ceph_decode_skip_n(p, end, len, bad);
/* value */
ceph_decode_32_safe(p, end, len, bad);
ceph_decode_skip_n(p, end, len, bad);
}
}
/* fscrypt flag -- ignore */
if (struct_v >= 6)
ceph_decode_skip_8(p, end, bad);
info->fscrypt_auth = NULL;
info->fscrypt_auth_len = 0;
info->fscrypt_file = NULL;
info->fscrypt_file_len = 0;
if (struct_v >= 7) {
ceph_decode_32_safe(p, end, info->fscrypt_auth_len, bad);
if (info->fscrypt_auth_len) {
info->fscrypt_auth = kmalloc(info->fscrypt_auth_len,
GFP_KERNEL);
if (!info->fscrypt_auth)
return -ENOMEM;
ceph_decode_copy_safe(p, end, info->fscrypt_auth,
info->fscrypt_auth_len, bad);
}
ceph_decode_32_safe(p, end, info->fscrypt_file_len, bad);
if (info->fscrypt_file_len) {
info->fscrypt_file = kmalloc(info->fscrypt_file_len,
GFP_KERNEL);
if (!info->fscrypt_file)
return -ENOMEM;
ceph_decode_copy_safe(p, end, info->fscrypt_file,
info->fscrypt_file_len, bad);
}
}
*p = end;
} else {
/* legacy (unversioned) struct */
if (features & CEPH_FEATURE_MDS_INLINE_DATA) {
ceph_decode_64_safe(p, end, info->inline_version, bad);
ceph_decode_32_safe(p, end, info->inline_len, bad);
ceph_decode_need(p, end, info->inline_len, bad);
info->inline_data = *p;
*p += info->inline_len;
} else
info->inline_version = CEPH_INLINE_NONE;
if (features & CEPH_FEATURE_MDS_QUOTA) {
err = parse_reply_info_quota(p, end, info);
if (err < 0)
goto out_bad;
} else {
info->max_bytes = 0;
info->max_files = 0;
}
info->pool_ns_len = 0;
info->pool_ns_data = NULL;
if (features & CEPH_FEATURE_FS_FILE_LAYOUT_V2) {
ceph_decode_32_safe(p, end, info->pool_ns_len, bad);
if (info->pool_ns_len > 0) {
ceph_decode_need(p, end, info->pool_ns_len, bad);
info->pool_ns_data = *p;
*p += info->pool_ns_len;
}
}
if (features & CEPH_FEATURE_FS_BTIME) {
ceph_decode_need(p, end, sizeof(info->btime), bad);
ceph_decode_copy(p, &info->btime, sizeof(info->btime));
ceph_decode_64_safe(p, end, info->change_attr, bad);
}
info->dir_pin = -ENODATA;
/* info->snap_btime and info->rsnaps remain zero */
}
return 0;
bad:
err = -EIO;
out_bad:
return err;
}
static int parse_reply_info_dir(void **p, void *end,
struct ceph_mds_reply_dirfrag **dirfrag,
u64 features)
{
if (features == (u64)-1) {
u8 struct_v, struct_compat;
u32 struct_len;
ceph_decode_8_safe(p, end, struct_v, bad);
ceph_decode_8_safe(p, end, struct_compat, bad);
/* struct_v is expected to be >= 1. we only understand
* encoding whose struct_compat == 1. */
if (!struct_v || struct_compat != 1)
goto bad;
ceph_decode_32_safe(p, end, struct_len, bad);
ceph_decode_need(p, end, struct_len, bad);
end = *p + struct_len;
}
ceph_decode_need(p, end, sizeof(**dirfrag), bad);
*dirfrag = *p;
*p += sizeof(**dirfrag) + sizeof(u32) * le32_to_cpu((*dirfrag)->ndist);
if (unlikely(*p > end))
goto bad;
if (features == (u64)-1)
*p = end;
return 0;
bad:
return -EIO;
}
static int parse_reply_info_lease(void **p, void *end,
struct ceph_mds_reply_lease **lease,
u64 features, u32 *altname_len, u8 **altname)
{
u8 struct_v;
u32 struct_len;
void *lend;
if (features == (u64)-1) {
u8 struct_compat;
ceph_decode_8_safe(p, end, struct_v, bad);
ceph_decode_8_safe(p, end, struct_compat, bad);
/* struct_v is expected to be >= 1. we only understand
* encoding whose struct_compat == 1. */
if (!struct_v || struct_compat != 1)
goto bad;
ceph_decode_32_safe(p, end, struct_len, bad);
} else {
struct_len = sizeof(**lease);
*altname_len = 0;
*altname = NULL;
}
lend = *p + struct_len;
ceph_decode_need(p, end, struct_len, bad);
*lease = *p;
*p += sizeof(**lease);
if (features == (u64)-1) {
if (struct_v >= 2) {
ceph_decode_32_safe(p, end, *altname_len, bad);
ceph_decode_need(p, end, *altname_len, bad);
*altname = *p;
*p += *altname_len;
} else {
*altname = NULL;
*altname_len = 0;
}
}
*p = lend;
return 0;
bad:
return -EIO;
}
/*
* parse a normal reply, which may contain a (dir+)dentry and/or a
* target inode.
*/
static int parse_reply_info_trace(void **p, void *end,
struct ceph_mds_reply_info_parsed *info,
u64 features)
{
int err;
if (info->head->is_dentry) {
err = parse_reply_info_in(p, end, &info->diri, features);
if (err < 0)
goto out_bad;
err = parse_reply_info_dir(p, end, &info->dirfrag, features);
if (err < 0)
goto out_bad;
ceph_decode_32_safe(p, end, info->dname_len, bad);
ceph_decode_need(p, end, info->dname_len, bad);
info->dname = *p;
*p += info->dname_len;
err = parse_reply_info_lease(p, end, &info->dlease, features,
&info->altname_len, &info->altname);
if (err < 0)
goto out_bad;
}
if (info->head->is_target) {
err = parse_reply_info_in(p, end, &info->targeti, features);
if (err < 0)
goto out_bad;
}
if (unlikely(*p != end))
goto bad;
return 0;
bad:
err = -EIO;
out_bad:
pr_err("problem parsing mds trace %d\n", err);
return err;
}
/*
* parse readdir results
*/
static int parse_reply_info_readdir(void **p, void *end,
struct ceph_mds_request *req,
u64 features)
{
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
struct ceph_client *cl = req->r_mdsc->fsc->client;
u32 num, i = 0;
int err;
err = parse_reply_info_dir(p, end, &info->dir_dir, features);
if (err < 0)
goto out_bad;
ceph_decode_need(p, end, sizeof(num) + 2, bad);
num = ceph_decode_32(p);
{
u16 flags = ceph_decode_16(p);
info->dir_end = !!(flags & CEPH_READDIR_FRAG_END);
info->dir_complete = !!(flags & CEPH_READDIR_FRAG_COMPLETE);
info->hash_order = !!(flags & CEPH_READDIR_HASH_ORDER);
info->offset_hash = !!(flags & CEPH_READDIR_OFFSET_HASH);
}
if (num == 0)
goto done;
BUG_ON(!info->dir_entries);
if ((unsigned long)(info->dir_entries + num) >
(unsigned long)info->dir_entries + info->dir_buf_size) {
pr_err_client(cl, "dir contents are larger than expected\n");
WARN_ON(1);
goto bad;
}
info->dir_nr = num;
while (num) {
struct inode *inode = d_inode(req->r_dentry);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
struct fscrypt_str tname = FSTR_INIT(NULL, 0);
struct fscrypt_str oname = FSTR_INIT(NULL, 0);
struct ceph_fname fname;
u32 altname_len, _name_len;
u8 *altname, *_name;
/* dentry */
ceph_decode_32_safe(p, end, _name_len, bad);
ceph_decode_need(p, end, _name_len, bad);
_name = *p;
*p += _name_len;
doutc(cl, "parsed dir dname '%.*s'\n", _name_len, _name);
if (info->hash_order)
rde->raw_hash = ceph_str_hash(ci->i_dir_layout.dl_dir_hash,
_name, _name_len);
/* dentry lease */
err = parse_reply_info_lease(p, end, &rde->lease, features,
&altname_len, &altname);
if (err)
goto out_bad;
/*
* Try to dencrypt the dentry names and update them
* in the ceph_mds_reply_dir_entry struct.
*/
fname.dir = inode;
fname.name = _name;
fname.name_len = _name_len;
fname.ctext = altname;
fname.ctext_len = altname_len;
/*
* The _name_len maybe larger than altname_len, such as
* when the human readable name length is in range of
* (CEPH_NOHASH_NAME_MAX, CEPH_NOHASH_NAME_MAX + SHA256_DIGEST_SIZE),
* then the copy in ceph_fname_to_usr will corrupt the
* data if there has no encryption key.
*
* Just set the no_copy flag and then if there has no
* encryption key the oname.name will be assigned to
* _name always.
*/
fname.no_copy = true;
if (altname_len == 0) {
/*
* Set tname to _name, and this will be used
* to do the base64_decode in-place. It's
* safe because the decoded string should
* always be shorter, which is 3/4 of origin
* string.
*/
tname.name = _name;
/*
* Set oname to _name too, and this will be
* used to do the dencryption in-place.
*/
oname.name = _name;
oname.len = _name_len;
} else {
/*
* This will do the decryption only in-place
* from altname cryptext directly.
*/
oname.name = altname;
oname.len = altname_len;
}
rde->is_nokey = false;
err = ceph_fname_to_usr(&fname, &tname, &oname, &rde->is_nokey);
if (err) {
pr_err_client(cl, "unable to decode %.*s, got %d\n",
_name_len, _name, err);
goto out_bad;
}
rde->name = oname.name;
rde->name_len = oname.len;
/* inode */
err = parse_reply_info_in(p, end, &rde->inode, features);
if (err < 0)
goto out_bad;
/* ceph_readdir_prepopulate() will update it */
rde->offset = 0;
i++;
num--;
}
done:
/* Skip over any unrecognized fields */
*p = end;
return 0;
bad:
err = -EIO;
out_bad:
pr_err_client(cl, "problem parsing dir contents %d\n", err);
return err;
}
/*
* parse fcntl F_GETLK results
*/
static int parse_reply_info_filelock(void **p, void *end,
struct ceph_mds_reply_info_parsed *info,
u64 features)
{
if (*p + sizeof(*info->filelock_reply) > end)
goto bad;
info->filelock_reply = *p;
/* Skip over any unrecognized fields */
*p = end;
return 0;
bad:
return -EIO;
}
#if BITS_PER_LONG == 64
#define DELEGATED_INO_AVAILABLE xa_mk_value(1)
static int ceph_parse_deleg_inos(void **p, void *end,
struct ceph_mds_session *s)
{
struct ceph_client *cl = s->s_mdsc->fsc->client;
u32 sets;
ceph_decode_32_safe(p, end, sets, bad);
doutc(cl, "got %u sets of delegated inodes\n", sets);
while (sets--) {
u64 start, len;
ceph_decode_64_safe(p, end, start, bad);
ceph_decode_64_safe(p, end, len, bad);
/* Don't accept a delegation of system inodes */
if (start < CEPH_INO_SYSTEM_BASE) {
pr_warn_ratelimited_client(cl,
"ignoring reserved inode range delegation (start=0x%llx len=0x%llx)\n",
start, len);
continue;
}
while (len--) {
int err = xa_insert(&s->s_delegated_inos, start++,
DELEGATED_INO_AVAILABLE,
GFP_KERNEL);
if (!err) {
doutc(cl, "added delegated inode 0x%llx\n", start - 1);
} else if (err == -EBUSY) {
pr_warn_client(cl,
"MDS delegated inode 0x%llx more than once.\n",
start - 1);
} else {
return err;
}
}
}
return 0;
bad:
return -EIO;
}
u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
{
unsigned long ino;
void *val;
xa_for_each(&s->s_delegated_inos, ino, val) {
val = xa_erase(&s->s_delegated_inos, ino);
if (val == DELEGATED_INO_AVAILABLE)
return ino;
}
return 0;
}
int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
{
return xa_insert(&s->s_delegated_inos, ino, DELEGATED_INO_AVAILABLE,
GFP_KERNEL);
}
#else /* BITS_PER_LONG == 64 */
/*
* FIXME: xarrays can't handle 64-bit indexes on a 32-bit arch. For now, just
* ignore delegated_inos on 32 bit arch. Maybe eventually add xarrays for top
* and bottom words?
*/
static int ceph_parse_deleg_inos(void **p, void *end,
struct ceph_mds_session *s)
{
u32 sets;
ceph_decode_32_safe(p, end, sets, bad);
if (sets)
ceph_decode_skip_n(p, end, sets * 2 * sizeof(__le64), bad);
return 0;
bad:
return -EIO;
}
u64 ceph_get_deleg_ino(struct ceph_mds_session *s)
{
return 0;
}
int ceph_restore_deleg_ino(struct ceph_mds_session *s, u64 ino)
{
return 0;
}
#endif /* BITS_PER_LONG == 64 */
/*
* parse create results
*/
static int parse_reply_info_create(void **p, void *end,
struct ceph_mds_reply_info_parsed *info,
u64 features, struct ceph_mds_session *s)
{
int ret;
if (features == (u64)-1 ||
(features & CEPH_FEATURE_REPLY_CREATE_INODE)) {
if (*p == end) {
/* Malformed reply? */
info->has_create_ino = false;
} else if (test_bit(CEPHFS_FEATURE_DELEG_INO, &s->s_features)) {
info->has_create_ino = true;
/* struct_v, struct_compat, and len */
ceph_decode_skip_n(p, end, 2 + sizeof(u32), bad);
ceph_decode_64_safe(p, end, info->ino, bad);
ret = ceph_parse_deleg_inos(p, end, s);
if (ret)
return ret;
} else {
/* legacy */
ceph_decode_64_safe(p, end, info->ino, bad);
info->has_create_ino = true;
}
} else {
if (*p != end)
goto bad;
}
/* Skip over any unrecognized fields */
*p = end;
return 0;
bad:
return -EIO;
}
static int parse_reply_info_getvxattr(void **p, void *end,
struct ceph_mds_reply_info_parsed *info,
u64 features)
{
u32 value_len;
ceph_decode_skip_8(p, end, bad); /* skip current version: 1 */
ceph_decode_skip_8(p, end, bad); /* skip first version: 1 */
ceph_decode_skip_32(p, end, bad); /* skip payload length */
ceph_decode_32_safe(p, end, value_len, bad);
if (value_len == end - *p) {
info->xattr_info.xattr_value = *p;
info->xattr_info.xattr_value_len = value_len;
*p = end;
return value_len;
}
bad:
return -EIO;
}
/*
* parse extra results
*/
static int parse_reply_info_extra(void **p, void *end,
struct ceph_mds_request *req,
u64 features, struct ceph_mds_session *s)
{
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
u32 op = le32_to_cpu(info->head->op);
if (op == CEPH_MDS_OP_GETFILELOCK)
return parse_reply_info_filelock(p, end, info, features);
else if (op == CEPH_MDS_OP_READDIR || op == CEPH_MDS_OP_LSSNAP)
return parse_reply_info_readdir(p, end, req, features);
else if (op == CEPH_MDS_OP_CREATE)
return parse_reply_info_create(p, end, info, features, s);
else if (op == CEPH_MDS_OP_GETVXATTR)
return parse_reply_info_getvxattr(p, end, info, features);
else
return -EIO;
}
/*
* parse entire mds reply
*/
static int parse_reply_info(struct ceph_mds_session *s, struct ceph_msg *msg,
struct ceph_mds_request *req, u64 features)
{
struct ceph_mds_reply_info_parsed *info = &req->r_reply_info;
struct ceph_client *cl = s->s_mdsc->fsc->client;
void *p, *end;
u32 len;
int err;
info->head = msg->front.iov_base;
p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
/* trace */
ceph_decode_32_safe(&p, end, len, bad);
if (len > 0) {
ceph_decode_need(&p, end, len, bad);
err = parse_reply_info_trace(&p, p+len, info, features);
if (err < 0)
goto out_bad;
}
/* extra */
ceph_decode_32_safe(&p, end, len, bad);
if (len > 0) {
ceph_decode_need(&p, end, len, bad);
err = parse_reply_info_extra(&p, p+len, req, features, s);
if (err < 0)
goto out_bad;
}
/* snap blob */
ceph_decode_32_safe(&p, end, len, bad);
info->snapblob_len = len;
info->snapblob = p;
p += len;
if (p != end)
goto bad;
return 0;
bad:
err = -EIO;
out_bad:
pr_err_client(cl, "mds parse_reply err %d\n", err);
ceph_msg_dump(msg);
return err;
}
static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
{
int i;
kfree(info->diri.fscrypt_auth);
kfree(info->diri.fscrypt_file);
kfree(info->targeti.fscrypt_auth);
kfree(info->targeti.fscrypt_file);
if (!info->dir_entries)
return;
for (i = 0; i < info->dir_nr; i++) {
struct ceph_mds_reply_dir_entry *rde = info->dir_entries + i;
kfree(rde->inode.fscrypt_auth);
kfree(rde->inode.fscrypt_file);
}
free_pages((unsigned long)info->dir_entries, get_order(info->dir_buf_size));
}
/*
* In async unlink case the kclient won't wait for the first reply
* from MDS and just drop all the links and unhash the dentry and then
* succeeds immediately.
*
* For any new create/link/rename,etc requests followed by using the
* same file names we must wait for the first reply of the inflight
* unlink request, or the MDS possibly will fail these following
* requests with -EEXIST if the inflight async unlink request was
* delayed for some reasons.
*
* And the worst case is that for the none async openc request it will
* successfully open the file if the CDentry hasn't been unlinked yet,
* but later the previous delayed async unlink request will remove the
* CDenty. That means the just created file is possiblly deleted later
* by accident.
*
* We need to wait for the inflight async unlink requests to finish
* when creating new files/directories by using the same file names.
*/
int ceph_wait_on_conflict_unlink(struct dentry *dentry)
{
struct ceph_fs_client *fsc = ceph_sb_to_fs_client(dentry->d_sb);
struct ceph_client *cl = fsc->client;
struct dentry *pdentry = dentry->d_parent;
struct dentry *udentry, *found = NULL;
struct ceph_dentry_info *di;
struct qstr dname;
u32 hash = dentry->d_name.hash;
int err;
dname.name = dentry->d_name.name;
dname.len = dentry->d_name.len;
rcu_read_lock();
hash_for_each_possible_rcu(fsc->async_unlink_conflict, di,
hnode, hash) {
udentry = di->dentry;
spin_lock(&udentry->d_lock);
if (udentry->d_name.hash != hash)
goto next;
if (unlikely(udentry->d_parent != pdentry))
goto next;
if (!hash_hashed(&di->hnode))
goto next;
if (!test_bit(CEPH_DENTRY_ASYNC_UNLINK_BIT, &di->flags))
pr_warn_client(cl, "dentry %p:%pd async unlink bit is not set\n",
dentry, dentry);
if (!d_same_name(udentry, pdentry, &dname))
goto next;
found = dget_dlock(udentry);
spin_unlock(&udentry->d_lock);
break;
next:
spin_unlock(&udentry->d_lock);
}
rcu_read_unlock();
if (likely(!found))
return 0;
doutc(cl, "dentry %p:%pd conflict with old %p:%pd\n", dentry, dentry,
found, found);
err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_UNLINK_BIT,
TASK_KILLABLE);
dput(found);
return err;
}
/*
* sessions
*/
const char *ceph_session_state_name(int s)
{
switch (s) {
case CEPH_MDS_SESSION_NEW: return "new";
case CEPH_MDS_SESSION_OPENING: return "opening";
case CEPH_MDS_SESSION_OPEN: return "open";
case CEPH_MDS_SESSION_HUNG: return "hung";
case CEPH_MDS_SESSION_CLOSING: return "closing";
case CEPH_MDS_SESSION_CLOSED: return "closed";
case CEPH_MDS_SESSION_RESTARTING: return "restarting";
case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
case CEPH_MDS_SESSION_REJECTED: return "rejected";
default: return "???";
}
}
struct ceph_mds_session *ceph_get_mds_session(struct ceph_mds_session *s)
{
if (refcount_inc_not_zero(&s->s_ref))
return s;
return NULL;
}
void ceph_put_mds_session(struct ceph_mds_session *s)
{
if (IS_ERR_OR_NULL(s))
return;
if (refcount_dec_and_test(&s->s_ref)) {
if (s->s_auth.authorizer)
ceph_auth_destroy_authorizer(s->s_auth.authorizer);
WARN_ON(mutex_is_locked(&s->s_mutex));
xa_destroy(&s->s_delegated_inos);
kfree(s);
}
}
/*
* called under mdsc->mutex
*/
struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
int mds)
{
if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
return NULL;
return ceph_get_mds_session(mdsc->sessions[mds]);
}
static bool __have_session(struct ceph_mds_client *mdsc, int mds)
{
if (mds >= mdsc->max_sessions || !mdsc->sessions[mds])
return false;
else
return true;
}
static int __verify_registered_session(struct ceph_mds_client *mdsc,
struct ceph_mds_session *s)
{
if (s->s_mds >= mdsc->max_sessions ||
mdsc->sessions[s->s_mds] != s)
return -ENOENT;
return 0;
}
/*
* create+register a new session for given mds.
* called under mdsc->mutex.
*/
static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
int mds)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_session *s;
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
return ERR_PTR(-EIO);
if (mds >= mdsc->mdsmap->possible_max_rank)
return ERR_PTR(-EINVAL);
s = kzalloc(sizeof(*s), GFP_NOFS);
if (!s)
return ERR_PTR(-ENOMEM);
if (mds >= mdsc->max_sessions) {
int newmax = 1 << get_count_order(mds + 1);
struct ceph_mds_session **sa;
doutc(cl, "realloc to %d\n", newmax);
sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
if (!sa)
goto fail_realloc;
if (mdsc->sessions) {
memcpy(sa, mdsc->sessions,
mdsc->max_sessions * sizeof(void *));
kfree(mdsc->sessions);
}
mdsc->sessions = sa;
mdsc->max_sessions = newmax;
}
doutc(cl, "mds%d\n", mds);
s->s_mdsc = mdsc;
s->s_mds = mds;
s->s_state = CEPH_MDS_SESSION_NEW;
mutex_init(&s->s_mutex);
ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
atomic_set(&s->s_cap_gen, 1);
s->s_cap_ttl = jiffies - 1;
spin_lock_init(&s->s_cap_lock);
INIT_LIST_HEAD(&s->s_caps);
refcount_set(&s->s_ref, 1);
INIT_LIST_HEAD(&s->s_waiting);
INIT_LIST_HEAD(&s->s_unsafe);
xa_init(&s->s_delegated_inos);
INIT_LIST_HEAD(&s->s_cap_releases);
INIT_WORK(&s->s_cap_release_work, ceph_cap_release_work);
INIT_LIST_HEAD(&s->s_cap_dirty);
INIT_LIST_HEAD(&s->s_cap_flushing);
mdsc->sessions[mds] = s;
atomic_inc(&mdsc->num_sessions);
refcount_inc(&s->s_ref); /* one ref to sessions[], one to caller */
ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
return s;
fail_realloc:
kfree(s);
return ERR_PTR(-ENOMEM);
}
/*
* called under mdsc->mutex
*/
static void __unregister_session(struct ceph_mds_client *mdsc,
struct ceph_mds_session *s)
{
doutc(mdsc->fsc->client, "mds%d %p\n", s->s_mds, s);
BUG_ON(mdsc->sessions[s->s_mds] != s);
mdsc->sessions[s->s_mds] = NULL;
ceph_con_close(&s->s_con);
ceph_put_mds_session(s);
atomic_dec(&mdsc->num_sessions);
}
/*
* drop session refs in request.
*
* should be last request ref, or hold mdsc->mutex
*/
static void put_request_session(struct ceph_mds_request *req)
{
if (req->r_session) {
ceph_put_mds_session(req->r_session);
req->r_session = NULL;
}
}
void ceph_mdsc_iterate_sessions(struct ceph_mds_client *mdsc,
void (*cb)(struct ceph_mds_session *),
bool check_state)
{
int mds;
mutex_lock(&mdsc->mutex);
for (mds = 0; mds < mdsc->max_sessions; ++mds) {
struct ceph_mds_session *s;
s = __ceph_lookup_mds_session(mdsc, mds);
if (!s)
continue;
if (check_state && !check_session_state(s)) {
ceph_put_mds_session(s);
continue;
}
mutex_unlock(&mdsc->mutex);
cb(s);
ceph_put_mds_session(s);
mutex_lock(&mdsc->mutex);
}
mutex_unlock(&mdsc->mutex);
}
void ceph_mdsc_release_request(struct kref *kref)
{
struct ceph_mds_request *req = container_of(kref,
struct ceph_mds_request,
r_kref);
ceph_mdsc_release_dir_caps_no_check(req);
destroy_reply_info(&req->r_reply_info);
if (req->r_request)
ceph_msg_put(req->r_request);
if (req->r_reply)
ceph_msg_put(req->r_reply);
if (req->r_inode) {
ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
iput(req->r_inode);
}
if (req->r_parent) {
ceph_put_cap_refs(ceph_inode(req->r_parent), CEPH_CAP_PIN);
iput(req->r_parent);
}
iput(req->r_target_inode);
iput(req->r_new_inode);
if (req->r_dentry)
dput(req->r_dentry);
if (req->r_old_dentry)
dput(req->r_old_dentry);
if (req->r_old_dentry_dir) {
/*
* track (and drop pins for) r_old_dentry_dir
* separately, since r_old_dentry's d_parent may have
* changed between the dir mutex being dropped and
* this request being freed.
*/
ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
CEPH_CAP_PIN);
iput(req->r_old_dentry_dir);
}
kfree(req->r_path1);
kfree(req->r_path2);
put_cred(req->r_cred);
if (req->r_mnt_idmap)
mnt_idmap_put(req->r_mnt_idmap);
if (req->r_pagelist)
ceph_pagelist_release(req->r_pagelist);
kfree(req->r_fscrypt_auth);
kfree(req->r_altname);
put_request_session(req);
ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
WARN_ON_ONCE(!list_empty(&req->r_wait));
kmem_cache_free(ceph_mds_request_cachep, req);
}
DEFINE_RB_FUNCS(request, struct ceph_mds_request, r_tid, r_node)
/*
* lookup session, bump ref if found.
*
* called under mdsc->mutex.
*/
static struct ceph_mds_request *
lookup_get_request(struct ceph_mds_client *mdsc, u64 tid)
{
struct ceph_mds_request *req;
req = lookup_request(&mdsc->request_tree, tid);
if (req)
ceph_mdsc_get_request(req);
return req;
}
/*
* Register an in-flight request, and assign a tid. Link to directory
* are modifying (if any).
*
* Called under mdsc->mutex.
*/
static void __register_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req,
struct inode *dir)
{
struct ceph_client *cl = mdsc->fsc->client;
int ret = 0;
req->r_tid = ++mdsc->last_tid;
if (req->r_num_caps) {
ret = ceph_reserve_caps(mdsc, &req->r_caps_reservation,
req->r_num_caps);
if (ret < 0) {
pr_err_client(cl, "%p failed to reserve caps: %d\n",
req, ret);
/* set req->r_err to fail early from __do_request */
req->r_err = ret;
return;
}
}
doutc(cl, "%p tid %lld\n", req, req->r_tid);
ceph_mdsc_get_request(req);
insert_request(&mdsc->request_tree, req);
req->r_cred = get_current_cred();
if (!req->r_mnt_idmap)
req->r_mnt_idmap = &nop_mnt_idmap;
if (mdsc->oldest_tid == 0 && req->r_op != CEPH_MDS_OP_SETFILELOCK)
mdsc->oldest_tid = req->r_tid;
if (dir) {
struct ceph_inode_info *ci = ceph_inode(dir);
ihold(dir);
req->r_unsafe_dir = dir;
spin_lock(&ci->i_unsafe_lock);
list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
spin_unlock(&ci->i_unsafe_lock);
}
}
static void __unregister_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req)
{
doutc(mdsc->fsc->client, "%p tid %lld\n", req, req->r_tid);
/* Never leave an unregistered request on an unsafe list! */
list_del_init(&req->r_unsafe_item);
if (req->r_tid == mdsc->oldest_tid) {
struct rb_node *p = rb_next(&req->r_node);
mdsc->oldest_tid = 0;
while (p) {
struct ceph_mds_request *next_req =
rb_entry(p, struct ceph_mds_request, r_node);
if (next_req->r_op != CEPH_MDS_OP_SETFILELOCK) {
mdsc->oldest_tid = next_req->r_tid;
break;
}
p = rb_next(p);
}
}
erase_request(&mdsc->request_tree, req);
if (req->r_unsafe_dir) {
struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
spin_lock(&ci->i_unsafe_lock);
list_del_init(&req->r_unsafe_dir_item);
spin_unlock(&ci->i_unsafe_lock);
}
if (req->r_target_inode &&
test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
struct ceph_inode_info *ci = ceph_inode(req->r_target_inode);
spin_lock(&ci->i_unsafe_lock);
list_del_init(&req->r_unsafe_target_item);
spin_unlock(&ci->i_unsafe_lock);
}
if (req->r_unsafe_dir) {
iput(req->r_unsafe_dir);
req->r_unsafe_dir = NULL;
}
complete_all(&req->r_safe_completion);
ceph_mdsc_put_request(req);
}
/*
* Walk back up the dentry tree until we hit a dentry representing a
* non-snapshot inode. We do this using the rcu_read_lock (which must be held
* when calling this) to ensure that the objects won't disappear while we're
* working with them. Once we hit a candidate dentry, we attempt to take a
* reference to it, and return that as the result.
*/
static struct inode *get_nonsnap_parent(struct dentry *dentry)
{
struct inode *inode = NULL;
while (dentry && !IS_ROOT(dentry)) {
inode = d_inode_rcu(dentry);
if (!inode || ceph_snap(inode) == CEPH_NOSNAP)
break;
dentry = dentry->d_parent;
}
if (inode)
inode = igrab(inode);
return inode;
}
/*
* Choose mds to send request to next. If there is a hint set in the
* request (e.g., due to a prior forward hint from the mds), use that.
* Otherwise, consult frag tree and/or caps to identify the
* appropriate mds. If all else fails, choose randomly.
*
* Called under mdsc->mutex.
*/
static int __choose_mds(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req,
bool *random)
{
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_cap *cap;
int mode = req->r_direct_mode;
int mds = -1;
u32 hash = req->r_direct_hash;
bool is_hash = test_bit(CEPH_MDS_R_DIRECT_IS_HASH, &req->r_req_flags);
struct ceph_client *cl = mdsc->fsc->client;
if (random)
*random = false;
/*
* is there a specific mds we should try? ignore hint if we have
* no session and the mds is not up (active or recovering).
*/
if (req->r_resend_mds >= 0 &&
(__have_session(mdsc, req->r_resend_mds) ||
ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
doutc(cl, "using resend_mds mds%d\n", req->r_resend_mds);
return req->r_resend_mds;
}
if (mode == USE_RANDOM_MDS)
goto random;
inode = NULL;
if (req->r_inode) {
if (ceph_snap(req->r_inode) != CEPH_SNAPDIR) {
inode = req->r_inode;
ihold(inode);
} else {
/* req->r_dentry is non-null for LSSNAP request */
rcu_read_lock();
inode = get_nonsnap_parent(req->r_dentry);
rcu_read_unlock();
doutc(cl, "using snapdir's parent %p %llx.%llx\n",
inode, ceph_vinop(inode));
}
} else if (req->r_dentry) {
/* ignore race with rename; old or new d_parent is okay */
struct dentry *parent;
struct inode *dir;
rcu_read_lock();
parent = READ_ONCE(req->r_dentry->d_parent);
dir = req->r_parent ? : d_inode_rcu(parent);
if (!dir || dir->i_sb != mdsc->fsc->sb) {
/* not this fs or parent went negative */
inode = d_inode(req->r_dentry);
if (inode)
ihold(inode);
} else if (ceph_snap(dir) != CEPH_NOSNAP) {
/* direct snapped/virtual snapdir requests
* based on parent dir inode */
inode = get_nonsnap_parent(parent);
doutc(cl, "using nonsnap parent %p %llx.%llx\n",
inode, ceph_vinop(inode));
} else {
/* dentry target */
inode = d_inode(req->r_dentry);
if (!inode || mode == USE_AUTH_MDS) {
/* dir + name */
inode = igrab(dir);
hash = ceph_dentry_hash(dir, req->r_dentry);
is_hash = true;
} else {
ihold(inode);
}
}
rcu_read_unlock();
}
if (!inode)
goto random;
doutc(cl, "%p %llx.%llx is_hash=%d (0x%x) mode %d\n", inode,
ceph_vinop(inode), (int)is_hash, hash, mode);
ci = ceph_inode(inode);
if (is_hash && S_ISDIR(inode->i_mode)) {
struct ceph_inode_frag frag;
int found;
ceph_choose_frag(ci, hash, &frag, &found);
if (found) {
if (mode == USE_ANY_MDS && frag.ndist > 0) {
u8 r;
/* choose a random replica */
get_random_bytes(&r, 1);
r %= frag.ndist;
mds = frag.dist[r];
doutc(cl, "%p %llx.%llx frag %u mds%d (%d/%d)\n",
inode, ceph_vinop(inode), frag.frag,
mds, (int)r, frag.ndist);
if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
CEPH_MDS_STATE_ACTIVE &&
!ceph_mdsmap_is_laggy(mdsc->mdsmap, mds))
goto out;
}
/* since this file/dir wasn't known to be
* replicated, then we want to look for the
* authoritative mds. */
if (frag.mds >= 0) {
/* choose auth mds */
mds = frag.mds;
doutc(cl, "%p %llx.%llx frag %u mds%d (auth)\n",
inode, ceph_vinop(inode), frag.frag, mds);
if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
CEPH_MDS_STATE_ACTIVE) {
if (!ceph_mdsmap_is_laggy(mdsc->mdsmap,
mds))
goto out;
}
}
mode = USE_AUTH_MDS;
}
}
spin_lock(&ci->i_ceph_lock);
cap = NULL;
if (mode == USE_AUTH_MDS)
cap = ci->i_auth_cap;
if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
if (!cap) {
spin_unlock(&ci->i_ceph_lock);
iput(inode);
goto random;
}
mds = cap->session->s_mds;
doutc(cl, "%p %llx.%llx mds%d (%scap %p)\n", inode,
ceph_vinop(inode), mds,
cap == ci->i_auth_cap ? "auth " : "", cap);
spin_unlock(&ci->i_ceph_lock);
out:
iput(inode);
return mds;
random:
if (random)
*random = true;
mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
doutc(cl, "chose random mds%d\n", mds);
return mds;
}
/*
* session messages
*/
struct ceph_msg *ceph_create_session_msg(u32 op, u64 seq)
{
struct ceph_msg *msg;
struct ceph_mds_session_head *h;
msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
false);
if (!msg) {
pr_err("ENOMEM creating session %s msg\n",
ceph_session_op_name(op));
return NULL;
}
h = msg->front.iov_base;
h->op = cpu_to_le32(op);
h->seq = cpu_to_le64(seq);
return msg;
}
static const unsigned char feature_bits[] = CEPHFS_FEATURES_CLIENT_SUPPORTED;
#define FEATURE_BYTES(c) (DIV_ROUND_UP((size_t)feature_bits[c - 1] + 1, 64) * 8)
static int encode_supported_features(void **p, void *end)
{
static const size_t count = ARRAY_SIZE(feature_bits);
if (count > 0) {
size_t i;
size_t size = FEATURE_BYTES(count);
unsigned long bit;
if (WARN_ON_ONCE(*p + 4 + size > end))
return -ERANGE;
ceph_encode_32(p, size);
memset(*p, 0, size);
for (i = 0; i < count; i++) {
bit = feature_bits[i];
((unsigned char *)(*p))[bit / 8] |= BIT(bit % 8);
}
*p += size;
} else {
if (WARN_ON_ONCE(*p + 4 > end))
return -ERANGE;
ceph_encode_32(p, 0);
}
return 0;
}
static const unsigned char metric_bits[] = CEPHFS_METRIC_SPEC_CLIENT_SUPPORTED;
#define METRIC_BYTES(cnt) (DIV_ROUND_UP((size_t)metric_bits[cnt - 1] + 1, 64) * 8)
static int encode_metric_spec(void **p, void *end)
{
static const size_t count = ARRAY_SIZE(metric_bits);
/* header */
if (WARN_ON_ONCE(*p + 2 > end))
return -ERANGE;
ceph_encode_8(p, 1); /* version */
ceph_encode_8(p, 1); /* compat */
if (count > 0) {
size_t i;
size_t size = METRIC_BYTES(count);
if (WARN_ON_ONCE(*p + 4 + 4 + size > end))
return -ERANGE;
/* metric spec info length */
ceph_encode_32(p, 4 + size);
/* metric spec */
ceph_encode_32(p, size);
memset(*p, 0, size);
for (i = 0; i < count; i++)
((unsigned char *)(*p))[i / 8] |= BIT(metric_bits[i] % 8);
*p += size;
} else {
if (WARN_ON_ONCE(*p + 4 + 4 > end))
return -ERANGE;
/* metric spec info length */
ceph_encode_32(p, 4);
/* metric spec */
ceph_encode_32(p, 0);
}
return 0;
}
/*
* session message, specialization for CEPH_SESSION_REQUEST_OPEN
* to include additional client metadata fields.
*/
static struct ceph_msg *create_session_open_msg(struct ceph_mds_client *mdsc, u64 seq)
{
struct ceph_msg *msg;
struct ceph_mds_session_head *h;
int i;
int extra_bytes = 0;
int metadata_key_count = 0;
struct ceph_options *opt = mdsc->fsc->client->options;
struct ceph_mount_options *fsopt = mdsc->fsc->mount_options;
struct ceph_client *cl = mdsc->fsc->client;
size_t size, count;
void *p, *end;
int ret;
const char* metadata[][2] = {
{"hostname", mdsc->nodename},
{"kernel_version", init_utsname()->release},
{"entity_id", opt->name ? : ""},
{"root", fsopt->server_path ? : "/"},
{NULL, NULL}
};
/* Calculate serialized length of metadata */
extra_bytes = 4; /* map length */
for (i = 0; metadata[i][0]; ++i) {
extra_bytes += 8 + strlen(metadata[i][0]) +
strlen(metadata[i][1]);
metadata_key_count++;
}
/* supported feature */
size = 0;
count = ARRAY_SIZE(feature_bits);
if (count > 0)
size = FEATURE_BYTES(count);
extra_bytes += 4 + size;
/* metric spec */
size = 0;
count = ARRAY_SIZE(metric_bits);
if (count > 0)
size = METRIC_BYTES(count);
extra_bytes += 2 + 4 + 4 + size;
/* Allocate the message */
msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h) + extra_bytes,
GFP_NOFS, false);
if (!msg) {
pr_err_client(cl, "ENOMEM creating session open msg\n");
return ERR_PTR(-ENOMEM);
}
p = msg->front.iov_base;
end = p + msg->front.iov_len;
h = p;
h->op = cpu_to_le32(CEPH_SESSION_REQUEST_OPEN);
h->seq = cpu_to_le64(seq);
/*
* Serialize client metadata into waiting buffer space, using
* the format that userspace expects for map<string, string>
*
* ClientSession messages with metadata are v4
*/
msg->hdr.version = cpu_to_le16(4);
msg->hdr.compat_version = cpu_to_le16(1);
/* The write pointer, following the session_head structure */
p += sizeof(*h);
/* Number of entries in the map */
ceph_encode_32(&p, metadata_key_count);
/* Two length-prefixed strings for each entry in the map */
for (i = 0; metadata[i][0]; ++i) {
size_t const key_len = strlen(metadata[i][0]);
size_t const val_len = strlen(metadata[i][1]);
ceph_encode_32(&p, key_len);
memcpy(p, metadata[i][0], key_len);
p += key_len;
ceph_encode_32(&p, val_len);
memcpy(p, metadata[i][1], val_len);
p += val_len;
}
ret = encode_supported_features(&p, end);
if (ret) {
pr_err_client(cl, "encode_supported_features failed!\n");
ceph_msg_put(msg);
return ERR_PTR(ret);
}
ret = encode_metric_spec(&p, end);
if (ret) {
pr_err_client(cl, "encode_metric_spec failed!\n");
ceph_msg_put(msg);
return ERR_PTR(ret);
}
msg->front.iov_len = p - msg->front.iov_base;
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
return msg;
}
/*
* send session open request.
*
* called under mdsc->mutex
*/
static int __open_session(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_msg *msg;
int mstate;
int mds = session->s_mds;
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO)
return -EIO;
/* wait for mds to go active? */
mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
doutc(mdsc->fsc->client, "open_session to mds%d (%s)\n", mds,
ceph_mds_state_name(mstate));
session->s_state = CEPH_MDS_SESSION_OPENING;
session->s_renew_requested = jiffies;
/* send connect message */
msg = create_session_open_msg(mdsc, session->s_seq);
if (IS_ERR(msg))
return PTR_ERR(msg);
ceph_con_send(&session->s_con, msg);
return 0;
}
/*
* open sessions for any export targets for the given mds
*
* called under mdsc->mutex
*/
static struct ceph_mds_session *
__open_export_target_session(struct ceph_mds_client *mdsc, int target)
{
struct ceph_mds_session *session;
int ret;
session = __ceph_lookup_mds_session(mdsc, target);
if (!session) {
session = register_session(mdsc, target);
if (IS_ERR(session))
return session;
}
if (session->s_state == CEPH_MDS_SESSION_NEW ||
session->s_state == CEPH_MDS_SESSION_CLOSING) {
ret = __open_session(mdsc, session);
if (ret)
return ERR_PTR(ret);
}
return session;
}
struct ceph_mds_session *
ceph_mdsc_open_export_target_session(struct ceph_mds_client *mdsc, int target)
{
struct ceph_mds_session *session;
struct ceph_client *cl = mdsc->fsc->client;
doutc(cl, "to mds%d\n", target);
mutex_lock(&mdsc->mutex);
session = __open_export_target_session(mdsc, target);
mutex_unlock(&mdsc->mutex);
return session;
}
static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_mds_info *mi;
struct ceph_mds_session *ts;
int i, mds = session->s_mds;
struct ceph_client *cl = mdsc->fsc->client;
if (mds >= mdsc->mdsmap->possible_max_rank)
return;
mi = &mdsc->mdsmap->m_info[mds];
doutc(cl, "for mds%d (%d targets)\n", session->s_mds,
mi->num_export_targets);
for (i = 0; i < mi->num_export_targets; i++) {
ts = __open_export_target_session(mdsc, mi->export_targets[i]);
ceph_put_mds_session(ts);
}
}
void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
mutex_lock(&mdsc->mutex);
__open_export_target_sessions(mdsc, session);
mutex_unlock(&mdsc->mutex);
}
/*
* session caps
*/
static void detach_cap_releases(struct ceph_mds_session *session,
struct list_head *target)
{
struct ceph_client *cl = session->s_mdsc->fsc->client;
lockdep_assert_held(&session->s_cap_lock);
list_splice_init(&session->s_cap_releases, target);
session->s_num_cap_releases = 0;
doutc(cl, "mds%d\n", session->s_mds);
}
static void dispose_cap_releases(struct ceph_mds_client *mdsc,
struct list_head *dispose)
{
while (!list_empty(dispose)) {
struct ceph_cap *cap;
/* zero out the in-progress message */
cap = list_first_entry(dispose, struct ceph_cap, session_caps);
list_del(&cap->session_caps);
ceph_put_cap(mdsc, cap);
}
}
static void cleanup_session_requests(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req;
struct rb_node *p;
doutc(cl, "mds%d\n", session->s_mds);
mutex_lock(&mdsc->mutex);
while (!list_empty(&session->s_unsafe)) {
req = list_first_entry(&session->s_unsafe,
struct ceph_mds_request, r_unsafe_item);
pr_warn_ratelimited_client(cl, " dropping unsafe request %llu\n",
req->r_tid);
if (req->r_target_inode)
mapping_set_error(req->r_target_inode->i_mapping, -EIO);
if (req->r_unsafe_dir)
mapping_set_error(req->r_unsafe_dir->i_mapping, -EIO);
__unregister_request(mdsc, req);
}
/* zero r_attempts, so kick_requests() will re-send requests */
p = rb_first(&mdsc->request_tree);
while (p) {
req = rb_entry(p, struct ceph_mds_request, r_node);
p = rb_next(p);
if (req->r_session &&
req->r_session->s_mds == session->s_mds)
req->r_attempts = 0;
}
mutex_unlock(&mdsc->mutex);
}
/*
* Helper to safely iterate over all caps associated with a session, with
* special care taken to handle a racing __ceph_remove_cap().
*
* Caller must hold session s_mutex.
*/
int ceph_iterate_session_caps(struct ceph_mds_session *session,
int (*cb)(struct inode *, int mds, void *),
void *arg)
{
struct ceph_client *cl = session->s_mdsc->fsc->client;
struct list_head *p;
struct ceph_cap *cap;
struct inode *inode, *last_inode = NULL;
struct ceph_cap *old_cap = NULL;
int ret;
doutc(cl, "%p mds%d\n", session, session->s_mds);
spin_lock(&session->s_cap_lock);
p = session->s_caps.next;
while (p != &session->s_caps) {
int mds;
cap = list_entry(p, struct ceph_cap, session_caps);
inode = igrab(&cap->ci->netfs.inode);
if (!inode) {
p = p->next;
continue;
}
session->s_cap_iterator = cap;
mds = cap->mds;
spin_unlock(&session->s_cap_lock);
if (last_inode) {
iput(last_inode);
last_inode = NULL;
}
if (old_cap) {
ceph_put_cap(session->s_mdsc, old_cap);
old_cap = NULL;
}
ret = cb(inode, mds, arg);
last_inode = inode;
spin_lock(&session->s_cap_lock);
p = p->next;
if (!cap->ci) {
doutc(cl, "finishing cap %p removal\n", cap);
BUG_ON(cap->session != session);
cap->session = NULL;
list_del_init(&cap->session_caps);
session->s_nr_caps--;
atomic64_dec(&session->s_mdsc->metric.total_caps);
if (cap->queue_release)
__ceph_queue_cap_release(session, cap);
else
old_cap = cap; /* put_cap it w/o locks held */
}
if (ret < 0)
goto out;
}
ret = 0;
out:
session->s_cap_iterator = NULL;
spin_unlock(&session->s_cap_lock);
iput(last_inode);
if (old_cap)
ceph_put_cap(session->s_mdsc, old_cap);
return ret;
}
static int remove_session_caps_cb(struct inode *inode, int mds, void *arg)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_client *cl = ceph_inode_to_client(inode);
bool invalidate = false;
struct ceph_cap *cap;
int iputs = 0;
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (cap) {
doutc(cl, " removing cap %p, ci is %p, inode is %p\n",
cap, ci, &ci->netfs.inode);
iputs = ceph_purge_inode_cap(inode, cap, &invalidate);
}
spin_unlock(&ci->i_ceph_lock);
if (cap)
wake_up_all(&ci->i_cap_wq);
if (invalidate)
ceph_queue_invalidate(inode);
while (iputs--)
iput(inode);
return 0;
}
/*
* caller must hold session s_mutex
*/
static void remove_session_caps(struct ceph_mds_session *session)
{
struct ceph_fs_client *fsc = session->s_mdsc->fsc;
struct super_block *sb = fsc->sb;
LIST_HEAD(dispose);
doutc(fsc->client, "on %p\n", session);
ceph_iterate_session_caps(session, remove_session_caps_cb, fsc);
wake_up_all(&fsc->mdsc->cap_flushing_wq);
spin_lock(&session->s_cap_lock);
if (session->s_nr_caps > 0) {
struct inode *inode;
struct ceph_cap *cap, *prev = NULL;
struct ceph_vino vino;
/*
* iterate_session_caps() skips inodes that are being
* deleted, we need to wait until deletions are complete.
* __wait_on_freeing_inode() is designed for the job,
* but it is not exported, so use lookup inode function
* to access it.
*/
while (!list_empty(&session->s_caps)) {
cap = list_entry(session->s_caps.next,
struct ceph_cap, session_caps);
if (cap == prev)
break;
prev = cap;
vino = cap->ci->i_vino;
spin_unlock(&session->s_cap_lock);
inode = ceph_find_inode(sb, vino);
iput(inode);
spin_lock(&session->s_cap_lock);
}
}
// drop cap expires and unlock s_cap_lock
detach_cap_releases(session, &dispose);
BUG_ON(session->s_nr_caps > 0);
BUG_ON(!list_empty(&session->s_cap_flushing));
spin_unlock(&session->s_cap_lock);
dispose_cap_releases(session->s_mdsc, &dispose);
}
enum {
RECONNECT,
RENEWCAPS,
FORCE_RO,
};
/*
* wake up any threads waiting on this session's caps. if the cap is
* old (didn't get renewed on the client reconnect), remove it now.
*
* caller must hold s_mutex.
*/
static int wake_up_session_cb(struct inode *inode, int mds, void *arg)
{
struct ceph_inode_info *ci = ceph_inode(inode);
unsigned long ev = (unsigned long)arg;
if (ev == RECONNECT) {
spin_lock(&ci->i_ceph_lock);
ci->i_wanted_max_size = 0;
ci->i_requested_max_size = 0;
spin_unlock(&ci->i_ceph_lock);
} else if (ev == RENEWCAPS) {
struct ceph_cap *cap;
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
/* mds did not re-issue stale cap */
if (cap && cap->cap_gen < atomic_read(&cap->session->s_cap_gen))
cap->issued = cap->implemented = CEPH_CAP_PIN;
spin_unlock(&ci->i_ceph_lock);
} else if (ev == FORCE_RO) {
}
wake_up_all(&ci->i_cap_wq);
return 0;
}
static void wake_up_session_caps(struct ceph_mds_session *session, int ev)
{
struct ceph_client *cl = session->s_mdsc->fsc->client;
doutc(cl, "session %p mds%d\n", session, session->s_mds);
ceph_iterate_session_caps(session, wake_up_session_cb,
(void *)(unsigned long)ev);
}
/*
* Send periodic message to MDS renewing all currently held caps. The
* ack will reset the expiration for all caps from this session.
*
* caller holds s_mutex
*/
static int send_renew_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_msg *msg;
int state;
if (time_after_eq(jiffies, session->s_cap_ttl) &&
time_after_eq(session->s_cap_ttl, session->s_renew_requested))
pr_info_client(cl, "mds%d caps stale\n", session->s_mds);
session->s_renew_requested = jiffies;
/* do not try to renew caps until a recovering mds has reconnected
* with its clients. */
state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
if (state < CEPH_MDS_STATE_RECONNECT) {
doutc(cl, "ignoring mds%d (%s)\n", session->s_mds,
ceph_mds_state_name(state));
return 0;
}
doutc(cl, "to mds%d (%s)\n", session->s_mds,
ceph_mds_state_name(state));
msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
++session->s_renew_seq);
if (!msg)
return -ENOMEM;
ceph_con_send(&session->s_con, msg);
return 0;
}
static int send_flushmsg_ack(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session, u64 seq)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_msg *msg;
doutc(cl, "to mds%d (%s)s seq %lld\n", session->s_mds,
ceph_session_state_name(session->s_state), seq);
msg = ceph_create_session_msg(CEPH_SESSION_FLUSHMSG_ACK, seq);
if (!msg)
return -ENOMEM;
ceph_con_send(&session->s_con, msg);
return 0;
}
/*
* Note new cap ttl, and any transition from stale -> not stale (fresh?).
*
* Called under session->s_mutex
*/
static void renewed_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session, int is_renew)
{
struct ceph_client *cl = mdsc->fsc->client;
int was_stale;
int wake = 0;
spin_lock(&session->s_cap_lock);
was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
session->s_cap_ttl = session->s_renew_requested +
mdsc->mdsmap->m_session_timeout*HZ;
if (was_stale) {
if (time_before(jiffies, session->s_cap_ttl)) {
pr_info_client(cl, "mds%d caps renewed\n",
session->s_mds);
wake = 1;
} else {
pr_info_client(cl, "mds%d caps still stale\n",
session->s_mds);
}
}
doutc(cl, "mds%d ttl now %lu, was %s, now %s\n", session->s_mds,
session->s_cap_ttl, was_stale ? "stale" : "fresh",
time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
spin_unlock(&session->s_cap_lock);
if (wake)
wake_up_session_caps(session, RENEWCAPS);
}
/*
* send a session close request
*/
static int request_close_session(struct ceph_mds_session *session)
{
struct ceph_client *cl = session->s_mdsc->fsc->client;
struct ceph_msg *msg;
doutc(cl, "mds%d state %s seq %lld\n", session->s_mds,
ceph_session_state_name(session->s_state), session->s_seq);
msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_CLOSE,
session->s_seq);
if (!msg)
return -ENOMEM;
ceph_con_send(&session->s_con, msg);
return 1;
}
/*
* Called with s_mutex held.
*/
static int __close_session(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
return 0;
session->s_state = CEPH_MDS_SESSION_CLOSING;
return request_close_session(session);
}
static bool drop_negative_children(struct dentry *dentry)
{
struct dentry *child;
bool all_negative = true;
if (!d_is_dir(dentry))
goto out;
spin_lock(&dentry->d_lock);
hlist_for_each_entry(child, &dentry->d_children, d_sib) {
if (d_really_is_positive(child)) {
all_negative = false;
break;
}
}
spin_unlock(&dentry->d_lock);
if (all_negative)
shrink_dcache_parent(dentry);
out:
return all_negative;
}
/*
* Trim old(er) caps.
*
* Because we can't cache an inode without one or more caps, we do
* this indirectly: if a cap is unused, we prune its aliases, at which
* point the inode will hopefully get dropped to.
*
* Yes, this is a bit sloppy. Our only real goal here is to respond to
* memory pressure from the MDS, though, so it needn't be perfect.
*/
static int trim_caps_cb(struct inode *inode, int mds, void *arg)
{
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
struct ceph_client *cl = mdsc->fsc->client;
int *remaining = arg;
struct ceph_inode_info *ci = ceph_inode(inode);
int used, wanted, oissued, mine;
struct ceph_cap *cap;
if (*remaining <= 0)
return -1;
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
spin_unlock(&ci->i_ceph_lock);
return 0;
}
mine = cap->issued | cap->implemented;
used = __ceph_caps_used(ci);
wanted = __ceph_caps_file_wanted(ci);
oissued = __ceph_caps_issued_other(ci, cap);
doutc(cl, "%p %llx.%llx cap %p mine %s oissued %s used %s wanted %s\n",
inode, ceph_vinop(inode), cap, ceph_cap_string(mine),
ceph_cap_string(oissued), ceph_cap_string(used),
ceph_cap_string(wanted));
if (cap == ci->i_auth_cap) {
if (ci->i_dirty_caps || ci->i_flushing_caps ||
!list_empty(&ci->i_cap_snaps))
goto out;
if ((used | wanted) & CEPH_CAP_ANY_WR)
goto out;
/* Note: it's possible that i_filelock_ref becomes non-zero
* after dropping auth caps. It doesn't hurt because reply
* of lock mds request will re-add auth caps. */
if (atomic_read(&ci->i_filelock_ref) > 0)
goto out;
}
/* The inode has cached pages, but it's no longer used.
* we can safely drop it */
if (S_ISREG(inode->i_mode) &&
wanted == 0 && used == CEPH_CAP_FILE_CACHE &&
!(oissued & CEPH_CAP_FILE_CACHE)) {
used = 0;
oissued = 0;
}
if ((used | wanted) & ~oissued & mine)
goto out; /* we need these caps */
if (oissued) {
/* we aren't the only cap.. just remove us */
ceph_remove_cap(mdsc, cap, true);
(*remaining)--;
} else {
struct dentry *dentry;
/* try dropping referring dentries */
spin_unlock(&ci->i_ceph_lock);
dentry = d_find_any_alias(inode);
if (dentry && drop_negative_children(dentry)) {
int count;
dput(dentry);
d_prune_aliases(inode);
count = atomic_read(&inode->i_count);
if (count == 1)
(*remaining)--;
doutc(cl, "%p %llx.%llx cap %p pruned, count now %d\n",
inode, ceph_vinop(inode), cap, count);
} else {
dput(dentry);
}
return 0;
}
out:
spin_unlock(&ci->i_ceph_lock);
return 0;
}
/*
* Trim session cap count down to some max number.
*/
int ceph_trim_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
int max_caps)
{
struct ceph_client *cl = mdsc->fsc->client;
int trim_caps = session->s_nr_caps - max_caps;
doutc(cl, "mds%d start: %d / %d, trim %d\n", session->s_mds,
session->s_nr_caps, max_caps, trim_caps);
if (trim_caps > 0) {
int remaining = trim_caps;
ceph_iterate_session_caps(session, trim_caps_cb, &remaining);
doutc(cl, "mds%d done: %d / %d, trimmed %d\n",
session->s_mds, session->s_nr_caps, max_caps,
trim_caps - remaining);
}
ceph_flush_cap_releases(mdsc, session);
return 0;
}
static int check_caps_flush(struct ceph_mds_client *mdsc,
u64 want_flush_tid)
{
struct ceph_client *cl = mdsc->fsc->client;
int ret = 1;
spin_lock(&mdsc->cap_dirty_lock);
if (!list_empty(&mdsc->cap_flush_list)) {
struct ceph_cap_flush *cf =
list_first_entry(&mdsc->cap_flush_list,
struct ceph_cap_flush, g_list);
if (cf->tid <= want_flush_tid) {
doutc(cl, "still flushing tid %llu <= %llu\n",
cf->tid, want_flush_tid);
ret = 0;
}
}
spin_unlock(&mdsc->cap_dirty_lock);
return ret;
}
/*
* flush all dirty inode data to disk.
*
* returns true if we've flushed through want_flush_tid
*/
static void wait_caps_flush(struct ceph_mds_client *mdsc,
u64 want_flush_tid)
{
struct ceph_client *cl = mdsc->fsc->client;
doutc(cl, "want %llu\n", want_flush_tid);
wait_event(mdsc->cap_flushing_wq,
check_caps_flush(mdsc, want_flush_tid));
doutc(cl, "ok, flushed thru %llu\n", want_flush_tid);
}
/*
* called under s_mutex
*/
static void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_msg *msg = NULL;
struct ceph_mds_cap_release *head;
struct ceph_mds_cap_item *item;
struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
struct ceph_cap *cap;
LIST_HEAD(tmp_list);
int num_cap_releases;
__le32 barrier, *cap_barrier;
down_read(&osdc->lock);
barrier = cpu_to_le32(osdc->epoch_barrier);
up_read(&osdc->lock);
spin_lock(&session->s_cap_lock);
again:
list_splice_init(&session->s_cap_releases, &tmp_list);
num_cap_releases = session->s_num_cap_releases;
session->s_num_cap_releases = 0;
spin_unlock(&session->s_cap_lock);
while (!list_empty(&tmp_list)) {
if (!msg) {
msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE,
PAGE_SIZE, GFP_NOFS, false);
if (!msg)
goto out_err;
head = msg->front.iov_base;
head->num = cpu_to_le32(0);
msg->front.iov_len = sizeof(*head);
msg->hdr.version = cpu_to_le16(2);
msg->hdr.compat_version = cpu_to_le16(1);
}
cap = list_first_entry(&tmp_list, struct ceph_cap,
session_caps);
list_del(&cap->session_caps);
num_cap_releases--;
head = msg->front.iov_base;
put_unaligned_le32(get_unaligned_le32(&head->num) + 1,
&head->num);
item = msg->front.iov_base + msg->front.iov_len;
item->ino = cpu_to_le64(cap->cap_ino);
item->cap_id = cpu_to_le64(cap->cap_id);
item->migrate_seq = cpu_to_le32(cap->mseq);
item->seq = cpu_to_le32(cap->issue_seq);
msg->front.iov_len += sizeof(*item);
ceph_put_cap(mdsc, cap);
if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
// Append cap_barrier field
cap_barrier = msg->front.iov_base + msg->front.iov_len;
*cap_barrier = barrier;
msg->front.iov_len += sizeof(*cap_barrier);
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
doutc(cl, "mds%d %p\n", session->s_mds, msg);
ceph_con_send(&session->s_con, msg);
msg = NULL;
}
}
BUG_ON(num_cap_releases != 0);
spin_lock(&session->s_cap_lock);
if (!list_empty(&session->s_cap_releases))
goto again;
spin_unlock(&session->s_cap_lock);
if (msg) {
// Append cap_barrier field
cap_barrier = msg->front.iov_base + msg->front.iov_len;
*cap_barrier = barrier;
msg->front.iov_len += sizeof(*cap_barrier);
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
doutc(cl, "mds%d %p\n", session->s_mds, msg);
ceph_con_send(&session->s_con, msg);
}
return;
out_err:
pr_err_client(cl, "mds%d, failed to allocate message\n",
session->s_mds);
spin_lock(&session->s_cap_lock);
list_splice(&tmp_list, &session->s_cap_releases);
session->s_num_cap_releases += num_cap_releases;
spin_unlock(&session->s_cap_lock);
}
static void ceph_cap_release_work(struct work_struct *work)
{
struct ceph_mds_session *session =
container_of(work, struct ceph_mds_session, s_cap_release_work);
mutex_lock(&session->s_mutex);
if (session->s_state == CEPH_MDS_SESSION_OPEN ||
session->s_state == CEPH_MDS_SESSION_HUNG)
ceph_send_cap_releases(session->s_mdsc, session);
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
}
void ceph_flush_cap_releases(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_client *cl = mdsc->fsc->client;
if (mdsc->stopping)
return;
ceph_get_mds_session(session);
if (queue_work(mdsc->fsc->cap_wq,
&session->s_cap_release_work)) {
doutc(cl, "cap release work queued\n");
} else {
ceph_put_mds_session(session);
doutc(cl, "failed to queue cap release work\n");
}
}
/*
* caller holds session->s_cap_lock
*/
void __ceph_queue_cap_release(struct ceph_mds_session *session,
struct ceph_cap *cap)
{
list_add_tail(&cap->session_caps, &session->s_cap_releases);
session->s_num_cap_releases++;
if (!(session->s_num_cap_releases % CEPH_CAPS_PER_RELEASE))
ceph_flush_cap_releases(session->s_mdsc, session);
}
static void ceph_cap_reclaim_work(struct work_struct *work)
{
struct ceph_mds_client *mdsc =
container_of(work, struct ceph_mds_client, cap_reclaim_work);
int ret = ceph_trim_dentries(mdsc);
if (ret == -EAGAIN)
ceph_queue_cap_reclaim_work(mdsc);
}
void ceph_queue_cap_reclaim_work(struct ceph_mds_client *mdsc)
{
struct ceph_client *cl = mdsc->fsc->client;
if (mdsc->stopping)
return;
if (queue_work(mdsc->fsc->cap_wq, &mdsc->cap_reclaim_work)) {
doutc(cl, "caps reclaim work queued\n");
} else {
doutc(cl, "failed to queue caps release work\n");
}
}
void ceph_reclaim_caps_nr(struct ceph_mds_client *mdsc, int nr)
{
int val;
if (!nr)
return;
val = atomic_add_return(nr, &mdsc->cap_reclaim_pending);
if ((val % CEPH_CAPS_PER_RELEASE) < nr) {
atomic_set(&mdsc->cap_reclaim_pending, 0);
ceph_queue_cap_reclaim_work(mdsc);
}
}
/*
* requests
*/
int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request *req,
struct inode *dir)
{
struct ceph_inode_info *ci = ceph_inode(dir);
struct ceph_mds_reply_info_parsed *rinfo = &req->r_reply_info;
struct ceph_mount_options *opt = req->r_mdsc->fsc->mount_options;
size_t size = sizeof(struct ceph_mds_reply_dir_entry);
unsigned int num_entries;
int order;
spin_lock(&ci->i_ceph_lock);
num_entries = ci->i_files + ci->i_subdirs;
spin_unlock(&ci->i_ceph_lock);
num_entries = max(num_entries, 1U);
num_entries = min(num_entries, opt->max_readdir);
order = get_order(size * num_entries);
while (order >= 0) {
rinfo->dir_entries = (void*)__get_free_pages(GFP_KERNEL |
__GFP_NOWARN |
__GFP_ZERO,
order);
if (rinfo->dir_entries)
break;
order--;
}
if (!rinfo->dir_entries)
return -ENOMEM;
num_entries = (PAGE_SIZE << order) / size;
num_entries = min(num_entries, opt->max_readdir);
rinfo->dir_buf_size = PAGE_SIZE << order;
req->r_num_caps = num_entries + 1;
req->r_args.readdir.max_entries = cpu_to_le32(num_entries);
req->r_args.readdir.max_bytes = cpu_to_le32(opt->max_readdir_bytes);
return 0;
}
/*
* Create an mds request.
*/
struct ceph_mds_request *
ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
{
struct ceph_mds_request *req;
req = kmem_cache_zalloc(ceph_mds_request_cachep, GFP_NOFS);
if (!req)
return ERR_PTR(-ENOMEM);
mutex_init(&req->r_fill_mutex);
req->r_mdsc = mdsc;
req->r_started = jiffies;
req->r_start_latency = ktime_get();
req->r_resend_mds = -1;
INIT_LIST_HEAD(&req->r_unsafe_dir_item);
INIT_LIST_HEAD(&req->r_unsafe_target_item);
req->r_fmode = -1;
req->r_feature_needed = -1;
kref_init(&req->r_kref);
RB_CLEAR_NODE(&req->r_node);
INIT_LIST_HEAD(&req->r_wait);
init_completion(&req->r_completion);
init_completion(&req->r_safe_completion);
INIT_LIST_HEAD(&req->r_unsafe_item);
ktime_get_coarse_real_ts64(&req->r_stamp);
req->r_op = op;
req->r_direct_mode = mode;
return req;
}
/*
* return oldest (lowest) request, tid in request tree, 0 if none.
*
* called under mdsc->mutex.
*/
static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
{
if (RB_EMPTY_ROOT(&mdsc->request_tree))
return NULL;
return rb_entry(rb_first(&mdsc->request_tree),
struct ceph_mds_request, r_node);
}
static inline u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
{
return mdsc->oldest_tid;
}
#if IS_ENABLED(CONFIG_FS_ENCRYPTION)
static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
{
struct inode *dir = req->r_parent;
struct dentry *dentry = req->r_dentry;
u8 *cryptbuf = NULL;
u32 len = 0;
int ret = 0;
/* only encode if we have parent and dentry */
if (!dir || !dentry)
goto success;
/* No-op unless this is encrypted */
if (!IS_ENCRYPTED(dir))
goto success;
ret = ceph_fscrypt_prepare_readdir(dir);
if (ret < 0)
return ERR_PTR(ret);
/* No key? Just ignore it. */
if (!fscrypt_has_encryption_key(dir))
goto success;
if (!fscrypt_fname_encrypted_size(dir, dentry->d_name.len, NAME_MAX,
&len)) {
WARN_ON_ONCE(1);
return ERR_PTR(-ENAMETOOLONG);
}
/* No need to append altname if name is short enough */
if (len <= CEPH_NOHASH_NAME_MAX) {
len = 0;
goto success;
}
cryptbuf = kmalloc(len, GFP_KERNEL);
if (!cryptbuf)
return ERR_PTR(-ENOMEM);
ret = fscrypt_fname_encrypt(dir, &dentry->d_name, cryptbuf, len);
if (ret) {
kfree(cryptbuf);
return ERR_PTR(ret);
}
success:
*plen = len;
return cryptbuf;
}
#else
static u8 *get_fscrypt_altname(const struct ceph_mds_request *req, u32 *plen)
{
*plen = 0;
return NULL;
}
#endif
/**
* ceph_mdsc_build_path - build a path string to a given dentry
* @mdsc: mds client
* @dentry: dentry to which path should be built
* @plen: returned length of string
* @pbase: returned base inode number
* @for_wire: is this path going to be sent to the MDS?
*
* Build a string that represents the path to the dentry. This is mostly called
* for two different purposes:
*
* 1) we need to build a path string to send to the MDS (for_wire == true)
* 2) we need a path string for local presentation (e.g. debugfs)
* (for_wire == false)
*
* The path is built in reverse, starting with the dentry. Walk back up toward
* the root, building the path until the first non-snapped inode is reached
* (for_wire) or the root inode is reached (!for_wire).
*
* Encode hidden .snap dirs as a double /, i.e.
* foo/.snap/bar -> foo//bar
*/
char *ceph_mdsc_build_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
int *plen, u64 *pbase, int for_wire)
{
struct ceph_client *cl = mdsc->fsc->client;
struct dentry *cur;
struct inode *inode;
char *path;
int pos;
unsigned seq;
u64 base;
if (!dentry)
return ERR_PTR(-EINVAL);
path = __getname();
if (!path)
return ERR_PTR(-ENOMEM);
retry:
pos = PATH_MAX - 1;
path[pos] = '\0';
seq = read_seqbegin(&rename_lock);
cur = dget(dentry);
for (;;) {
struct dentry *parent;
spin_lock(&cur->d_lock);
inode = d_inode(cur);
if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
doutc(cl, "path+%d: %p SNAPDIR\n", pos, cur);
spin_unlock(&cur->d_lock);
parent = dget_parent(cur);
} else if (for_wire && inode && dentry != cur &&
ceph_snap(inode) == CEPH_NOSNAP) {
spin_unlock(&cur->d_lock);
pos++; /* get rid of any prepended '/' */
break;
} else if (!for_wire || !IS_ENCRYPTED(d_inode(cur->d_parent))) {
pos -= cur->d_name.len;
if (pos < 0) {
spin_unlock(&cur->d_lock);
break;
}
memcpy(path + pos, cur->d_name.name, cur->d_name.len);
spin_unlock(&cur->d_lock);
parent = dget_parent(cur);
} else {
int len, ret;
char buf[NAME_MAX];
/*
* Proactively copy name into buf, in case we need to
* present it as-is.
*/
memcpy(buf, cur->d_name.name, cur->d_name.len);
len = cur->d_name.len;
spin_unlock(&cur->d_lock);
parent = dget_parent(cur);
ret = ceph_fscrypt_prepare_readdir(d_inode(parent));
if (ret < 0) {
dput(parent);
dput(cur);
return ERR_PTR(ret);
}
if (fscrypt_has_encryption_key(d_inode(parent))) {
len = ceph_encode_encrypted_fname(d_inode(parent),
cur, buf);
if (len < 0) {
dput(parent);
dput(cur);
return ERR_PTR(len);
}
}
pos -= len;
if (pos < 0) {
dput(parent);
break;
}
memcpy(path + pos, buf, len);
}
dput(cur);
cur = parent;
/* Are we at the root? */
if (IS_ROOT(cur))
break;
/* Are we out of buffer? */
if (--pos < 0)
break;
path[pos] = '/';
}
inode = d_inode(cur);
base = inode ? ceph_ino(inode) : 0;
dput(cur);
if (read_seqretry(&rename_lock, seq))
goto retry;
if (pos < 0) {
/*
* A rename didn't occur, but somehow we didn't end up where
* we thought we would. Throw a warning and try again.
*/
pr_warn_client(cl, "did not end path lookup where expected (pos = %d)\n",
pos);
goto retry;
}
*pbase = base;
*plen = PATH_MAX - 1 - pos;
doutc(cl, "on %p %d built %llx '%.*s'\n", dentry, d_count(dentry),
base, *plen, path + pos);
return path + pos;
}
static int build_dentry_path(struct ceph_mds_client *mdsc, struct dentry *dentry,
struct inode *dir, const char **ppath, int *ppathlen,
u64 *pino, bool *pfreepath, bool parent_locked)
{
char *path;
rcu_read_lock();
if (!dir)
dir = d_inode_rcu(dentry->d_parent);
if (dir && parent_locked && ceph_snap(dir) == CEPH_NOSNAP &&
!IS_ENCRYPTED(dir)) {
*pino = ceph_ino(dir);
rcu_read_unlock();
*ppath = dentry->d_name.name;
*ppathlen = dentry->d_name.len;
return 0;
}
rcu_read_unlock();
path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
if (IS_ERR(path))
return PTR_ERR(path);
*ppath = path;
*pfreepath = true;
return 0;
}
static int build_inode_path(struct inode *inode,
const char **ppath, int *ppathlen, u64 *pino,
bool *pfreepath)
{
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
struct dentry *dentry;
char *path;
if (ceph_snap(inode) == CEPH_NOSNAP) {
*pino = ceph_ino(inode);
*ppathlen = 0;
return 0;
}
dentry = d_find_alias(inode);
path = ceph_mdsc_build_path(mdsc, dentry, ppathlen, pino, 1);
dput(dentry);
if (IS_ERR(path))
return PTR_ERR(path);
*ppath = path;
*pfreepath = true;
return 0;
}
/*
* request arguments may be specified via an inode *, a dentry *, or
* an explicit ino+path.
*/
static int set_request_path_attr(struct ceph_mds_client *mdsc, struct inode *rinode,
struct dentry *rdentry, struct inode *rdiri,
const char *rpath, u64 rino, const char **ppath,
int *pathlen, u64 *ino, bool *freepath,
bool parent_locked)
{
struct ceph_client *cl = mdsc->fsc->client;
int r = 0;
if (rinode) {
r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
doutc(cl, " inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
ceph_snap(rinode));
} else if (rdentry) {
r = build_dentry_path(mdsc, rdentry, rdiri, ppath, pathlen, ino,
freepath, parent_locked);
doutc(cl, " dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen, *ppath);
} else if (rpath || rino) {
*ino = rino;
*ppath = rpath;
*pathlen = rpath ? strlen(rpath) : 0;
doutc(cl, " path %.*s\n", *pathlen, rpath);
}
return r;
}
static void encode_mclientrequest_tail(void **p,
const struct ceph_mds_request *req)
{
struct ceph_timespec ts;
int i;
ceph_encode_timespec64(&ts, &req->r_stamp);
ceph_encode_copy(p, &ts, sizeof(ts));
/* v4: gid_list */
ceph_encode_32(p, req->r_cred->group_info->ngroups);
for (i = 0; i < req->r_cred->group_info->ngroups; i++)
ceph_encode_64(p, from_kgid(&init_user_ns,
req->r_cred->group_info->gid[i]));
/* v5: altname */
ceph_encode_32(p, req->r_altname_len);
ceph_encode_copy(p, req->r_altname, req->r_altname_len);
/* v6: fscrypt_auth and fscrypt_file */
if (req->r_fscrypt_auth) {
u32 authlen = ceph_fscrypt_auth_len(req->r_fscrypt_auth);
ceph_encode_32(p, authlen);
ceph_encode_copy(p, req->r_fscrypt_auth, authlen);
} else {
ceph_encode_32(p, 0);
}
if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags)) {
ceph_encode_32(p, sizeof(__le64));
ceph_encode_64(p, req->r_fscrypt_file);
} else {
ceph_encode_32(p, 0);
}
}
static inline u16 mds_supported_head_version(struct ceph_mds_session *session)
{
if (!test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD, &session->s_features))
return 1;
if (!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features))
return 2;
return CEPH_MDS_REQUEST_HEAD_VERSION;
}
static struct ceph_mds_request_head_legacy *
find_legacy_request_head(void *p, u64 features)
{
bool legacy = !(features & CEPH_FEATURE_FS_BTIME);
struct ceph_mds_request_head_old *ohead;
if (legacy)
return (struct ceph_mds_request_head_legacy *)p;
ohead = (struct ceph_mds_request_head_old *)p;
return (struct ceph_mds_request_head_legacy *)&ohead->oldest_client_tid;
}
/*
* called under mdsc->mutex
*/
static struct ceph_msg *create_request_message(struct ceph_mds_session *session,
struct ceph_mds_request *req,
bool drop_cap_releases)
{
int mds = session->s_mds;
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_msg *msg;
struct ceph_mds_request_head_legacy *lhead;
const char *path1 = NULL;
const char *path2 = NULL;
u64 ino1 = 0, ino2 = 0;
int pathlen1 = 0, pathlen2 = 0;
bool freepath1 = false, freepath2 = false;
struct dentry *old_dentry = NULL;
int len;
u16 releases;
void *p, *end;
int ret;
bool legacy = !(session->s_con.peer_features & CEPH_FEATURE_FS_BTIME);
u16 request_head_version = mds_supported_head_version(session);
kuid_t caller_fsuid = req->r_cred->fsuid;
kgid_t caller_fsgid = req->r_cred->fsgid;
ret = set_request_path_attr(mdsc, req->r_inode, req->r_dentry,
req->r_parent, req->r_path1, req->r_ino1.ino,
&path1, &pathlen1, &ino1, &freepath1,
test_bit(CEPH_MDS_R_PARENT_LOCKED,
&req->r_req_flags));
if (ret < 0) {
msg = ERR_PTR(ret);
goto out;
}
/* If r_old_dentry is set, then assume that its parent is locked */
if (req->r_old_dentry &&
!(req->r_old_dentry->d_flags & DCACHE_DISCONNECTED))
old_dentry = req->r_old_dentry;
ret = set_request_path_attr(mdsc, NULL, old_dentry,
req->r_old_dentry_dir,
req->r_path2, req->r_ino2.ino,
&path2, &pathlen2, &ino2, &freepath2, true);
if (ret < 0) {
msg = ERR_PTR(ret);
goto out_free1;
}
req->r_altname = get_fscrypt_altname(req, &req->r_altname_len);
if (IS_ERR(req->r_altname)) {
msg = ERR_CAST(req->r_altname);
req->r_altname = NULL;
goto out_free2;
}
/*
* For old cephs without supporting the 32bit retry/fwd feature
* it will copy the raw memories directly when decoding the
* requests. While new cephs will decode the head depending the
* version member, so we need to make sure it will be compatible
* with them both.
*/
if (legacy)
len = sizeof(struct ceph_mds_request_head_legacy);
else if (request_head_version == 1)
len = sizeof(struct ceph_mds_request_head_old);
else if (request_head_version == 2)
len = offsetofend(struct ceph_mds_request_head, ext_num_fwd);
else
len = sizeof(struct ceph_mds_request_head);
/* filepaths */
len += 2 * (1 + sizeof(u32) + sizeof(u64));
len += pathlen1 + pathlen2;
/* cap releases */
len += sizeof(struct ceph_mds_request_release) *
(!!req->r_inode_drop + !!req->r_dentry_drop +
!!req->r_old_inode_drop + !!req->r_old_dentry_drop);
if (req->r_dentry_drop)
len += pathlen1;
if (req->r_old_dentry_drop)
len += pathlen2;
/* MClientRequest tail */
/* req->r_stamp */
len += sizeof(struct ceph_timespec);
/* gid list */
len += sizeof(u32) + (sizeof(u64) * req->r_cred->group_info->ngroups);
/* alternate name */
len += sizeof(u32) + req->r_altname_len;
/* fscrypt_auth */
len += sizeof(u32); // fscrypt_auth
if (req->r_fscrypt_auth)
len += ceph_fscrypt_auth_len(req->r_fscrypt_auth);
/* fscrypt_file */
len += sizeof(u32);
if (test_bit(CEPH_MDS_R_FSCRYPT_FILE, &req->r_req_flags))
len += sizeof(__le64);
msg = ceph_msg_new2(CEPH_MSG_CLIENT_REQUEST, len, 1, GFP_NOFS, false);
if (!msg) {
msg = ERR_PTR(-ENOMEM);
goto out_free2;
}
msg->hdr.tid = cpu_to_le64(req->r_tid);
lhead = find_legacy_request_head(msg->front.iov_base,
session->s_con.peer_features);
if ((req->r_mnt_idmap != &nop_mnt_idmap) &&
!test_bit(CEPHFS_FEATURE_HAS_OWNER_UIDGID, &session->s_features)) {
WARN_ON_ONCE(!IS_CEPH_MDS_OP_NEWINODE(req->r_op));
if (enable_unsafe_idmap) {
pr_warn_once_client(cl,
"idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
" is not supported by MDS. UID/GID-based restrictions may"
" not work properly.\n");
caller_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
VFSUIDT_INIT(req->r_cred->fsuid));
caller_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
VFSGIDT_INIT(req->r_cred->fsgid));
} else {
pr_err_ratelimited_client(cl,
"idmapped mount is used and CEPHFS_FEATURE_HAS_OWNER_UIDGID"
" is not supported by MDS. Fail request with -EIO.\n");
ret = -EIO;
goto out_err;
}
}
/*
* The ceph_mds_request_head_legacy didn't contain a version field, and
* one was added when we moved the message version from 3->4.
*/
if (legacy) {
msg->hdr.version = cpu_to_le16(3);
p = msg->front.iov_base + sizeof(*lhead);
} else if (request_head_version == 1) {
struct ceph_mds_request_head_old *ohead = msg->front.iov_base;
msg->hdr.version = cpu_to_le16(4);
ohead->version = cpu_to_le16(1);
p = msg->front.iov_base + sizeof(*ohead);
} else if (request_head_version == 2) {
struct ceph_mds_request_head *nhead = msg->front.iov_base;
msg->hdr.version = cpu_to_le16(6);
nhead->version = cpu_to_le16(2);
p = msg->front.iov_base + offsetofend(struct ceph_mds_request_head, ext_num_fwd);
} else {
struct ceph_mds_request_head *nhead = msg->front.iov_base;
kuid_t owner_fsuid;
kgid_t owner_fsgid;
msg->hdr.version = cpu_to_le16(6);
nhead->version = cpu_to_le16(CEPH_MDS_REQUEST_HEAD_VERSION);
nhead->struct_len = cpu_to_le32(sizeof(struct ceph_mds_request_head));
if (IS_CEPH_MDS_OP_NEWINODE(req->r_op)) {
owner_fsuid = from_vfsuid(req->r_mnt_idmap, &init_user_ns,
VFSUIDT_INIT(req->r_cred->fsuid));
owner_fsgid = from_vfsgid(req->r_mnt_idmap, &init_user_ns,
VFSGIDT_INIT(req->r_cred->fsgid));
nhead->owner_uid = cpu_to_le32(from_kuid(&init_user_ns, owner_fsuid));
nhead->owner_gid = cpu_to_le32(from_kgid(&init_user_ns, owner_fsgid));
} else {
nhead->owner_uid = cpu_to_le32(-1);
nhead->owner_gid = cpu_to_le32(-1);
}
p = msg->front.iov_base + sizeof(*nhead);
}
end = msg->front.iov_base + msg->front.iov_len;
lhead->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
lhead->op = cpu_to_le32(req->r_op);
lhead->caller_uid = cpu_to_le32(from_kuid(&init_user_ns,
caller_fsuid));
lhead->caller_gid = cpu_to_le32(from_kgid(&init_user_ns,
caller_fsgid));
lhead->ino = cpu_to_le64(req->r_deleg_ino);
lhead->args = req->r_args;
ceph_encode_filepath(&p, end, ino1, path1);
ceph_encode_filepath(&p, end, ino2, path2);
/* make note of release offset, in case we need to replay */
req->r_request_release_offset = p - msg->front.iov_base;
/* cap releases */
releases = 0;
if (req->r_inode_drop)
releases += ceph_encode_inode_release(&p,
req->r_inode ? req->r_inode : d_inode(req->r_dentry),
mds, req->r_inode_drop, req->r_inode_unless,
req->r_op == CEPH_MDS_OP_READDIR);
if (req->r_dentry_drop) {
ret = ceph_encode_dentry_release(&p, req->r_dentry,
req->r_parent, mds, req->r_dentry_drop,
req->r_dentry_unless);
if (ret < 0)
goto out_err;
releases += ret;
}
if (req->r_old_dentry_drop) {
ret = ceph_encode_dentry_release(&p, req->r_old_dentry,
req->r_old_dentry_dir, mds,
req->r_old_dentry_drop,
req->r_old_dentry_unless);
if (ret < 0)
goto out_err;
releases += ret;
}
if (req->r_old_inode_drop)
releases += ceph_encode_inode_release(&p,
d_inode(req->r_old_dentry),
mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
if (drop_cap_releases) {
releases = 0;
p = msg->front.iov_base + req->r_request_release_offset;
}
lhead->num_releases = cpu_to_le16(releases);
encode_mclientrequest_tail(&p, req);
if (WARN_ON_ONCE(p > end)) {
ceph_msg_put(msg);
msg = ERR_PTR(-ERANGE);
goto out_free2;
}
msg->front.iov_len = p - msg->front.iov_base;
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
if (req->r_pagelist) {
struct ceph_pagelist *pagelist = req->r_pagelist;
ceph_msg_data_add_pagelist(msg, pagelist);
msg->hdr.data_len = cpu_to_le32(pagelist->length);
} else {
msg->hdr.data_len = 0;
}
msg->hdr.data_off = cpu_to_le16(0);
out_free2:
if (freepath2)
ceph_mdsc_free_path((char *)path2, pathlen2);
out_free1:
if (freepath1)
ceph_mdsc_free_path((char *)path1, pathlen1);
out:
return msg;
out_err:
ceph_msg_put(msg);
msg = ERR_PTR(ret);
goto out_free2;
}
/*
* called under mdsc->mutex if error, under no mutex if
* success.
*/
static void complete_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req)
{
req->r_end_latency = ktime_get();
if (req->r_callback)
req->r_callback(mdsc, req);
complete_all(&req->r_completion);
}
/*
* called under mdsc->mutex
*/
static int __prepare_send_request(struct ceph_mds_session *session,
struct ceph_mds_request *req,
bool drop_cap_releases)
{
int mds = session->s_mds;
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request_head_legacy *lhead;
struct ceph_mds_request_head *nhead;
struct ceph_msg *msg;
int flags = 0, old_max_retry;
bool old_version = !test_bit(CEPHFS_FEATURE_32BITS_RETRY_FWD,
&session->s_features);
/*
* Avoid inifinite retrying after overflow. The client will
* increase the retry count and if the MDS is old version,
* so we limit to retry at most 256 times.
*/
if (req->r_attempts) {
old_max_retry = sizeof_field(struct ceph_mds_request_head_old,
num_retry);
old_max_retry = 1 << (old_max_retry * BITS_PER_BYTE);
if ((old_version && req->r_attempts >= old_max_retry) ||
((uint32_t)req->r_attempts >= U32_MAX)) {
pr_warn_ratelimited_client(cl, "request tid %llu seq overflow\n",
req->r_tid);
return -EMULTIHOP;
}
}
req->r_attempts++;
if (req->r_inode) {
struct ceph_cap *cap =
ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
if (cap)
req->r_sent_on_mseq = cap->mseq;
else
req->r_sent_on_mseq = -1;
}
doutc(cl, "%p tid %lld %s (attempt %d)\n", req, req->r_tid,
ceph_mds_op_name(req->r_op), req->r_attempts);
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
void *p;
/*
* Replay. Do not regenerate message (and rebuild
* paths, etc.); just use the original message.
* Rebuilding paths will break for renames because
* d_move mangles the src name.
*/
msg = req->r_request;
lhead = find_legacy_request_head(msg->front.iov_base,
session->s_con.peer_features);
flags = le32_to_cpu(lhead->flags);
flags |= CEPH_MDS_FLAG_REPLAY;
lhead->flags = cpu_to_le32(flags);
if (req->r_target_inode)
lhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
lhead->num_retry = req->r_attempts - 1;
if (!old_version) {
nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
}
/* remove cap/dentry releases from message */
lhead->num_releases = 0;
p = msg->front.iov_base + req->r_request_release_offset;
encode_mclientrequest_tail(&p, req);
msg->front.iov_len = p - msg->front.iov_base;
msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
return 0;
}
if (req->r_request) {
ceph_msg_put(req->r_request);
req->r_request = NULL;
}
msg = create_request_message(session, req, drop_cap_releases);
if (IS_ERR(msg)) {
req->r_err = PTR_ERR(msg);
return PTR_ERR(msg);
}
req->r_request = msg;
lhead = find_legacy_request_head(msg->front.iov_base,
session->s_con.peer_features);
lhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
flags |= CEPH_MDS_FLAG_REPLAY;
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags))
flags |= CEPH_MDS_FLAG_ASYNC;
if (req->r_parent)
flags |= CEPH_MDS_FLAG_WANT_DENTRY;
lhead->flags = cpu_to_le32(flags);
lhead->num_fwd = req->r_num_fwd;
lhead->num_retry = req->r_attempts - 1;
if (!old_version) {
nhead = (struct ceph_mds_request_head*)msg->front.iov_base;
nhead->ext_num_fwd = cpu_to_le32(req->r_num_fwd);
nhead->ext_num_retry = cpu_to_le32(req->r_attempts - 1);
}
doutc(cl, " r_parent = %p\n", req->r_parent);
return 0;
}
/*
* called under mdsc->mutex
*/
static int __send_request(struct ceph_mds_session *session,
struct ceph_mds_request *req,
bool drop_cap_releases)
{
int err;
err = __prepare_send_request(session, req, drop_cap_releases);
if (!err) {
ceph_msg_get(req->r_request);
ceph_con_send(&session->s_con, req->r_request);
}
return err;
}
/*
* send request, or put it on the appropriate wait list.
*/
static void __do_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_session *session = NULL;
int mds = -1;
int err = 0;
bool random;
if (req->r_err || test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags))
__unregister_request(mdsc, req);
return;
}
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_FENCE_IO) {
doutc(cl, "metadata corrupted\n");
err = -EIO;
goto finish;
}
if (req->r_timeout &&
time_after_eq(jiffies, req->r_started + req->r_timeout)) {
doutc(cl, "timed out\n");
err = -ETIMEDOUT;
goto finish;
}
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN) {
doutc(cl, "forced umount\n");
err = -EIO;
goto finish;
}
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_MOUNTING) {
if (mdsc->mdsmap_err) {
err = mdsc->mdsmap_err;
doutc(cl, "mdsmap err %d\n", err);
goto finish;
}
if (mdsc->mdsmap->m_epoch == 0) {
doutc(cl, "no mdsmap, waiting for map\n");
list_add(&req->r_wait, &mdsc->waiting_for_map);
return;
}
if (!(mdsc->fsc->mount_options->flags &
CEPH_MOUNT_OPT_MOUNTWAIT) &&
!ceph_mdsmap_is_cluster_available(mdsc->mdsmap)) {
err = -EHOSTUNREACH;
goto finish;
}
}
put_request_session(req);
mds = __choose_mds(mdsc, req, &random);
if (mds < 0 ||
ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
err = -EJUKEBOX;
goto finish;
}
doutc(cl, "no mds or not active, waiting for map\n");
list_add(&req->r_wait, &mdsc->waiting_for_map);
return;
}
/* get, open session */
session = __ceph_lookup_mds_session(mdsc, mds);
if (!session) {
session = register_session(mdsc, mds);
if (IS_ERR(session)) {
err = PTR_ERR(session);
goto finish;
}
}
req->r_session = ceph_get_mds_session(session);
doutc(cl, "mds%d session %p state %s\n", mds, session,
ceph_session_state_name(session->s_state));
/*
* The old ceph will crash the MDSs when see unknown OPs
*/
if (req->r_feature_needed > 0 &&
!test_bit(req->r_feature_needed, &session->s_features)) {
err = -EOPNOTSUPP;
goto out_session;
}
if (session->s_state != CEPH_MDS_SESSION_OPEN &&
session->s_state != CEPH_MDS_SESSION_HUNG) {
/*
* We cannot queue async requests since the caps and delegated
* inodes are bound to the session. Just return -EJUKEBOX and
* let the caller retry a sync request in that case.
*/
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags)) {
err = -EJUKEBOX;
goto out_session;
}
/*
* If the session has been REJECTED, then return a hard error,
* unless it's a CLEANRECOVER mount, in which case we'll queue
* it to the mdsc queue.
*/
if (session->s_state == CEPH_MDS_SESSION_REJECTED) {
if (ceph_test_mount_opt(mdsc->fsc, CLEANRECOVER))
list_add(&req->r_wait, &mdsc->waiting_for_map);
else
err = -EACCES;
goto out_session;
}
if (session->s_state == CEPH_MDS_SESSION_NEW ||
session->s_state == CEPH_MDS_SESSION_CLOSING) {
err = __open_session(mdsc, session);
if (err)
goto out_session;
/* retry the same mds later */
if (random)
req->r_resend_mds = mds;
}
list_add(&req->r_wait, &session->s_waiting);
goto out_session;
}
/* send request */
req->r_resend_mds = -1; /* forget any previous mds hint */
if (req->r_request_started == 0) /* note request start time */
req->r_request_started = jiffies;
/*
* For async create we will choose the auth MDS of frag in parent
* directory to send the request and ususally this works fine, but
* if the migrated the dirtory to another MDS before it could handle
* it the request will be forwarded.
*
* And then the auth cap will be changed.
*/
if (test_bit(CEPH_MDS_R_ASYNC, &req->r_req_flags) && req->r_num_fwd) {
struct ceph_dentry_info *di = ceph_dentry(req->r_dentry);
struct ceph_inode_info *ci;
struct ceph_cap *cap;
/*
* The request maybe handled very fast and the new inode
* hasn't been linked to the dentry yet. We need to wait
* for the ceph_finish_async_create(), which shouldn't be
* stuck too long or fail in thoery, to finish when forwarding
* the request.
*/
if (!d_inode(req->r_dentry)) {
err = wait_on_bit(&di->flags, CEPH_DENTRY_ASYNC_CREATE_BIT,
TASK_KILLABLE);
if (err) {
mutex_lock(&req->r_fill_mutex);
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
mutex_unlock(&req->r_fill_mutex);
goto out_session;
}
}
ci = ceph_inode(d_inode(req->r_dentry));
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE && mds != cap->mds) {
doutc(cl, "session changed for auth cap %d -> %d\n",
cap->session->s_mds, session->s_mds);
/* Remove the auth cap from old session */
spin_lock(&cap->session->s_cap_lock);
cap->session->s_nr_caps--;
list_del_init(&cap->session_caps);
spin_unlock(&cap->session->s_cap_lock);
/* Add the auth cap to the new session */
cap->mds = mds;
cap->session = session;
spin_lock(&session->s_cap_lock);
session->s_nr_caps++;
list_add_tail(&cap->session_caps, &session->s_caps);
spin_unlock(&session->s_cap_lock);
change_auth_cap_ses(ci, session);
}
spin_unlock(&ci->i_ceph_lock);
}
err = __send_request(session, req, false);
out_session:
ceph_put_mds_session(session);
finish:
if (err) {
doutc(cl, "early error %d\n", err);
req->r_err = err;
complete_request(mdsc, req);
__unregister_request(mdsc, req);
}
return;
}
/*
* called under mdsc->mutex
*/
static void __wake_requests(struct ceph_mds_client *mdsc,
struct list_head *head)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req;
LIST_HEAD(tmp_list);
list_splice_init(head, &tmp_list);
while (!list_empty(&tmp_list)) {
req = list_entry(tmp_list.next,
struct ceph_mds_request, r_wait);
list_del_init(&req->r_wait);
doutc(cl, " wake request %p tid %llu\n", req,
req->r_tid);
__do_request(mdsc, req);
}
}
/*
* Wake up threads with requests pending for @mds, so that they can
* resubmit their requests to a possibly different mds.
*/
static void kick_requests(struct ceph_mds_client *mdsc, int mds)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req;
struct rb_node *p = rb_first(&mdsc->request_tree);
doutc(cl, "kick_requests mds%d\n", mds);
while (p) {
req = rb_entry(p, struct ceph_mds_request, r_node);
p = rb_next(p);
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
continue;
if (req->r_attempts > 0)
continue; /* only new requests */
if (req->r_session &&
req->r_session->s_mds == mds) {
doutc(cl, " kicking tid %llu\n", req->r_tid);
list_del_init(&req->r_wait);
__do_request(mdsc, req);
}
}
}
int ceph_mdsc_submit_request(struct ceph_mds_client *mdsc, struct inode *dir,
struct ceph_mds_request *req)
{
struct ceph_client *cl = mdsc->fsc->client;
int err = 0;
/* take CAP_PIN refs for r_inode, r_parent, r_old_dentry */
if (req->r_inode)
ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
if (req->r_parent) {
struct ceph_inode_info *ci = ceph_inode(req->r_parent);
int fmode = (req->r_op & CEPH_MDS_OP_WRITE) ?
CEPH_FILE_MODE_WR : CEPH_FILE_MODE_RD;
spin_lock(&ci->i_ceph_lock);
ceph_take_cap_refs(ci, CEPH_CAP_PIN, false);
__ceph_touch_fmode(ci, mdsc, fmode);
spin_unlock(&ci->i_ceph_lock);
}
if (req->r_old_dentry_dir)
ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
CEPH_CAP_PIN);
if (req->r_inode) {
err = ceph_wait_on_async_create(req->r_inode);
if (err) {
doutc(cl, "wait for async create returned: %d\n", err);
return err;
}
}
if (!err && req->r_old_inode) {
err = ceph_wait_on_async_create(req->r_old_inode);
if (err) {
doutc(cl, "wait for async create returned: %d\n", err);
return err;
}
}
doutc(cl, "submit_request on %p for inode %p\n", req, dir);
mutex_lock(&mdsc->mutex);
__register_request(mdsc, req, dir);
__do_request(mdsc, req);
err = req->r_err;
mutex_unlock(&mdsc->mutex);
return err;
}
int ceph_mdsc_wait_request(struct ceph_mds_client *mdsc,
struct ceph_mds_request *req,
ceph_mds_request_wait_callback_t wait_func)
{
struct ceph_client *cl = mdsc->fsc->client;
int err;
/* wait */
doutc(cl, "do_request waiting\n");
if (wait_func) {
err = wait_func(mdsc, req);
} else {
long timeleft = wait_for_completion_killable_timeout(
&req->r_completion,
ceph_timeout_jiffies(req->r_timeout));
if (timeleft > 0)
err = 0;
else if (!timeleft)
err = -ETIMEDOUT; /* timed out */
else
err = timeleft; /* killed */
}
doutc(cl, "do_request waited, got %d\n", err);
mutex_lock(&mdsc->mutex);
/* only abort if we didn't race with a real reply */
if (test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags)) {
err = le32_to_cpu(req->r_reply_info.head->result);
} else if (err < 0) {
doutc(cl, "aborted request %lld with %d\n", req->r_tid, err);
/*
* ensure we aren't running concurrently with
* ceph_fill_trace or ceph_readdir_prepopulate, which
* rely on locks (dir mutex) held by our caller.
*/
mutex_lock(&req->r_fill_mutex);
req->r_err = err;
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
mutex_unlock(&req->r_fill_mutex);
if (req->r_parent &&
(req->r_op & CEPH_MDS_OP_WRITE))
ceph_invalidate_dir_request(req);
} else {
err = req->r_err;
}
mutex_unlock(&mdsc->mutex);
return err;
}
/*
* Synchrously perform an mds request. Take care of all of the
* session setup, forwarding, retry details.
*/
int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
struct inode *dir,
struct ceph_mds_request *req)
{
struct ceph_client *cl = mdsc->fsc->client;
int err;
doutc(cl, "do_request on %p\n", req);
/* issue */
err = ceph_mdsc_submit_request(mdsc, dir, req);
if (!err)
err = ceph_mdsc_wait_request(mdsc, req, NULL);
doutc(cl, "do_request %p done, result %d\n", req, err);
return err;
}
/*
* Invalidate dir's completeness, dentry lease state on an aborted MDS
* namespace request.
*/
void ceph_invalidate_dir_request(struct ceph_mds_request *req)
{
struct inode *dir = req->r_parent;
struct inode *old_dir = req->r_old_dentry_dir;
struct ceph_client *cl = req->r_mdsc->fsc->client;
doutc(cl, "invalidate_dir_request %p %p (complete, lease(s))\n",
dir, old_dir);
ceph_dir_clear_complete(dir);
if (old_dir)
ceph_dir_clear_complete(old_dir);
if (req->r_dentry)
ceph_invalidate_dentry_lease(req->r_dentry);
if (req->r_old_dentry)
ceph_invalidate_dentry_lease(req->r_old_dentry);
}
/*
* Handle mds reply.
*
* We take the session mutex and parse and process the reply immediately.
* This preserves the logical ordering of replies, capabilities, etc., sent
* by the MDS as they are applied to our local cache.
*/
static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
{
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req;
struct ceph_mds_reply_head *head = msg->front.iov_base;
struct ceph_mds_reply_info_parsed *rinfo; /* parsed reply info */
struct ceph_snap_realm *realm;
u64 tid;
int err, result;
int mds = session->s_mds;
bool close_sessions = false;
if (msg->front.iov_len < sizeof(*head)) {
pr_err_client(cl, "got corrupt (short) reply\n");
ceph_msg_dump(msg);
return;
}
/* get request, session */
tid = le64_to_cpu(msg->hdr.tid);
mutex_lock(&mdsc->mutex);
req = lookup_get_request(mdsc, tid);
if (!req) {
doutc(cl, "on unknown tid %llu\n", tid);
mutex_unlock(&mdsc->mutex);
return;
}
doutc(cl, "handle_reply %p\n", req);
/* correct session? */
if (req->r_session != session) {
pr_err_client(cl, "got %llu on session mds%d not mds%d\n",
tid, session->s_mds,
req->r_session ? req->r_session->s_mds : -1);
mutex_unlock(&mdsc->mutex);
goto out;
}
/* dup? */
if ((test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags) && !head->safe) ||
(test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags) && head->safe)) {
pr_warn_client(cl, "got a dup %s reply on %llu from mds%d\n",
head->safe ? "safe" : "unsafe", tid, mds);
mutex_unlock(&mdsc->mutex);
goto out;
}
if (test_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags)) {
pr_warn_client(cl, "got unsafe after safe on %llu from mds%d\n",
tid, mds);
mutex_unlock(&mdsc->mutex);
goto out;
}
result = le32_to_cpu(head->result);
if (head->safe) {
set_bit(CEPH_MDS_R_GOT_SAFE, &req->r_req_flags);
__unregister_request(mdsc, req);
/* last request during umount? */
if (mdsc->stopping && !__get_oldest_req(mdsc))
complete_all(&mdsc->safe_umount_waiters);
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
/*
* We already handled the unsafe response, now do the
* cleanup. No need to examine the response; the MDS
* doesn't include any result info in the safe
* response. And even if it did, there is nothing
* useful we could do with a revised return value.
*/
doutc(cl, "got safe reply %llu, mds%d\n", tid, mds);
mutex_unlock(&mdsc->mutex);
goto out;
}
} else {
set_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags);
list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
}
doutc(cl, "tid %lld result %d\n", tid, result);
if (test_bit(CEPHFS_FEATURE_REPLY_ENCODING, &session->s_features))
err = parse_reply_info(session, msg, req, (u64)-1);
else
err = parse_reply_info(session, msg, req,
session->s_con.peer_features);
mutex_unlock(&mdsc->mutex);
/* Must find target inode outside of mutexes to avoid deadlocks */
rinfo = &req->r_reply_info;
if ((err >= 0) && rinfo->head->is_target) {
struct inode *in = xchg(&req->r_new_inode, NULL);
struct ceph_vino tvino = {
.ino = le64_to_cpu(rinfo->targeti.in->ino),
.snap = le64_to_cpu(rinfo->targeti.in->snapid)
};
/*
* If we ended up opening an existing inode, discard
* r_new_inode
*/
if (req->r_op == CEPH_MDS_OP_CREATE &&
!req->r_reply_info.has_create_ino) {
/* This should never happen on an async create */
WARN_ON_ONCE(req->r_deleg_ino);
iput(in);
in = NULL;
}
in = ceph_get_inode(mdsc->fsc->sb, tvino, in);
if (IS_ERR(in)) {
err = PTR_ERR(in);
mutex_lock(&session->s_mutex);
goto out_err;
}
req->r_target_inode = in;
}
mutex_lock(&session->s_mutex);
if (err < 0) {
pr_err_client(cl, "got corrupt reply mds%d(tid:%lld)\n",
mds, tid);
ceph_msg_dump(msg);
goto out_err;
}
/* snap trace */
realm = NULL;
if (rinfo->snapblob_len) {
down_write(&mdsc->snap_rwsem);
err = ceph_update_snap_trace(mdsc, rinfo->snapblob,
rinfo->snapblob + rinfo->snapblob_len,
le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP,
&realm);
if (err) {
up_write(&mdsc->snap_rwsem);
close_sessions = true;
if (err == -EIO)
ceph_msg_dump(msg);
goto out_err;
}
downgrade_write(&mdsc->snap_rwsem);
} else {
down_read(&mdsc->snap_rwsem);
}
/* insert trace into our cache */
mutex_lock(&req->r_fill_mutex);
current->journal_info = req;
err = ceph_fill_trace(mdsc->fsc->sb, req);
if (err == 0) {
if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
req->r_op == CEPH_MDS_OP_LSSNAP))
err = ceph_readdir_prepopulate(req, req->r_session);
}
current->journal_info = NULL;
mutex_unlock(&req->r_fill_mutex);
up_read(&mdsc->snap_rwsem);
if (realm)
ceph_put_snap_realm(mdsc, realm);
if (err == 0) {
if (req->r_target_inode &&
test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags)) {
struct ceph_inode_info *ci =
ceph_inode(req->r_target_inode);
spin_lock(&ci->i_unsafe_lock);
list_add_tail(&req->r_unsafe_target_item,
&ci->i_unsafe_iops);
spin_unlock(&ci->i_unsafe_lock);
}
ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
}
out_err:
mutex_lock(&mdsc->mutex);
if (!test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
if (err) {
req->r_err = err;
} else {
req->r_reply = ceph_msg_get(msg);
set_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags);
}
} else {
doutc(cl, "reply arrived after request %lld was aborted\n", tid);
}
mutex_unlock(&mdsc->mutex);
mutex_unlock(&session->s_mutex);
/* kick calling process */
complete_request(mdsc, req);
ceph_update_metadata_metrics(&mdsc->metric, req->r_start_latency,
req->r_end_latency, err);
out:
ceph_mdsc_put_request(req);
/* Defer closing the sessions after s_mutex lock being released */
if (close_sessions)
ceph_mdsc_close_sessions(mdsc);
return;
}
/*
* handle mds notification that our request has been forwarded.
*/
static void handle_forward(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req;
u64 tid = le64_to_cpu(msg->hdr.tid);
u32 next_mds;
u32 fwd_seq;
int err = -EINVAL;
void *p = msg->front.iov_base;
void *end = p + msg->front.iov_len;
bool aborted = false;
ceph_decode_need(&p, end, 2*sizeof(u32), bad);
next_mds = ceph_decode_32(&p);
fwd_seq = ceph_decode_32(&p);
mutex_lock(&mdsc->mutex);
req = lookup_get_request(mdsc, tid);
if (!req) {
mutex_unlock(&mdsc->mutex);
doutc(cl, "forward tid %llu to mds%d - req dne\n", tid, next_mds);
return; /* dup reply? */
}
if (test_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags)) {
doutc(cl, "forward tid %llu aborted, unregistering\n", tid);
__unregister_request(mdsc, req);
} else if (fwd_seq <= req->r_num_fwd || (uint32_t)fwd_seq >= U32_MAX) {
/*
* Avoid inifinite retrying after overflow.
*
* The MDS will increase the fwd count and in client side
* if the num_fwd is less than the one saved in request
* that means the MDS is an old version and overflowed of
* 8 bits.
*/
mutex_lock(&req->r_fill_mutex);
req->r_err = -EMULTIHOP;
set_bit(CEPH_MDS_R_ABORTED, &req->r_req_flags);
mutex_unlock(&req->r_fill_mutex);
aborted = true;
pr_warn_ratelimited_client(cl, "forward tid %llu seq overflow\n",
tid);
} else {
/* resend. forward race not possible; mds would drop */
doutc(cl, "forward tid %llu to mds%d (we resend)\n", tid, next_mds);
BUG_ON(req->r_err);
BUG_ON(test_bit(CEPH_MDS_R_GOT_RESULT, &req->r_req_flags));
req->r_attempts = 0;
req->r_num_fwd = fwd_seq;
req->r_resend_mds = next_mds;
put_request_session(req);
__do_request(mdsc, req);
}
mutex_unlock(&mdsc->mutex);
/* kick calling process */
if (aborted)
complete_request(mdsc, req);
ceph_mdsc_put_request(req);
return;
bad:
pr_err_client(cl, "decode error err=%d\n", err);
ceph_msg_dump(msg);
}
static int __decode_session_metadata(void **p, void *end,
bool *blocklisted)
{
/* map<string,string> */
u32 n;
bool err_str;
ceph_decode_32_safe(p, end, n, bad);
while (n-- > 0) {
u32 len;
ceph_decode_32_safe(p, end, len, bad);
ceph_decode_need(p, end, len, bad);
err_str = !strncmp(*p, "error_string", len);
*p += len;
ceph_decode_32_safe(p, end, len, bad);
ceph_decode_need(p, end, len, bad);
/*
* Match "blocklisted (blacklisted)" from newer MDSes,
* or "blacklisted" from older MDSes.
*/
if (err_str && strnstr(*p, "blacklisted", len))
*blocklisted = true;
*p += len;
}
return 0;
bad:
return -1;
}
/*
* handle a mds session control message
*/
static void handle_session(struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_client *cl = mdsc->fsc->client;
int mds = session->s_mds;
int msg_version = le16_to_cpu(msg->hdr.version);
void *p = msg->front.iov_base;
void *end = p + msg->front.iov_len;
struct ceph_mds_session_head *h;
u32 op;
u64 seq, features = 0;
int wake = 0;
bool blocklisted = false;
/* decode */
ceph_decode_need(&p, end, sizeof(*h), bad);
h = p;
p += sizeof(*h);
op = le32_to_cpu(h->op);
seq = le64_to_cpu(h->seq);
if (msg_version >= 3) {
u32 len;
/* version >= 2 and < 5, decode metadata, skip otherwise
* as it's handled via flags.
*/
if (msg_version >= 5)
ceph_decode_skip_map(&p, end, string, string, bad);
else if (__decode_session_metadata(&p, end, &blocklisted) < 0)
goto bad;
/* version >= 3, feature bits */
ceph_decode_32_safe(&p, end, len, bad);
if (len) {
ceph_decode_64_safe(&p, end, features, bad);
p += len - sizeof(features);
}
}
if (msg_version >= 5) {
u32 flags, len;
/* version >= 4 */
ceph_decode_skip_16(&p, end, bad); /* struct_v, struct_cv */
ceph_decode_32_safe(&p, end, len, bad); /* len */
ceph_decode_skip_n(&p, end, len, bad); /* metric_spec */
/* version >= 5, flags */
ceph_decode_32_safe(&p, end, flags, bad);
if (flags & CEPH_SESSION_BLOCKLISTED) {
pr_warn_client(cl, "mds%d session blocklisted\n",
session->s_mds);
blocklisted = true;
}
}
mutex_lock(&mdsc->mutex);
if (op == CEPH_SESSION_CLOSE) {
ceph_get_mds_session(session);
__unregister_session(mdsc, session);
}
/* FIXME: this ttl calculation is generous */
session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
mutex_unlock(&mdsc->mutex);
mutex_lock(&session->s_mutex);
doutc(cl, "mds%d %s %p state %s seq %llu\n", mds,
ceph_session_op_name(op), session,
ceph_session_state_name(session->s_state), seq);
if (session->s_state == CEPH_MDS_SESSION_HUNG) {
session->s_state = CEPH_MDS_SESSION_OPEN;
pr_info_client(cl, "mds%d came back\n", session->s_mds);
}
switch (op) {
case CEPH_SESSION_OPEN:
if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
pr_info_client(cl, "mds%d reconnect success\n",
session->s_mds);
if (session->s_state == CEPH_MDS_SESSION_OPEN) {
pr_notice_client(cl, "mds%d is already opened\n",
session->s_mds);
} else {
session->s_state = CEPH_MDS_SESSION_OPEN;
session->s_features = features;
renewed_caps(mdsc, session, 0);
if (test_bit(CEPHFS_FEATURE_METRIC_COLLECT,
&session->s_features))
metric_schedule_delayed(&mdsc->metric);
}
/*
* The connection maybe broken and the session in client
* side has been reinitialized, need to update the seq
* anyway.
*/
if (!session->s_seq && seq)
session->s_seq = seq;
wake = 1;
if (mdsc->stopping)
__close_session(mdsc, session);
break;
case CEPH_SESSION_RENEWCAPS:
if (session->s_renew_seq == seq)
renewed_caps(mdsc, session, 1);
break;
case CEPH_SESSION_CLOSE:
if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
pr_info_client(cl, "mds%d reconnect denied\n",
session->s_mds);
session->s_state = CEPH_MDS_SESSION_CLOSED;
cleanup_session_requests(mdsc, session);
remove_session_caps(session);
wake = 2; /* for good measure */
wake_up_all(&mdsc->session_close_wq);
break;
case CEPH_SESSION_STALE:
pr_info_client(cl, "mds%d caps went stale, renewing\n",
session->s_mds);
atomic_inc(&session->s_cap_gen);
session->s_cap_ttl = jiffies - 1;
send_renew_caps(mdsc, session);
break;
case CEPH_SESSION_RECALL_STATE:
ceph_trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
break;
case CEPH_SESSION_FLUSHMSG:
/* flush cap releases */
spin_lock(&session->s_cap_lock);
if (session->s_num_cap_releases)
ceph_flush_cap_releases(mdsc, session);
spin_unlock(&session->s_cap_lock);
send_flushmsg_ack(mdsc, session, seq);
break;
case CEPH_SESSION_FORCE_RO:
doutc(cl, "force_session_readonly %p\n", session);
spin_lock(&session->s_cap_lock);
session->s_readonly = true;
spin_unlock(&session->s_cap_lock);
wake_up_session_caps(session, FORCE_RO);
break;
case CEPH_SESSION_REJECT:
WARN_ON(session->s_state != CEPH_MDS_SESSION_OPENING);
pr_info_client(cl, "mds%d rejected session\n",
session->s_mds);
session->s_state = CEPH_MDS_SESSION_REJECTED;
cleanup_session_requests(mdsc, session);
remove_session_caps(session);
if (blocklisted)
mdsc->fsc->blocklisted = true;
wake = 2; /* for good measure */
break;
default:
pr_err_client(cl, "bad op %d mds%d\n", op, mds);
WARN_ON(1);
}
mutex_unlock(&session->s_mutex);
if (wake) {
mutex_lock(&mdsc->mutex);
__wake_requests(mdsc, &session->s_waiting);
if (wake == 2)
kick_requests(mdsc, mds);
mutex_unlock(&mdsc->mutex);
}
if (op == CEPH_SESSION_CLOSE)
ceph_put_mds_session(session);
return;
bad:
pr_err_client(cl, "corrupt message mds%d len %d\n", mds,
(int)msg->front.iov_len);
ceph_msg_dump(msg);
return;
}
void ceph_mdsc_release_dir_caps(struct ceph_mds_request *req)
{
struct ceph_client *cl = req->r_mdsc->fsc->client;
int dcaps;
dcaps = xchg(&req->r_dir_caps, 0);
if (dcaps) {
doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
ceph_put_cap_refs(ceph_inode(req->r_parent), dcaps);
}
}
void ceph_mdsc_release_dir_caps_no_check(struct ceph_mds_request *req)
{
struct ceph_client *cl = req->r_mdsc->fsc->client;
int dcaps;
dcaps = xchg(&req->r_dir_caps, 0);
if (dcaps) {
doutc(cl, "releasing r_dir_caps=%s\n", ceph_cap_string(dcaps));
ceph_put_cap_refs_no_check_caps(ceph_inode(req->r_parent),
dcaps);
}
}
/*
* called under session->mutex.
*/
static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_mds_request *req, *nreq;
struct rb_node *p;
doutc(mdsc->fsc->client, "mds%d\n", session->s_mds);
mutex_lock(&mdsc->mutex);
list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item)
__send_request(session, req, true);
/*
* also re-send old requests when MDS enters reconnect stage. So that MDS
* can process completed request in clientreplay stage.
*/
p = rb_first(&mdsc->request_tree);
while (p) {
req = rb_entry(p, struct ceph_mds_request, r_node);
p = rb_next(p);
if (test_bit(CEPH_MDS_R_GOT_UNSAFE, &req->r_req_flags))
continue;
if (req->r_attempts == 0)
continue; /* only old requests */
if (!req->r_session)
continue;
if (req->r_session->s_mds != session->s_mds)
continue;
ceph_mdsc_release_dir_caps_no_check(req);
__send_request(session, req, true);
}
mutex_unlock(&mdsc->mutex);
}
static int send_reconnect_partial(struct ceph_reconnect_state *recon_state)
{
struct ceph_msg *reply;
struct ceph_pagelist *_pagelist;
struct page *page;
__le32 *addr;
int err = -ENOMEM;
if (!recon_state->allow_multi)
return -ENOSPC;
/* can't handle message that contains both caps and realm */
BUG_ON(!recon_state->nr_caps == !recon_state->nr_realms);
/* pre-allocate new pagelist */
_pagelist = ceph_pagelist_alloc(GFP_NOFS);
if (!_pagelist)
return -ENOMEM;
reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
if (!reply)
goto fail_msg;
/* placeholder for nr_caps */
err = ceph_pagelist_encode_32(_pagelist, 0);
if (err < 0)
goto fail;
if (recon_state->nr_caps) {
/* currently encoding caps */
err = ceph_pagelist_encode_32(recon_state->pagelist, 0);
if (err)
goto fail;
} else {
/* placeholder for nr_realms (currently encoding relams) */
err = ceph_pagelist_encode_32(_pagelist, 0);
if (err < 0)
goto fail;
}
err = ceph_pagelist_encode_8(recon_state->pagelist, 1);
if (err)
goto fail;
page = list_first_entry(&recon_state->pagelist->head, struct page, lru);
addr = kmap_atomic(page);
if (recon_state->nr_caps) {
/* currently encoding caps */
*addr = cpu_to_le32(recon_state->nr_caps);
} else {
/* currently encoding relams */
*(addr + 1) = cpu_to_le32(recon_state->nr_realms);
}
kunmap_atomic(addr);
reply->hdr.version = cpu_to_le16(5);
reply->hdr.compat_version = cpu_to_le16(4);
reply->hdr.data_len = cpu_to_le32(recon_state->pagelist->length);
ceph_msg_data_add_pagelist(reply, recon_state->pagelist);
ceph_con_send(&recon_state->session->s_con, reply);
ceph_pagelist_release(recon_state->pagelist);
recon_state->pagelist = _pagelist;
recon_state->nr_caps = 0;
recon_state->nr_realms = 0;
recon_state->msg_version = 5;
return 0;
fail:
ceph_msg_put(reply);
fail_msg:
ceph_pagelist_release(_pagelist);
return err;
}
static struct dentry* d_find_primary(struct inode *inode)
{
struct dentry *alias, *dn = NULL;
if (hlist_empty(&inode->i_dentry))
return NULL;
spin_lock(&inode->i_lock);
if (hlist_empty(&inode->i_dentry))
goto out_unlock;
if (S_ISDIR(inode->i_mode)) {
alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
if (!IS_ROOT(alias))
dn = dget(alias);
goto out_unlock;
}
hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
spin_lock(&alias->d_lock);
if (!d_unhashed(alias) &&
(ceph_dentry(alias)->flags & CEPH_DENTRY_PRIMARY_LINK)) {
dn = dget_dlock(alias);
}
spin_unlock(&alias->d_lock);
if (dn)
break;
}
out_unlock:
spin_unlock(&inode->i_lock);
return dn;
}
/*
* Encode information about a cap for a reconnect with the MDS.
*/
static int reconnect_caps_cb(struct inode *inode, int mds, void *arg)
{
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
struct ceph_client *cl = ceph_inode_to_client(inode);
union {
struct ceph_mds_cap_reconnect v2;
struct ceph_mds_cap_reconnect_v1 v1;
} rec;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_reconnect_state *recon_state = arg;
struct ceph_pagelist *pagelist = recon_state->pagelist;
struct dentry *dentry;
struct ceph_cap *cap;
char *path;
int pathlen = 0, err;
u64 pathbase;
u64 snap_follows;
dentry = d_find_primary(inode);
if (dentry) {
/* set pathbase to parent dir when msg_version >= 2 */
path = ceph_mdsc_build_path(mdsc, dentry, &pathlen, &pathbase,
recon_state->msg_version >= 2);
dput(dentry);
if (IS_ERR(path)) {
err = PTR_ERR(path);
goto out_err;
}
} else {
path = NULL;
pathbase = 0;
}
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
spin_unlock(&ci->i_ceph_lock);
err = 0;
goto out_err;
}
doutc(cl, " adding %p ino %llx.%llx cap %p %lld %s\n", inode,
ceph_vinop(inode), cap, cap->cap_id,
ceph_cap_string(cap->issued));
cap->seq = 0; /* reset cap seq */
cap->issue_seq = 0; /* and issue_seq */
cap->mseq = 0; /* and migrate_seq */
cap->cap_gen = atomic_read(&cap->session->s_cap_gen);
/* These are lost when the session goes away */
if (S_ISDIR(inode->i_mode)) {
if (cap->issued & CEPH_CAP_DIR_CREATE) {
ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
}
cap->issued &= ~CEPH_CAP_ANY_DIR_OPS;
}
if (recon_state->msg_version >= 2) {
rec.v2.cap_id = cpu_to_le64(cap->cap_id);
rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
rec.v2.issued = cpu_to_le32(cap->issued);
rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
rec.v2.pathbase = cpu_to_le64(pathbase);
rec.v2.flock_len = (__force __le32)
((ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK) ? 0 : 1);
} else {
struct timespec64 ts;
rec.v1.cap_id = cpu_to_le64(cap->cap_id);
rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
rec.v1.issued = cpu_to_le32(cap->issued);
rec.v1.size = cpu_to_le64(i_size_read(inode));
ts = inode_get_mtime(inode);
ceph_encode_timespec64(&rec.v1.mtime, &ts);
ts = inode_get_atime(inode);
ceph_encode_timespec64(&rec.v1.atime, &ts);
rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
rec.v1.pathbase = cpu_to_le64(pathbase);
}
if (list_empty(&ci->i_cap_snaps)) {
snap_follows = ci->i_head_snapc ? ci->i_head_snapc->seq : 0;
} else {
struct ceph_cap_snap *capsnap =
list_first_entry(&ci->i_cap_snaps,
struct ceph_cap_snap, ci_item);
snap_follows = capsnap->follows;
}
spin_unlock(&ci->i_ceph_lock);
if (recon_state->msg_version >= 2) {
int num_fcntl_locks, num_flock_locks;
struct ceph_filelock *flocks = NULL;
size_t struct_len, total_len = sizeof(u64);
u8 struct_v = 0;
encode_again:
if (rec.v2.flock_len) {
ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
} else {
num_fcntl_locks = 0;
num_flock_locks = 0;
}
if (num_fcntl_locks + num_flock_locks > 0) {
flocks = kmalloc_array(num_fcntl_locks + num_flock_locks,
sizeof(struct ceph_filelock),
GFP_NOFS);
if (!flocks) {
err = -ENOMEM;
goto out_err;
}
err = ceph_encode_locks_to_buffer(inode, flocks,
num_fcntl_locks,
num_flock_locks);
if (err) {
kfree(flocks);
flocks = NULL;
if (err == -ENOSPC)
goto encode_again;
goto out_err;
}
} else {
kfree(flocks);
flocks = NULL;
}
if (recon_state->msg_version >= 3) {
/* version, compat_version and struct_len */
total_len += 2 * sizeof(u8) + sizeof(u32);
struct_v = 2;
}
/*
* number of encoded locks is stable, so copy to pagelist
*/
struct_len = 2 * sizeof(u32) +
(num_fcntl_locks + num_flock_locks) *
sizeof(struct ceph_filelock);
rec.v2.flock_len = cpu_to_le32(struct_len);
struct_len += sizeof(u32) + pathlen + sizeof(rec.v2);
if (struct_v >= 2)
struct_len += sizeof(u64); /* snap_follows */
total_len += struct_len;
if (pagelist->length + total_len > RECONNECT_MAX_SIZE) {
err = send_reconnect_partial(recon_state);
if (err)
goto out_freeflocks;
pagelist = recon_state->pagelist;
}
err = ceph_pagelist_reserve(pagelist, total_len);
if (err)
goto out_freeflocks;
ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
if (recon_state->msg_version >= 3) {
ceph_pagelist_encode_8(pagelist, struct_v);
ceph_pagelist_encode_8(pagelist, 1);
ceph_pagelist_encode_32(pagelist, struct_len);
}
ceph_pagelist_encode_string(pagelist, path, pathlen);
ceph_pagelist_append(pagelist, &rec, sizeof(rec.v2));
ceph_locks_to_pagelist(flocks, pagelist,
num_fcntl_locks, num_flock_locks);
if (struct_v >= 2)
ceph_pagelist_encode_64(pagelist, snap_follows);
out_freeflocks:
kfree(flocks);
} else {
err = ceph_pagelist_reserve(pagelist,
sizeof(u64) + sizeof(u32) +
pathlen + sizeof(rec.v1));
if (err)
goto out_err;
ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
ceph_pagelist_encode_string(pagelist, path, pathlen);
ceph_pagelist_append(pagelist, &rec, sizeof(rec.v1));
}
out_err:
ceph_mdsc_free_path(path, pathlen);
if (!err)
recon_state->nr_caps++;
return err;
}
static int encode_snap_realms(struct ceph_mds_client *mdsc,
struct ceph_reconnect_state *recon_state)
{
struct rb_node *p;
struct ceph_pagelist *pagelist = recon_state->pagelist;
struct ceph_client *cl = mdsc->fsc->client;
int err = 0;
if (recon_state->msg_version >= 4) {
err = ceph_pagelist_encode_32(pagelist, mdsc->num_snap_realms);
if (err < 0)
goto fail;
}
/*
* snaprealms. we provide mds with the ino, seq (version), and
* parent for all of our realms. If the mds has any newer info,
* it will tell us.
*/
for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
struct ceph_snap_realm *realm =
rb_entry(p, struct ceph_snap_realm, node);
struct ceph_mds_snaprealm_reconnect sr_rec;
if (recon_state->msg_version >= 4) {
size_t need = sizeof(u8) * 2 + sizeof(u32) +
sizeof(sr_rec);
if (pagelist->length + need > RECONNECT_MAX_SIZE) {
err = send_reconnect_partial(recon_state);
if (err)
goto fail;
pagelist = recon_state->pagelist;
}
err = ceph_pagelist_reserve(pagelist, need);
if (err)
goto fail;
ceph_pagelist_encode_8(pagelist, 1);
ceph_pagelist_encode_8(pagelist, 1);
ceph_pagelist_encode_32(pagelist, sizeof(sr_rec));
}
doutc(cl, " adding snap realm %llx seq %lld parent %llx\n",
realm->ino, realm->seq, realm->parent_ino);
sr_rec.ino = cpu_to_le64(realm->ino);
sr_rec.seq = cpu_to_le64(realm->seq);
sr_rec.parent = cpu_to_le64(realm->parent_ino);
err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
if (err)
goto fail;
recon_state->nr_realms++;
}
fail:
return err;
}
/*
* If an MDS fails and recovers, clients need to reconnect in order to
* reestablish shared state. This includes all caps issued through
* this session _and_ the snap_realm hierarchy. Because it's not
* clear which snap realms the mds cares about, we send everything we
* know about.. that ensures we'll then get any new info the
* recovering MDS might have.
*
* This is a relatively heavyweight operation, but it's rare.
*/
static void send_mds_reconnect(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_msg *reply;
int mds = session->s_mds;
int err = -ENOMEM;
struct ceph_reconnect_state recon_state = {
.session = session,
};
LIST_HEAD(dispose);
pr_info_client(cl, "mds%d reconnect start\n", mds);
recon_state.pagelist = ceph_pagelist_alloc(GFP_NOFS);
if (!recon_state.pagelist)
goto fail_nopagelist;
reply = ceph_msg_new2(CEPH_MSG_CLIENT_RECONNECT, 0, 1, GFP_NOFS, false);
if (!reply)
goto fail_nomsg;
xa_destroy(&session->s_delegated_inos);
mutex_lock(&session->s_mutex);
session->s_state = CEPH_MDS_SESSION_RECONNECTING;
session->s_seq = 0;
doutc(cl, "session %p state %s\n", session,
ceph_session_state_name(session->s_state));
atomic_inc(&session->s_cap_gen);
spin_lock(&session->s_cap_lock);
/* don't know if session is readonly */
session->s_readonly = 0;
/*
* notify __ceph_remove_cap() that we are composing cap reconnect.
* If a cap get released before being added to the cap reconnect,
* __ceph_remove_cap() should skip queuing cap release.
*/
session->s_cap_reconnect = 1;
/* drop old cap expires; we're about to reestablish that state */
detach_cap_releases(session, &dispose);
spin_unlock(&session->s_cap_lock);
dispose_cap_releases(mdsc, &dispose);
/* trim unused caps to reduce MDS's cache rejoin time */
if (mdsc->fsc->sb->s_root)
shrink_dcache_parent(mdsc->fsc->sb->s_root);
ceph_con_close(&session->s_con);
ceph_con_open(&session->s_con,
CEPH_ENTITY_TYPE_MDS, mds,
ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
/* replay unsafe requests */
replay_unsafe_requests(mdsc, session);
ceph_early_kick_flushing_caps(mdsc, session);
down_read(&mdsc->snap_rwsem);
/* placeholder for nr_caps */
err = ceph_pagelist_encode_32(recon_state.pagelist, 0);
if (err)
goto fail;
if (test_bit(CEPHFS_FEATURE_MULTI_RECONNECT, &session->s_features)) {
recon_state.msg_version = 3;
recon_state.allow_multi = true;
} else if (session->s_con.peer_features & CEPH_FEATURE_MDSENC) {
recon_state.msg_version = 3;
} else {
recon_state.msg_version = 2;
}
/* trsaverse this session's caps */
err = ceph_iterate_session_caps(session, reconnect_caps_cb, &recon_state);
spin_lock(&session->s_cap_lock);
session->s_cap_reconnect = 0;
spin_unlock(&session->s_cap_lock);
if (err < 0)
goto fail;
/* check if all realms can be encoded into current message */
if (mdsc->num_snap_realms) {
size_t total_len =
recon_state.pagelist->length +
mdsc->num_snap_realms *
sizeof(struct ceph_mds_snaprealm_reconnect);
if (recon_state.msg_version >= 4) {
/* number of realms */
total_len += sizeof(u32);
/* version, compat_version and struct_len */
total_len += mdsc->num_snap_realms *
(2 * sizeof(u8) + sizeof(u32));
}
if (total_len > RECONNECT_MAX_SIZE) {
if (!recon_state.allow_multi) {
err = -ENOSPC;
goto fail;
}
if (recon_state.nr_caps) {
err = send_reconnect_partial(&recon_state);
if (err)
goto fail;
}
recon_state.msg_version = 5;
}
}
err = encode_snap_realms(mdsc, &recon_state);
if (err < 0)
goto fail;
if (recon_state.msg_version >= 5) {
err = ceph_pagelist_encode_8(recon_state.pagelist, 0);
if (err < 0)
goto fail;
}
if (recon_state.nr_caps || recon_state.nr_realms) {
struct page *page =
list_first_entry(&recon_state.pagelist->head,
struct page, lru);
__le32 *addr = kmap_atomic(page);
if (recon_state.nr_caps) {
WARN_ON(recon_state.nr_realms != mdsc->num_snap_realms);
*addr = cpu_to_le32(recon_state.nr_caps);
} else if (recon_state.msg_version >= 4) {
*(addr + 1) = cpu_to_le32(recon_state.nr_realms);
}
kunmap_atomic(addr);
}
reply->hdr.version = cpu_to_le16(recon_state.msg_version);
if (recon_state.msg_version >= 4)
reply->hdr.compat_version = cpu_to_le16(4);
reply->hdr.data_len = cpu_to_le32(recon_state.pagelist->length);
ceph_msg_data_add_pagelist(reply, recon_state.pagelist);
ceph_con_send(&session->s_con, reply);
mutex_unlock(&session->s_mutex);
mutex_lock(&mdsc->mutex);
__wake_requests(mdsc, &session->s_waiting);
mutex_unlock(&mdsc->mutex);
up_read(&mdsc->snap_rwsem);
ceph_pagelist_release(recon_state.pagelist);
return;
fail:
ceph_msg_put(reply);
up_read(&mdsc->snap_rwsem);
mutex_unlock(&session->s_mutex);
fail_nomsg:
ceph_pagelist_release(recon_state.pagelist);
fail_nopagelist:
pr_err_client(cl, "error %d preparing reconnect for mds%d\n",
err, mds);
return;
}
/*
* compare old and new mdsmaps, kicking requests
* and closing out old connections as necessary
*
* called under mdsc->mutex.
*/
static void check_new_map(struct ceph_mds_client *mdsc,
struct ceph_mdsmap *newmap,
struct ceph_mdsmap *oldmap)
{
int i, j, err;
int oldstate, newstate;
struct ceph_mds_session *s;
unsigned long targets[DIV_ROUND_UP(CEPH_MAX_MDS, sizeof(unsigned long))] = {0};
struct ceph_client *cl = mdsc->fsc->client;
doutc(cl, "new %u old %u\n", newmap->m_epoch, oldmap->m_epoch);
if (newmap->m_info) {
for (i = 0; i < newmap->possible_max_rank; i++) {
for (j = 0; j < newmap->m_info[i].num_export_targets; j++)
set_bit(newmap->m_info[i].export_targets[j], targets);
}
}
for (i = 0; i < oldmap->possible_max_rank && i < mdsc->max_sessions; i++) {
if (!mdsc->sessions[i])
continue;
s = mdsc->sessions[i];
oldstate = ceph_mdsmap_get_state(oldmap, i);
newstate = ceph_mdsmap_get_state(newmap, i);
doutc(cl, "mds%d state %s%s -> %s%s (session %s)\n",
i, ceph_mds_state_name(oldstate),
ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
ceph_mds_state_name(newstate),
ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
ceph_session_state_name(s->s_state));
if (i >= newmap->possible_max_rank) {
/* force close session for stopped mds */
ceph_get_mds_session(s);
__unregister_session(mdsc, s);
__wake_requests(mdsc, &s->s_waiting);
mutex_unlock(&mdsc->mutex);
mutex_lock(&s->s_mutex);
cleanup_session_requests(mdsc, s);
remove_session_caps(s);
mutex_unlock(&s->s_mutex);
ceph_put_mds_session(s);
mutex_lock(&mdsc->mutex);
kick_requests(mdsc, i);
continue;
}
if (memcmp(ceph_mdsmap_get_addr(oldmap, i),
ceph_mdsmap_get_addr(newmap, i),
sizeof(struct ceph_entity_addr))) {
/* just close it */
mutex_unlock(&mdsc->mutex);
mutex_lock(&s->s_mutex);
mutex_lock(&mdsc->mutex);
ceph_con_close(&s->s_con);
mutex_unlock(&s->s_mutex);
s->s_state = CEPH_MDS_SESSION_RESTARTING;
} else if (oldstate == newstate) {
continue; /* nothing new with this mds */
}
/*
* send reconnect?
*/
if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
newstate >= CEPH_MDS_STATE_RECONNECT) {
mutex_unlock(&mdsc->mutex);
clear_bit(i, targets);
send_mds_reconnect(mdsc, s);
mutex_lock(&mdsc->mutex);
}
/*
* kick request on any mds that has gone active.
*/
if (oldstate < CEPH_MDS_STATE_ACTIVE &&
newstate >= CEPH_MDS_STATE_ACTIVE) {
if (oldstate != CEPH_MDS_STATE_CREATING &&
oldstate != CEPH_MDS_STATE_STARTING)
pr_info_client(cl, "mds%d recovery completed\n",
s->s_mds);
kick_requests(mdsc, i);
mutex_unlock(&mdsc->mutex);
mutex_lock(&s->s_mutex);
mutex_lock(&mdsc->mutex);
ceph_kick_flushing_caps(mdsc, s);
mutex_unlock(&s->s_mutex);
wake_up_session_caps(s, RECONNECT);
}
}
/*
* Only open and reconnect sessions that don't exist yet.
*/
for (i = 0; i < newmap->possible_max_rank; i++) {
/*
* In case the import MDS is crashed just after
* the EImportStart journal is flushed, so when
* a standby MDS takes over it and is replaying
* the EImportStart journal the new MDS daemon
* will wait the client to reconnect it, but the
* client may never register/open the session yet.
*
* Will try to reconnect that MDS daemon if the
* rank number is in the export targets array and
* is the up:reconnect state.
*/
newstate = ceph_mdsmap_get_state(newmap, i);
if (!test_bit(i, targets) || newstate != CEPH_MDS_STATE_RECONNECT)
continue;
/*
* The session maybe registered and opened by some
* requests which were choosing random MDSes during
* the mdsc->mutex's unlock/lock gap below in rare
* case. But the related MDS daemon will just queue
* that requests and be still waiting for the client's
* reconnection request in up:reconnect state.
*/
s = __ceph_lookup_mds_session(mdsc, i);
if (likely(!s)) {
s = __open_export_target_session(mdsc, i);
if (IS_ERR(s)) {
err = PTR_ERR(s);
pr_err_client(cl,
"failed to open export target session, err %d\n",
err);
continue;
}
}
doutc(cl, "send reconnect to export target mds.%d\n", i);
mutex_unlock(&mdsc->mutex);
send_mds_reconnect(mdsc, s);
ceph_put_mds_session(s);
mutex_lock(&mdsc->mutex);
}
for (i = 0; i < newmap->possible_max_rank && i < mdsc->max_sessions; i++) {
s = mdsc->sessions[i];
if (!s)
continue;
if (!ceph_mdsmap_is_laggy(newmap, i))
continue;
if (s->s_state == CEPH_MDS_SESSION_OPEN ||
s->s_state == CEPH_MDS_SESSION_HUNG ||
s->s_state == CEPH_MDS_SESSION_CLOSING) {
doutc(cl, " connecting to export targets of laggy mds%d\n", i);
__open_export_target_sessions(mdsc, s);
}
}
}
/*
* leases
*/
/*
* caller must hold session s_mutex, dentry->d_lock
*/
void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
{
struct ceph_dentry_info *di = ceph_dentry(dentry);
ceph_put_mds_session(di->lease_session);
di->lease_session = NULL;
}
static void handle_lease(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct ceph_client *cl = mdsc->fsc->client;
struct super_block *sb = mdsc->fsc->sb;
struct inode *inode;
struct dentry *parent, *dentry;
struct ceph_dentry_info *di;
int mds = session->s_mds;
struct ceph_mds_lease *h = msg->front.iov_base;
u32 seq;
struct ceph_vino vino;
struct qstr dname;
int release = 0;
doutc(cl, "from mds%d\n", mds);
if (!ceph_inc_mds_stopping_blocker(mdsc, session))
return;
/* decode */
if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
goto bad;
vino.ino = le64_to_cpu(h->ino);
vino.snap = CEPH_NOSNAP;
seq = le32_to_cpu(h->seq);
dname.len = get_unaligned_le32(h + 1);
if (msg->front.iov_len < sizeof(*h) + sizeof(u32) + dname.len)
goto bad;
dname.name = (void *)(h + 1) + sizeof(u32);
/* lookup inode */
inode = ceph_find_inode(sb, vino);
doutc(cl, "%s, ino %llx %p %.*s\n", ceph_lease_op_name(h->action),
vino.ino, inode, dname.len, dname.name);
mutex_lock(&session->s_mutex);
if (!inode) {
doutc(cl, "no inode %llx\n", vino.ino);
goto release;
}
/* dentry */
parent = d_find_alias(inode);
if (!parent) {
doutc(cl, "no parent dentry on inode %p\n", inode);
WARN_ON(1);
goto release; /* hrm... */
}
dname.hash = full_name_hash(parent, dname.name, dname.len);
dentry = d_lookup(parent, &dname);
dput(parent);
if (!dentry)
goto release;
spin_lock(&dentry->d_lock);
di = ceph_dentry(dentry);
switch (h->action) {
case CEPH_MDS_LEASE_REVOKE:
if (di->lease_session == session) {
if (ceph_seq_cmp(di->lease_seq, seq) > 0)
h->seq = cpu_to_le32(di->lease_seq);
__ceph_mdsc_drop_dentry_lease(dentry);
}
release = 1;
break;
case CEPH_MDS_LEASE_RENEW:
if (di->lease_session == session &&
di->lease_gen == atomic_read(&session->s_cap_gen) &&
di->lease_renew_from &&
di->lease_renew_after == 0) {
unsigned long duration =
msecs_to_jiffies(le32_to_cpu(h->duration_ms));
di->lease_seq = seq;
di->time = di->lease_renew_from + duration;
di->lease_renew_after = di->lease_renew_from +
(duration >> 1);
di->lease_renew_from = 0;
}
break;
}
spin_unlock(&dentry->d_lock);
dput(dentry);
if (!release)
goto out;
release:
/* let's just reuse the same message */
h->action = CEPH_MDS_LEASE_REVOKE_ACK;
ceph_msg_get(msg);
ceph_con_send(&session->s_con, msg);
out:
mutex_unlock(&session->s_mutex);
iput(inode);
ceph_dec_mds_stopping_blocker(mdsc);
return;
bad:
ceph_dec_mds_stopping_blocker(mdsc);
pr_err_client(cl, "corrupt lease message\n");
ceph_msg_dump(msg);
}
void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
struct dentry *dentry, char action,
u32 seq)
{
struct ceph_client *cl = session->s_mdsc->fsc->client;
struct ceph_msg *msg;
struct ceph_mds_lease *lease;
struct inode *dir;
int len = sizeof(*lease) + sizeof(u32) + NAME_MAX;
doutc(cl, "identry %p %s to mds%d\n", dentry, ceph_lease_op_name(action),
session->s_mds);
msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
if (!msg)
return;
lease = msg->front.iov_base;
lease->action = action;
lease->seq = cpu_to_le32(seq);
spin_lock(&dentry->d_lock);
dir = d_inode(dentry->d_parent);
lease->ino = cpu_to_le64(ceph_ino(dir));
lease->first = lease->last = cpu_to_le64(ceph_snap(dir));
put_unaligned_le32(dentry->d_name.len, lease + 1);
memcpy((void *)(lease + 1) + 4,
dentry->d_name.name, dentry->d_name.len);
spin_unlock(&dentry->d_lock);
ceph_con_send(&session->s_con, msg);
}
/*
* lock unlock the session, to wait ongoing session activities
*/
static void lock_unlock_session(struct ceph_mds_session *s)
{
mutex_lock(&s->s_mutex);
mutex_unlock(&s->s_mutex);
}
static void maybe_recover_session(struct ceph_mds_client *mdsc)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_fs_client *fsc = mdsc->fsc;
if (!ceph_test_mount_opt(fsc, CLEANRECOVER))
return;
if (READ_ONCE(fsc->mount_state) != CEPH_MOUNT_MOUNTED)
return;
if (!READ_ONCE(fsc->blocklisted))
return;
pr_info_client(cl, "auto reconnect after blocklisted\n");
ceph_force_reconnect(fsc->sb);
}
bool check_session_state(struct ceph_mds_session *s)
{
struct ceph_client *cl = s->s_mdsc->fsc->client;
switch (s->s_state) {
case CEPH_MDS_SESSION_OPEN:
if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
s->s_state = CEPH_MDS_SESSION_HUNG;
pr_info_client(cl, "mds%d hung\n", s->s_mds);
}
break;
case CEPH_MDS_SESSION_CLOSING:
case CEPH_MDS_SESSION_NEW:
case CEPH_MDS_SESSION_RESTARTING:
case CEPH_MDS_SESSION_CLOSED:
case CEPH_MDS_SESSION_REJECTED:
return false;
}
return true;
}
/*
* If the sequence is incremented while we're waiting on a REQUEST_CLOSE reply,
* then we need to retransmit that request.
*/
void inc_session_sequence(struct ceph_mds_session *s)
{
struct ceph_client *cl = s->s_mdsc->fsc->client;
lockdep_assert_held(&s->s_mutex);
s->s_seq++;
if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
int ret;
doutc(cl, "resending session close request for mds%d\n", s->s_mds);
ret = request_close_session(s);
if (ret < 0)
pr_err_client(cl, "unable to close session to mds%d: %d\n",
s->s_mds, ret);
}
}
/*
* delayed work -- periodically trim expired leases, renew caps with mds. If
* the @delay parameter is set to 0 or if it's more than 5 secs, the default
* workqueue delay value of 5 secs will be used.
*/
static void schedule_delayed(struct ceph_mds_client *mdsc, unsigned long delay)
{
unsigned long max_delay = HZ * 5;
/* 5 secs default delay */
if (!delay || (delay > max_delay))
delay = max_delay;
schedule_delayed_work(&mdsc->delayed_work,
round_jiffies_relative(delay));
}
static void delayed_work(struct work_struct *work)
{
struct ceph_mds_client *mdsc =
container_of(work, struct ceph_mds_client, delayed_work.work);
unsigned long delay;
int renew_interval;
int renew_caps;
int i;
doutc(mdsc->fsc->client, "mdsc delayed_work\n");
if (mdsc->stopping >= CEPH_MDSC_STOPPING_FLUSHED)
return;
mutex_lock(&mdsc->mutex);
renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
renew_caps = time_after_eq(jiffies, HZ*renew_interval +
mdsc->last_renew_caps);
if (renew_caps)
mdsc->last_renew_caps = jiffies;
for (i = 0; i < mdsc->max_sessions; i++) {
struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
if (!s)
continue;
if (!check_session_state(s)) {
ceph_put_mds_session(s);
continue;
}
mutex_unlock(&mdsc->mutex);
mutex_lock(&s->s_mutex);
if (renew_caps)
send_renew_caps(mdsc, s);
else
ceph_con_keepalive(&s->s_con);
if (s->s_state == CEPH_MDS_SESSION_OPEN ||
s->s_state == CEPH_MDS_SESSION_HUNG)
ceph_send_cap_releases(mdsc, s);
mutex_unlock(&s->s_mutex);
ceph_put_mds_session(s);
mutex_lock(&mdsc->mutex);
}
mutex_unlock(&mdsc->mutex);
delay = ceph_check_delayed_caps(mdsc);
ceph_queue_cap_reclaim_work(mdsc);
ceph_trim_snapid_map(mdsc);
maybe_recover_session(mdsc);
schedule_delayed(mdsc, delay);
}
int ceph_mdsc_init(struct ceph_fs_client *fsc)
{
struct ceph_mds_client *mdsc;
int err;
mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
if (!mdsc)
return -ENOMEM;
mdsc->fsc = fsc;
mutex_init(&mdsc->mutex);
mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
if (!mdsc->mdsmap) {
err = -ENOMEM;
goto err_mdsc;
}
init_completion(&mdsc->safe_umount_waiters);
spin_lock_init(&mdsc->stopping_lock);
atomic_set(&mdsc->stopping_blockers, 0);
init_completion(&mdsc->stopping_waiter);
init_waitqueue_head(&mdsc->session_close_wq);
INIT_LIST_HEAD(&mdsc->waiting_for_map);
mdsc->quotarealms_inodes = RB_ROOT;
mutex_init(&mdsc->quotarealms_inodes_mutex);
init_rwsem(&mdsc->snap_rwsem);
mdsc->snap_realms = RB_ROOT;
INIT_LIST_HEAD(&mdsc->snap_empty);
spin_lock_init(&mdsc->snap_empty_lock);
mdsc->request_tree = RB_ROOT;
INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
mdsc->last_renew_caps = jiffies;
INIT_LIST_HEAD(&mdsc->cap_delay_list);
INIT_LIST_HEAD(&mdsc->cap_wait_list);
spin_lock_init(&mdsc->cap_delay_lock);
INIT_LIST_HEAD(&mdsc->snap_flush_list);
spin_lock_init(&mdsc->snap_flush_lock);
mdsc->last_cap_flush_tid = 1;
INIT_LIST_HEAD(&mdsc->cap_flush_list);
INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
spin_lock_init(&mdsc->cap_dirty_lock);
init_waitqueue_head(&mdsc->cap_flushing_wq);
INIT_WORK(&mdsc->cap_reclaim_work, ceph_cap_reclaim_work);
err = ceph_metric_init(&mdsc->metric);
if (err)
goto err_mdsmap;
spin_lock_init(&mdsc->dentry_list_lock);
INIT_LIST_HEAD(&mdsc->dentry_leases);
INIT_LIST_HEAD(&mdsc->dentry_dir_leases);
ceph_caps_init(mdsc);
ceph_adjust_caps_max_min(mdsc, fsc->mount_options);
spin_lock_init(&mdsc->snapid_map_lock);
mdsc->snapid_map_tree = RB_ROOT;
INIT_LIST_HEAD(&mdsc->snapid_map_lru);
init_rwsem(&mdsc->pool_perm_rwsem);
mdsc->pool_perm_tree = RB_ROOT;
strscpy(mdsc->nodename, utsname()->nodename,
sizeof(mdsc->nodename));
fsc->mdsc = mdsc;
return 0;
err_mdsmap:
kfree(mdsc->mdsmap);
err_mdsc:
kfree(mdsc);
return err;
}
/*
* Wait for safe replies on open mds requests. If we time out, drop
* all requests from the tree to avoid dangling dentry refs.
*/
static void wait_requests(struct ceph_mds_client *mdsc)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_options *opts = mdsc->fsc->client->options;
struct ceph_mds_request *req;
mutex_lock(&mdsc->mutex);
if (__get_oldest_req(mdsc)) {
mutex_unlock(&mdsc->mutex);
doutc(cl, "waiting for requests\n");
wait_for_completion_timeout(&mdsc->safe_umount_waiters,
ceph_timeout_jiffies(opts->mount_timeout));
/* tear down remaining requests */
mutex_lock(&mdsc->mutex);
while ((req = __get_oldest_req(mdsc))) {
doutc(cl, "timed out on tid %llu\n", req->r_tid);
list_del_init(&req->r_wait);
__unregister_request(mdsc, req);
}
}
mutex_unlock(&mdsc->mutex);
doutc(cl, "done\n");
}
void send_flush_mdlog(struct ceph_mds_session *s)
{
struct ceph_client *cl = s->s_mdsc->fsc->client;
struct ceph_msg *msg;
/*
* Pre-luminous MDS crashes when it sees an unknown session request
*/
if (!CEPH_HAVE_FEATURE(s->s_con.peer_features, SERVER_LUMINOUS))
return;
mutex_lock(&s->s_mutex);
doutc(cl, "request mdlog flush to mds%d (%s)s seq %lld\n",
s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
msg = ceph_create_session_msg(CEPH_SESSION_REQUEST_FLUSH_MDLOG,
s->s_seq);
if (!msg) {
pr_err_client(cl, "failed to request mdlog flush to mds%d (%s) seq %lld\n",
s->s_mds, ceph_session_state_name(s->s_state), s->s_seq);
} else {
ceph_con_send(&s->s_con, msg);
}
mutex_unlock(&s->s_mutex);
}
/*
* called before mount is ro, and before dentries are torn down.
* (hmm, does this still race with new lookups?)
*/
void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
{
doutc(mdsc->fsc->client, "begin\n");
mdsc->stopping = CEPH_MDSC_STOPPING_BEGIN;
ceph_mdsc_iterate_sessions(mdsc, send_flush_mdlog, true);
ceph_mdsc_iterate_sessions(mdsc, lock_unlock_session, false);
ceph_flush_dirty_caps(mdsc);
wait_requests(mdsc);
/*
* wait for reply handlers to drop their request refs and
* their inode/dcache refs
*/
ceph_msgr_flush();
ceph_cleanup_quotarealms_inodes(mdsc);
doutc(mdsc->fsc->client, "done\n");
}
/*
* flush the mdlog and wait for all write mds requests to flush.
*/
static void flush_mdlog_and_wait_mdsc_unsafe_requests(struct ceph_mds_client *mdsc,
u64 want_tid)
{
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_request *req = NULL, *nextreq;
struct ceph_mds_session *last_session = NULL;
struct rb_node *n;
mutex_lock(&mdsc->mutex);
doutc(cl, "want %lld\n", want_tid);
restart:
req = __get_oldest_req(mdsc);
while (req && req->r_tid <= want_tid) {
/* find next request */
n = rb_next(&req->r_node);
if (n)
nextreq = rb_entry(n, struct ceph_mds_request, r_node);
else
nextreq = NULL;
if (req->r_op != CEPH_MDS_OP_SETFILELOCK &&
(req->r_op & CEPH_MDS_OP_WRITE)) {
struct ceph_mds_session *s = req->r_session;
if (!s) {
req = nextreq;
continue;
}
/* write op */
ceph_mdsc_get_request(req);
if (nextreq)
ceph_mdsc_get_request(nextreq);
s = ceph_get_mds_session(s);
mutex_unlock(&mdsc->mutex);
/* send flush mdlog request to MDS */
if (last_session != s) {
send_flush_mdlog(s);
ceph_put_mds_session(last_session);
last_session = s;
} else {
ceph_put_mds_session(s);
}
doutc(cl, "wait on %llu (want %llu)\n",
req->r_tid, want_tid);
wait_for_completion(&req->r_safe_completion);
mutex_lock(&mdsc->mutex);
ceph_mdsc_put_request(req);
if (!nextreq)
break; /* next dne before, so we're done! */
if (RB_EMPTY_NODE(&nextreq->r_node)) {
/* next request was removed from tree */
ceph_mdsc_put_request(nextreq);
goto restart;
}
ceph_mdsc_put_request(nextreq); /* won't go away */
}
req = nextreq;
}
mutex_unlock(&mdsc->mutex);
ceph_put_mds_session(last_session);
doutc(cl, "done\n");
}
void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
{
struct ceph_client *cl = mdsc->fsc->client;
u64 want_tid, want_flush;
if (READ_ONCE(mdsc->fsc->mount_state) >= CEPH_MOUNT_SHUTDOWN)
return;
doutc(cl, "sync\n");
mutex_lock(&mdsc->mutex);
want_tid = mdsc->last_tid;
mutex_unlock(&mdsc->mutex);
ceph_flush_dirty_caps(mdsc);
spin_lock(&mdsc->cap_dirty_lock);
want_flush = mdsc->last_cap_flush_tid;
if (!list_empty(&mdsc->cap_flush_list)) {
struct ceph_cap_flush *cf =
list_last_entry(&mdsc->cap_flush_list,
struct ceph_cap_flush, g_list);
cf->wake = true;
}
spin_unlock(&mdsc->cap_dirty_lock);
doutc(cl, "sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
flush_mdlog_and_wait_mdsc_unsafe_requests(mdsc, want_tid);
wait_caps_flush(mdsc, want_flush);
}
/*
* true if all sessions are closed, or we force unmount
*/
static bool done_closing_sessions(struct ceph_mds_client *mdsc, int skipped)
{
if (READ_ONCE(mdsc->fsc->mount_state) == CEPH_MOUNT_SHUTDOWN)
return true;
return atomic_read(&mdsc->num_sessions) <= skipped;
}
/*
* called after sb is ro or when metadata corrupted.
*/
void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
{
struct ceph_options *opts = mdsc->fsc->client->options;
struct ceph_client *cl = mdsc->fsc->client;
struct ceph_mds_session *session;
int i;
int skipped = 0;
doutc(cl, "begin\n");
/* close sessions */
mutex_lock(&mdsc->mutex);
for (i = 0; i < mdsc->max_sessions; i++) {
session = __ceph_lookup_mds_session(mdsc, i);
if (!session)
continue;
mutex_unlock(&mdsc->mutex);
mutex_lock(&session->s_mutex);
if (__close_session(mdsc, session) <= 0)
skipped++;
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
mutex_lock(&mdsc->mutex);
}
mutex_unlock(&mdsc->mutex);
doutc(cl, "waiting for sessions to close\n");
wait_event_timeout(mdsc->session_close_wq,
done_closing_sessions(mdsc, skipped),
ceph_timeout_jiffies(opts->mount_timeout));
/* tear down remaining sessions */
mutex_lock(&mdsc->mutex);
for (i = 0; i < mdsc->max_sessions; i++) {
if (mdsc->sessions[i]) {
session = ceph_get_mds_session(mdsc->sessions[i]);
__unregister_session(mdsc, session);
mutex_unlock(&mdsc->mutex);
mutex_lock(&session->s_mutex);
remove_session_caps(session);
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
mutex_lock(&mdsc->mutex);
}
}
WARN_ON(!list_empty(&mdsc->cap_delay_list));
mutex_unlock(&mdsc->mutex);
ceph_cleanup_snapid_map(mdsc);
ceph_cleanup_global_and_empty_realms(mdsc);
cancel_work_sync(&mdsc->cap_reclaim_work);
cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
doutc(cl, "done\n");
}
void ceph_mdsc_force_umount(struct ceph_mds_client *mdsc)
{
struct ceph_mds_session *session;
int mds;
doutc(mdsc->fsc->client, "force umount\n");
mutex_lock(&mdsc->mutex);
for (mds = 0; mds < mdsc->max_sessions; mds++) {
session = __ceph_lookup_mds_session(mdsc, mds);
if (!session)
continue;
if (session->s_state == CEPH_MDS_SESSION_REJECTED)
__unregister_session(mdsc, session);
__wake_requests(mdsc, &session->s_waiting);
mutex_unlock(&mdsc->mutex);
mutex_lock(&session->s_mutex);
__close_session(mdsc, session);
if (session->s_state == CEPH_MDS_SESSION_CLOSING) {
cleanup_session_requests(mdsc, session);
remove_session_caps(session);
}
mutex_unlock(&session->s_mutex);
ceph_put_mds_session(session);
mutex_lock(&mdsc->mutex);
kick_requests(mdsc, mds);
}
__wake_requests(mdsc, &mdsc->waiting_for_map);
mutex_unlock(&mdsc->mutex);
}
static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
{
doutc(mdsc->fsc->client, "stop\n");
/*
* Make sure the delayed work stopped before releasing
* the resources.
*
* Because the cancel_delayed_work_sync() will only
* guarantee that the work finishes executing. But the
* delayed work will re-arm itself again after that.
*/
flush_delayed_work(&mdsc->delayed_work);
if (mdsc->mdsmap)
ceph_mdsmap_destroy(mdsc->mdsmap);
kfree(mdsc->sessions);
ceph_caps_finalize(mdsc);
ceph_pool_perm_destroy(mdsc);
}
void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
{
struct ceph_mds_client *mdsc = fsc->mdsc;
doutc(fsc->client, "%p\n", mdsc);
if (!mdsc)
return;
/* flush out any connection work with references to us */
ceph_msgr_flush();
ceph_mdsc_stop(mdsc);
ceph_metric_destroy(&mdsc->metric);
fsc->mdsc = NULL;
kfree(mdsc);
doutc(fsc->client, "%p done\n", mdsc);
}
void ceph_mdsc_handle_fsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
{
struct ceph_fs_client *fsc = mdsc->fsc;
struct ceph_client *cl = fsc->client;
const char *mds_namespace = fsc->mount_options->mds_namespace;
void *p = msg->front.iov_base;
void *end = p + msg->front.iov_len;
u32 epoch;
u32 num_fs;
u32 mount_fscid = (u32)-1;
int err = -EINVAL;
ceph_decode_need(&p, end, sizeof(u32), bad);
epoch = ceph_decode_32(&p);
doutc(cl, "epoch %u\n", epoch);
/* struct_v, struct_cv, map_len, epoch, legacy_client_fscid */
ceph_decode_skip_n(&p, end, 2 + sizeof(u32) * 3, bad);
ceph_decode_32_safe(&p, end, num_fs, bad);
while (num_fs-- > 0) {
void *info_p, *info_end;
u32 info_len;
u32 fscid, namelen;
ceph_decode_need(&p, end, 2 + sizeof(u32), bad);
p += 2; // info_v, info_cv
info_len = ceph_decode_32(&p);
ceph_decode_need(&p, end, info_len, bad);
info_p = p;
info_end = p + info_len;
p = info_end;
ceph_decode_need(&info_p, info_end, sizeof(u32) * 2, bad);
fscid = ceph_decode_32(&info_p);
namelen = ceph_decode_32(&info_p);
ceph_decode_need(&info_p, info_end, namelen, bad);
if (mds_namespace &&
strlen(mds_namespace) == namelen &&
!strncmp(mds_namespace, (char *)info_p, namelen)) {
mount_fscid = fscid;
break;
}
}
ceph_monc_got_map(&fsc->client->monc, CEPH_SUB_FSMAP, epoch);
if (mount_fscid != (u32)-1) {
fsc->client->monc.fs_cluster_id = mount_fscid;
ceph_monc_want_map(&fsc->client->monc, CEPH_SUB_MDSMAP,
0, true);
ceph_monc_renew_subs(&fsc->client->monc);
} else {
err = -ENOENT;
goto err_out;
}
return;
bad:
pr_err_client(cl, "error decoding fsmap %d. Shutting down mount.\n",
err);
ceph_umount_begin(mdsc->fsc->sb);
ceph_msg_dump(msg);
err_out:
mutex_lock(&mdsc->mutex);
mdsc->mdsmap_err = err;
__wake_requests(mdsc, &mdsc->waiting_for_map);
mutex_unlock(&mdsc->mutex);
}
/*
* handle mds map update.
*/
void ceph_mdsc_handle_mdsmap(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
{
struct ceph_client *cl = mdsc->fsc->client;
u32 epoch;
u32 maplen;
void *p = msg->front.iov_base;
void *end = p + msg->front.iov_len;
struct ceph_mdsmap *newmap, *oldmap;
struct ceph_fsid fsid;
int err = -EINVAL;
ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
ceph_decode_copy(&p, &fsid, sizeof(fsid));
if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
return;
epoch = ceph_decode_32(&p);
maplen = ceph_decode_32(&p);
doutc(cl, "epoch %u len %d\n", epoch, (int)maplen);
/* do we need it? */
mutex_lock(&mdsc->mutex);
if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
doutc(cl, "epoch %u <= our %u\n", epoch, mdsc->mdsmap->m_epoch);
mutex_unlock(&mdsc->mutex);
return;
}
newmap = ceph_mdsmap_decode(mdsc, &p, end, ceph_msgr2(mdsc->fsc->client));
if (IS_ERR(newmap)) {
err = PTR_ERR(newmap);
goto bad_unlock;
}
/* swap into place */
if (mdsc->mdsmap) {
oldmap = mdsc->mdsmap;
mdsc->mdsmap = newmap;
check_new_map(mdsc, newmap, oldmap);
ceph_mdsmap_destroy(oldmap);
} else {
mdsc->mdsmap = newmap; /* first mds map */
}
mdsc->fsc->max_file_size = min((loff_t)mdsc->mdsmap->m_max_file_size,
MAX_LFS_FILESIZE);
__wake_requests(mdsc, &mdsc->waiting_for_map);
ceph_monc_got_map(&mdsc->fsc->client->monc, CEPH_SUB_MDSMAP,
mdsc->mdsmap->m_epoch);
mutex_unlock(&mdsc->mutex);
schedule_delayed(mdsc, 0);
return;
bad_unlock:
mutex_unlock(&mdsc->mutex);
bad:
pr_err_client(cl, "error decoding mdsmap %d. Shutting down mount.\n",
err);
ceph_umount_begin(mdsc->fsc->sb);
ceph_msg_dump(msg);
return;
}
static struct ceph_connection *mds_get_con(struct ceph_connection *con)
{
struct ceph_mds_session *s = con->private;
if (ceph_get_mds_session(s))
return con;
return NULL;
}
static void mds_put_con(struct ceph_connection *con)
{
struct ceph_mds_session *s = con->private;
ceph_put_mds_session(s);
}
/*
* if the client is unresponsive for long enough, the mds will kill
* the session entirely.
*/
static void mds_peer_reset(struct ceph_connection *con)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
pr_warn_client(mdsc->fsc->client, "mds%d closed our session\n",
s->s_mds);
if (READ_ONCE(mdsc->fsc->mount_state) != CEPH_MOUNT_FENCE_IO)
send_mds_reconnect(mdsc, s);
}
static void mds_dispatch(struct ceph_connection *con, struct ceph_msg *msg)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_client *cl = mdsc->fsc->client;
int type = le16_to_cpu(msg->hdr.type);
mutex_lock(&mdsc->mutex);
if (__verify_registered_session(mdsc, s) < 0) {
mutex_unlock(&mdsc->mutex);
goto out;
}
mutex_unlock(&mdsc->mutex);
switch (type) {
case CEPH_MSG_MDS_MAP:
ceph_mdsc_handle_mdsmap(mdsc, msg);
break;
case CEPH_MSG_FS_MAP_USER:
ceph_mdsc_handle_fsmap(mdsc, msg);
break;
case CEPH_MSG_CLIENT_SESSION:
handle_session(s, msg);
break;
case CEPH_MSG_CLIENT_REPLY:
handle_reply(s, msg);
break;
case CEPH_MSG_CLIENT_REQUEST_FORWARD:
handle_forward(mdsc, s, msg);
break;
case CEPH_MSG_CLIENT_CAPS:
ceph_handle_caps(s, msg);
break;
case CEPH_MSG_CLIENT_SNAP:
ceph_handle_snap(mdsc, s, msg);
break;
case CEPH_MSG_CLIENT_LEASE:
handle_lease(mdsc, s, msg);
break;
case CEPH_MSG_CLIENT_QUOTA:
ceph_handle_quota(mdsc, s, msg);
break;
default:
pr_err_client(cl, "received unknown message type %d %s\n",
type, ceph_msg_type_name(type));
}
out:
ceph_msg_put(msg);
}
/*
* authentication
*/
/*
* Note: returned pointer is the address of a structure that's
* managed separately. Caller must *not* attempt to free it.
*/
static struct ceph_auth_handshake *
mds_get_authorizer(struct ceph_connection *con, int *proto, int force_new)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
struct ceph_auth_handshake *auth = &s->s_auth;
int ret;
ret = __ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
force_new, proto, NULL, NULL);
if (ret)
return ERR_PTR(ret);
return auth;
}
static int mds_add_authorizer_challenge(struct ceph_connection *con,
void *challenge_buf, int challenge_buf_len)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
return ceph_auth_add_authorizer_challenge(ac, s->s_auth.authorizer,
challenge_buf, challenge_buf_len);
}
static int mds_verify_authorizer_reply(struct ceph_connection *con)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
struct ceph_auth_handshake *auth = &s->s_auth;
return ceph_auth_verify_authorizer_reply(ac, auth->authorizer,
auth->authorizer_reply_buf, auth->authorizer_reply_buf_len,
NULL, NULL, NULL, NULL);
}
static int mds_invalidate_authorizer(struct ceph_connection *con)
{
struct ceph_mds_session *s = con->private;
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
}
static int mds_get_auth_request(struct ceph_connection *con,
void *buf, int *buf_len,
void **authorizer, int *authorizer_len)
{
struct ceph_mds_session *s = con->private;
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
struct ceph_auth_handshake *auth = &s->s_auth;
int ret;
ret = ceph_auth_get_authorizer(ac, auth, CEPH_ENTITY_TYPE_MDS,
buf, buf_len);
if (ret)
return ret;
*authorizer = auth->authorizer_buf;
*authorizer_len = auth->authorizer_buf_len;
return 0;
}
static int mds_handle_auth_reply_more(struct ceph_connection *con,
void *reply, int reply_len,
void *buf, int *buf_len,
void **authorizer, int *authorizer_len)
{
struct ceph_mds_session *s = con->private;
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
struct ceph_auth_handshake *auth = &s->s_auth;
int ret;
ret = ceph_auth_handle_svc_reply_more(ac, auth, reply, reply_len,
buf, buf_len);
if (ret)
return ret;
*authorizer = auth->authorizer_buf;
*authorizer_len = auth->authorizer_buf_len;
return 0;
}
static int mds_handle_auth_done(struct ceph_connection *con,
u64 global_id, void *reply, int reply_len,
u8 *session_key, int *session_key_len,
u8 *con_secret, int *con_secret_len)
{
struct ceph_mds_session *s = con->private;
struct ceph_auth_client *ac = s->s_mdsc->fsc->client->monc.auth;
struct ceph_auth_handshake *auth = &s->s_auth;
return ceph_auth_handle_svc_reply_done(ac, auth, reply, reply_len,
session_key, session_key_len,
con_secret, con_secret_len);
}
static int mds_handle_auth_bad_method(struct ceph_connection *con,
int used_proto, int result,
const int *allowed_protos, int proto_cnt,
const int *allowed_modes, int mode_cnt)
{
struct ceph_mds_session *s = con->private;
struct ceph_mon_client *monc = &s->s_mdsc->fsc->client->monc;
int ret;
if (ceph_auth_handle_bad_authorizer(monc->auth, CEPH_ENTITY_TYPE_MDS,
used_proto, result,
allowed_protos, proto_cnt,
allowed_modes, mode_cnt)) {
ret = ceph_monc_validate_auth(monc);
if (ret)
return ret;
}
return -EACCES;
}
static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
struct ceph_msg_header *hdr, int *skip)
{
struct ceph_msg *msg;
int type = (int) le16_to_cpu(hdr->type);
int front_len = (int) le32_to_cpu(hdr->front_len);
if (con->in_msg)
return con->in_msg;
*skip = 0;
msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
if (!msg) {
pr_err("unable to allocate msg type %d len %d\n",
type, front_len);
return NULL;
}
return msg;
}
static int mds_sign_message(struct ceph_msg *msg)
{
struct ceph_mds_session *s = msg->con->private;
struct ceph_auth_handshake *auth = &s->s_auth;
return ceph_auth_sign_message(auth, msg);
}
static int mds_check_message_signature(struct ceph_msg *msg)
{
struct ceph_mds_session *s = msg->con->private;
struct ceph_auth_handshake *auth = &s->s_auth;
return ceph_auth_check_message_signature(auth, msg);
}
static const struct ceph_connection_operations mds_con_ops = {
.get = mds_get_con,
.put = mds_put_con,
.alloc_msg = mds_alloc_msg,
.dispatch = mds_dispatch,
.peer_reset = mds_peer_reset,
.get_authorizer = mds_get_authorizer,
.add_authorizer_challenge = mds_add_authorizer_challenge,
.verify_authorizer_reply = mds_verify_authorizer_reply,
.invalidate_authorizer = mds_invalidate_authorizer,
.sign_message = mds_sign_message,
.check_message_signature = mds_check_message_signature,
.get_auth_request = mds_get_auth_request,
.handle_auth_reply_more = mds_handle_auth_reply_more,
.handle_auth_done = mds_handle_auth_done,
.handle_auth_bad_method = mds_handle_auth_bad_method,
};
/* eof */