linux-stable/sound/usb/usbmidi.c
Clemens Ladisch f38275fe99 [ALSA] usb-audio - add support for Miditech USB MIDI keyboards
USB generic driver
Add support for Miditech Midistart and MidiStudio keyboards (another
case of devices using the standard protocol but having no descriptors).

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
2005-07-28 12:22:37 +02:00

1565 lines
43 KiB
C

/*
* usbmidi.c - ALSA USB MIDI driver
*
* Copyright (c) 2002-2005 Clemens Ladisch
* All rights reserved.
*
* Based on the OSS usb-midi driver by NAGANO Daisuke,
* NetBSD's umidi driver by Takuya SHIOZAKI,
* the "USB Device Class Definition for MIDI Devices" by Roland
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed and/or modified under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sound/driver.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/minors.h>
#include <sound/rawmidi.h>
#include "usbaudio.h"
/*
* define this to log all USB packets
*/
/* #define DUMP_PACKETS */
MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
MODULE_DESCRIPTION("USB Audio/MIDI helper module");
MODULE_LICENSE("Dual BSD/GPL");
struct usb_ms_header_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bcdMSC[2];
__le16 wTotalLength;
} __attribute__ ((packed));
struct usb_ms_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;
__u8 bDescriptorSubtype;
__u8 bNumEmbMIDIJack;
__u8 baAssocJackID[0];
} __attribute__ ((packed));
typedef struct snd_usb_midi snd_usb_midi_t;
typedef struct snd_usb_midi_endpoint snd_usb_midi_endpoint_t;
typedef struct snd_usb_midi_out_endpoint snd_usb_midi_out_endpoint_t;
typedef struct snd_usb_midi_in_endpoint snd_usb_midi_in_endpoint_t;
typedef struct usbmidi_out_port usbmidi_out_port_t;
typedef struct usbmidi_in_port usbmidi_in_port_t;
struct usb_protocol_ops {
void (*input)(snd_usb_midi_in_endpoint_t*, uint8_t*, int);
void (*output)(snd_usb_midi_out_endpoint_t*);
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
void (*init_out_endpoint)(snd_usb_midi_out_endpoint_t*);
void (*finish_out_endpoint)(snd_usb_midi_out_endpoint_t*);
};
struct snd_usb_midi {
snd_usb_audio_t *chip;
struct usb_interface *iface;
const snd_usb_audio_quirk_t *quirk;
snd_rawmidi_t* rmidi;
struct usb_protocol_ops* usb_protocol_ops;
struct list_head list;
struct snd_usb_midi_endpoint {
snd_usb_midi_out_endpoint_t *out;
snd_usb_midi_in_endpoint_t *in;
} endpoints[MIDI_MAX_ENDPOINTS];
unsigned long input_triggered;
};
struct snd_usb_midi_out_endpoint {
snd_usb_midi_t* umidi;
struct urb* urb;
int urb_active;
int max_transfer; /* size of urb buffer */
struct tasklet_struct tasklet;
spinlock_t buffer_lock;
struct usbmidi_out_port {
snd_usb_midi_out_endpoint_t* ep;
snd_rawmidi_substream_t* substream;
int active;
uint8_t cable; /* cable number << 4 */
uint8_t state;
#define STATE_UNKNOWN 0
#define STATE_1PARAM 1
#define STATE_2PARAM_1 2
#define STATE_2PARAM_2 3
#define STATE_SYSEX_0 4
#define STATE_SYSEX_1 5
#define STATE_SYSEX_2 6
uint8_t data[2];
} ports[0x10];
int current_port;
};
struct snd_usb_midi_in_endpoint {
snd_usb_midi_t* umidi;
struct urb* urb;
struct usbmidi_in_port {
snd_rawmidi_substream_t* substream;
} ports[0x10];
int seen_f5;
int current_port;
};
static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep);
static const uint8_t snd_usbmidi_cin_length[] = {
0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
};
/*
* Submits the URB, with error handling.
*/
static int snd_usbmidi_submit_urb(struct urb* urb, int flags)
{
int err = usb_submit_urb(urb, flags);
if (err < 0 && err != -ENODEV)
snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
return err;
}
/*
* Error handling for URB completion functions.
*/
static int snd_usbmidi_urb_error(int status)
{
if (status == -ENOENT)
return status; /* killed */
if (status == -EILSEQ ||
status == -ECONNRESET ||
status == -ETIMEDOUT)
return -ENODEV; /* device removed/shutdown */
snd_printk(KERN_ERR "urb status %d\n", status);
return 0; /* continue */
}
/*
* Receives a chunk of MIDI data.
*/
static void snd_usbmidi_input_data(snd_usb_midi_in_endpoint_t* ep, int portidx,
uint8_t* data, int length)
{
usbmidi_in_port_t* port = &ep->ports[portidx];
if (!port->substream) {
snd_printd("unexpected port %d!\n", portidx);
return;
}
if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
return;
snd_rawmidi_receive(port->substream, data, length);
}
#ifdef DUMP_PACKETS
static void dump_urb(const char *type, const u8 *data, int length)
{
snd_printk(KERN_DEBUG "%s packet: [", type);
for (; length > 0; ++data, --length)
printk(" %02x", *data);
printk(" ]\n");
}
#else
#define dump_urb(type, data, length) /* nothing */
#endif
/*
* Processes the data read from the device.
*/
static void snd_usbmidi_in_urb_complete(struct urb* urb, struct pt_regs *regs)
{
snd_usb_midi_in_endpoint_t* ep = urb->context;
if (urb->status == 0) {
dump_urb("received", urb->transfer_buffer, urb->actual_length);
ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
urb->actual_length);
} else {
if (snd_usbmidi_urb_error(urb->status) < 0)
return;
}
if (usb_pipe_needs_resubmit(urb->pipe)) {
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
}
}
static void snd_usbmidi_out_urb_complete(struct urb* urb, struct pt_regs *regs)
{
snd_usb_midi_out_endpoint_t* ep = urb->context;
spin_lock(&ep->buffer_lock);
ep->urb_active = 0;
spin_unlock(&ep->buffer_lock);
if (urb->status < 0) {
if (snd_usbmidi_urb_error(urb->status) < 0)
return;
}
snd_usbmidi_do_output(ep);
}
/*
* This is called when some data should be transferred to the device
* (from one or more substreams).
*/
static void snd_usbmidi_do_output(snd_usb_midi_out_endpoint_t* ep)
{
struct urb* urb = ep->urb;
unsigned long flags;
spin_lock_irqsave(&ep->buffer_lock, flags);
if (ep->urb_active || ep->umidi->chip->shutdown) {
spin_unlock_irqrestore(&ep->buffer_lock, flags);
return;
}
urb->transfer_buffer_length = 0;
ep->umidi->usb_protocol_ops->output(ep);
if (urb->transfer_buffer_length > 0) {
dump_urb("sending", urb->transfer_buffer,
urb->transfer_buffer_length);
urb->dev = ep->umidi->chip->dev;
ep->urb_active = snd_usbmidi_submit_urb(urb, GFP_ATOMIC) >= 0;
}
spin_unlock_irqrestore(&ep->buffer_lock, flags);
}
static void snd_usbmidi_out_tasklet(unsigned long data)
{
snd_usb_midi_out_endpoint_t* ep = (snd_usb_midi_out_endpoint_t *) data;
snd_usbmidi_do_output(ep);
}
/* helper function to send static data that may not DMA-able */
static int send_bulk_static_data(snd_usb_midi_out_endpoint_t* ep,
const void *data, int len)
{
int err;
void *buf = kmalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, data, len);
dump_urb("sending", buf, len);
err = usb_bulk_msg(ep->umidi->chip->dev, ep->urb->pipe, buf, len,
NULL, 250);
kfree(buf);
return err;
}
/*
* Standard USB MIDI protocol: see the spec.
* Midiman protocol: like the standard protocol, but the control byte is the
* fourth byte in each packet, and uses length instead of CIN.
*/
static void snd_usbmidi_standard_input(snd_usb_midi_in_endpoint_t* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i] != 0) {
int cable = buffer[i] >> 4;
int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
}
}
static void snd_usbmidi_midiman_input(snd_usb_midi_in_endpoint_t* ep,
uint8_t* buffer, int buffer_length)
{
int i;
for (i = 0; i + 3 < buffer_length; i += 4)
if (buffer[i + 3] != 0) {
int port = buffer[i + 3] >> 4;
int length = buffer[i + 3] & 3;
snd_usbmidi_input_data(ep, port, &buffer[i], length);
}
}
/*
* Adds one USB MIDI packet to the output buffer.
*/
static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p0;
buf[1] = p1;
buf[2] = p2;
buf[3] = p3;
urb->transfer_buffer_length += 4;
}
/*
* Adds one Midiman packet to the output buffer.
*/
static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
uint8_t p1, uint8_t p2, uint8_t p3)
{
uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
buf[0] = p1;
buf[1] = p2;
buf[2] = p3;
buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
urb->transfer_buffer_length += 4;
}
/*
* Converts MIDI commands to USB MIDI packets.
*/
static void snd_usbmidi_transmit_byte(usbmidi_out_port_t* port,
uint8_t b, struct urb* urb)
{
uint8_t p0 = port->cable;
void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
port->ep->umidi->usb_protocol_ops->output_packet;
if (b >= 0xf8) {
output_packet(urb, p0 | 0x0f, b, 0, 0);
} else if (b >= 0xf0) {
switch (b) {
case 0xf0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case 0xf1:
case 0xf3:
port->data[0] = b;
port->state = STATE_1PARAM;
break;
case 0xf2:
port->data[0] = b;
port->state = STATE_2PARAM_1;
break;
case 0xf4:
case 0xf5:
port->state = STATE_UNKNOWN;
break;
case 0xf6:
output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
port->state = STATE_UNKNOWN;
break;
case 0xf7:
switch (port->state) {
case STATE_SYSEX_0:
output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
break;
case STATE_SYSEX_1:
output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
break;
}
port->state = STATE_UNKNOWN;
break;
}
} else if (b >= 0x80) {
port->data[0] = b;
if (b >= 0xc0 && b <= 0xdf)
port->state = STATE_1PARAM;
else
port->state = STATE_2PARAM_1;
} else { /* b < 0x80 */
switch (port->state) {
case STATE_1PARAM:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
} else {
p0 |= 0x02;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], b, 0);
break;
case STATE_2PARAM_1:
port->data[1] = b;
port->state = STATE_2PARAM_2;
break;
case STATE_2PARAM_2:
if (port->data[0] < 0xf0) {
p0 |= port->data[0] >> 4;
port->state = STATE_2PARAM_1;
} else {
p0 |= 0x03;
port->state = STATE_UNKNOWN;
}
output_packet(urb, p0, port->data[0], port->data[1], b);
break;
case STATE_SYSEX_0:
port->data[0] = b;
port->state = STATE_SYSEX_1;
break;
case STATE_SYSEX_1:
port->data[1] = b;
port->state = STATE_SYSEX_2;
break;
case STATE_SYSEX_2:
output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
port->state = STATE_SYSEX_0;
break;
}
}
}
static void snd_usbmidi_standard_output(snd_usb_midi_out_endpoint_t* ep)
{
struct urb* urb = ep->urb;
int p;
/* FIXME: lower-numbered ports can starve higher-numbered ports */
for (p = 0; p < 0x10; ++p) {
usbmidi_out_port_t* port = &ep->ports[p];
if (!port->active)
continue;
while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
uint8_t b;
if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
port->active = 0;
break;
}
snd_usbmidi_transmit_byte(port, b, urb);
}
}
}
static struct usb_protocol_ops snd_usbmidi_standard_ops = {
.input = snd_usbmidi_standard_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_standard_packet,
};
static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
.input = snd_usbmidi_midiman_input,
.output = snd_usbmidi_standard_output,
.output_packet = snd_usbmidi_output_midiman_packet,
};
/*
* Novation USB MIDI protocol: number of data bytes is in the first byte
* (when receiving) (+1!) or in the second byte (when sending); data begins
* at the third byte.
*/
static void snd_usbmidi_novation_input(snd_usb_midi_in_endpoint_t* ep,
uint8_t* buffer, int buffer_length)
{
if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
return;
snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
}
static void snd_usbmidi_novation_output(snd_usb_midi_out_endpoint_t* ep)
{
uint8_t* transfer_buffer;
int count;
if (!ep->ports[0].active)
return;
transfer_buffer = ep->urb->transfer_buffer;
count = snd_rawmidi_transmit(ep->ports[0].substream,
&transfer_buffer[2],
ep->max_transfer - 2);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
transfer_buffer[0] = 0;
transfer_buffer[1] = count;
ep->urb->transfer_buffer_length = 2 + count;
}
static struct usb_protocol_ops snd_usbmidi_novation_ops = {
.input = snd_usbmidi_novation_input,
.output = snd_usbmidi_novation_output,
};
/*
* "raw" protocol: used by the MOTU FastLane.
*/
static void snd_usbmidi_raw_input(snd_usb_midi_in_endpoint_t* ep,
uint8_t* buffer, int buffer_length)
{
snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
}
static void snd_usbmidi_raw_output(snd_usb_midi_out_endpoint_t* ep)
{
int count;
if (!ep->ports[0].active)
return;
count = snd_rawmidi_transmit(ep->ports[0].substream,
ep->urb->transfer_buffer,
ep->max_transfer);
if (count < 1) {
ep->ports[0].active = 0;
return;
}
ep->urb->transfer_buffer_length = count;
}
static struct usb_protocol_ops snd_usbmidi_raw_ops = {
.input = snd_usbmidi_raw_input,
.output = snd_usbmidi_raw_output,
};
/*
* Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
*/
static void snd_usbmidi_emagic_init_out(snd_usb_midi_out_endpoint_t* ep)
{
static const u8 init_data[] = {
/* initialization magic: "get version" */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x0b, /* version number request */
0x00, /* command version */
0x00, /* EEPROM, box 0 */
0xf7
};
send_bulk_static_data(ep, init_data, sizeof(init_data));
/* while we're at it, pour on more magic */
send_bulk_static_data(ep, init_data, sizeof(init_data));
}
static void snd_usbmidi_emagic_finish_out(snd_usb_midi_out_endpoint_t* ep)
{
static const u8 finish_data[] = {
/* switch to patch mode with last preset */
0xf0,
0x00, 0x20, 0x31, /* Emagic */
0x64, /* Unitor8 */
0x10, /* patch switch command */
0x00, /* command version */
0x7f, /* to all boxes */
0x40, /* last preset in EEPROM */
0xf7
};
send_bulk_static_data(ep, finish_data, sizeof(finish_data));
}
static void snd_usbmidi_emagic_input(snd_usb_midi_in_endpoint_t* ep,
uint8_t* buffer, int buffer_length)
{
/* ignore padding bytes at end of buffer */
while (buffer_length > 0 && buffer[buffer_length - 1] == 0xff)
--buffer_length;
/* handle F5 at end of last buffer */
if (ep->seen_f5)
goto switch_port;
while (buffer_length > 0) {
int i;
/* determine size of data until next F5 */
for (i = 0; i < buffer_length; ++i)
if (buffer[i] == 0xf5)
break;
snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
buffer += i;
buffer_length -= i;
if (buffer_length <= 0)
break;
/* assert(buffer[0] == 0xf5); */
ep->seen_f5 = 1;
++buffer;
--buffer_length;
switch_port:
if (buffer_length <= 0)
break;
if (buffer[0] < 0x80) {
ep->current_port = (buffer[0] - 1) & 15;
++buffer;
--buffer_length;
}
ep->seen_f5 = 0;
}
}
static void snd_usbmidi_emagic_output(snd_usb_midi_out_endpoint_t* ep)
{
int port0 = ep->current_port;
uint8_t* buf = ep->urb->transfer_buffer;
int buf_free = ep->max_transfer;
int length, i;
for (i = 0; i < 0x10; ++i) {
/* round-robin, starting at the last current port */
int portnum = (port0 + i) & 15;
usbmidi_out_port_t* port = &ep->ports[portnum];
if (!port->active)
continue;
if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
port->active = 0;
continue;
}
if (portnum != ep->current_port) {
if (buf_free < 2)
break;
ep->current_port = portnum;
buf[0] = 0xf5;
buf[1] = (portnum + 1) & 15;
buf += 2;
buf_free -= 2;
}
if (buf_free < 1)
break;
length = snd_rawmidi_transmit(port->substream, buf, buf_free);
if (length > 0) {
buf += length;
buf_free -= length;
if (buf_free < 1)
break;
}
}
ep->urb->transfer_buffer_length = ep->max_transfer - buf_free;
}
static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
.input = snd_usbmidi_emagic_input,
.output = snd_usbmidi_emagic_output,
.init_out_endpoint = snd_usbmidi_emagic_init_out,
.finish_out_endpoint = snd_usbmidi_emagic_finish_out,
};
static int snd_usbmidi_output_open(snd_rawmidi_substream_t* substream)
{
snd_usb_midi_t* umidi = substream->rmidi->private_data;
usbmidi_out_port_t* port = NULL;
int i, j;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
if (umidi->endpoints[i].out)
for (j = 0; j < 0x10; ++j)
if (umidi->endpoints[i].out->ports[j].substream == substream) {
port = &umidi->endpoints[i].out->ports[j];
break;
}
if (!port) {
snd_BUG();
return -ENXIO;
}
substream->runtime->private_data = port;
port->state = STATE_UNKNOWN;
return 0;
}
static int snd_usbmidi_output_close(snd_rawmidi_substream_t* substream)
{
return 0;
}
static void snd_usbmidi_output_trigger(snd_rawmidi_substream_t* substream, int up)
{
usbmidi_out_port_t* port = (usbmidi_out_port_t*)substream->runtime->private_data;
port->active = up;
if (up) {
if (port->ep->umidi->chip->shutdown) {
/* gobble up remaining bytes to prevent wait in
* snd_rawmidi_drain_output */
while (!snd_rawmidi_transmit_empty(substream))
snd_rawmidi_transmit_ack(substream, 1);
return;
}
tasklet_hi_schedule(&port->ep->tasklet);
}
}
static int snd_usbmidi_input_open(snd_rawmidi_substream_t* substream)
{
return 0;
}
static int snd_usbmidi_input_close(snd_rawmidi_substream_t* substream)
{
return 0;
}
static void snd_usbmidi_input_trigger(snd_rawmidi_substream_t* substream, int up)
{
snd_usb_midi_t* umidi = substream->rmidi->private_data;
if (up)
set_bit(substream->number, &umidi->input_triggered);
else
clear_bit(substream->number, &umidi->input_triggered);
}
static snd_rawmidi_ops_t snd_usbmidi_output_ops = {
.open = snd_usbmidi_output_open,
.close = snd_usbmidi_output_close,
.trigger = snd_usbmidi_output_trigger,
};
static snd_rawmidi_ops_t snd_usbmidi_input_ops = {
.open = snd_usbmidi_input_open,
.close = snd_usbmidi_input_close,
.trigger = snd_usbmidi_input_trigger
};
/*
* Frees an input endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_in_endpoint_delete(snd_usb_midi_in_endpoint_t* ep)
{
if (ep->urb) {
kfree(ep->urb->transfer_buffer);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an input endpoint.
*/
static int snd_usbmidi_in_endpoint_create(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* ep_info,
snd_usb_midi_endpoint_t* rep)
{
snd_usb_midi_in_endpoint_t* ep;
void* buffer;
unsigned int pipe;
int length;
rep->in = NULL;
ep = kcalloc(1, sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
pipe = usb_rcvintpipe(umidi->chip->dev, ep_info->in_ep);
else
pipe = usb_rcvbulkpipe(umidi->chip->dev, ep_info->in_ep);
length = usb_maxpacket(umidi->chip->dev, pipe, 0);
buffer = kmalloc(length, GFP_KERNEL);
if (!buffer) {
snd_usbmidi_in_endpoint_delete(ep);
return -ENOMEM;
}
if (ep_info->in_interval)
usb_fill_int_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
snd_usb_complete_callback(snd_usbmidi_in_urb_complete),
ep, ep_info->in_interval);
else
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer, length,
snd_usb_complete_callback(snd_usbmidi_in_urb_complete),
ep);
rep->in = ep;
return 0;
}
static unsigned int snd_usbmidi_count_bits(unsigned int x)
{
unsigned int bits = 0;
for (; x; x >>= 1)
bits += x & 1;
return bits;
}
/*
* Frees an output endpoint.
* May be called when ep hasn't been initialized completely.
*/
static void snd_usbmidi_out_endpoint_delete(snd_usb_midi_out_endpoint_t* ep)
{
if (ep->tasklet.func)
tasklet_kill(&ep->tasklet);
if (ep->urb) {
kfree(ep->urb->transfer_buffer);
usb_free_urb(ep->urb);
}
kfree(ep);
}
/*
* Creates an output endpoint, and initializes output ports.
*/
static int snd_usbmidi_out_endpoint_create(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* ep_info,
snd_usb_midi_endpoint_t* rep)
{
snd_usb_midi_out_endpoint_t* ep;
int i;
unsigned int pipe;
void* buffer;
rep->out = NULL;
ep = kcalloc(1, sizeof(*ep), GFP_KERNEL);
if (!ep)
return -ENOMEM;
ep->umidi = umidi;
ep->urb = usb_alloc_urb(0, GFP_KERNEL);
if (!ep->urb) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
/* we never use interrupt output pipes */
pipe = usb_sndbulkpipe(umidi->chip->dev, ep_info->out_ep);
ep->max_transfer = usb_maxpacket(umidi->chip->dev, pipe, 1);
buffer = kmalloc(ep->max_transfer, GFP_KERNEL);
if (!buffer) {
snd_usbmidi_out_endpoint_delete(ep);
return -ENOMEM;
}
usb_fill_bulk_urb(ep->urb, umidi->chip->dev, pipe, buffer,
ep->max_transfer,
snd_usb_complete_callback(snd_usbmidi_out_urb_complete), ep);
spin_lock_init(&ep->buffer_lock);
tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
for (i = 0; i < 0x10; ++i)
if (ep_info->out_cables & (1 << i)) {
ep->ports[i].ep = ep;
ep->ports[i].cable = i << 4;
}
if (umidi->usb_protocol_ops->init_out_endpoint)
umidi->usb_protocol_ops->init_out_endpoint(ep);
rep->out = ep;
return 0;
}
/*
* Frees everything.
*/
static void snd_usbmidi_free(snd_usb_midi_t* umidi)
{
int i;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
if (ep->out)
snd_usbmidi_out_endpoint_delete(ep->out);
if (ep->in)
snd_usbmidi_in_endpoint_delete(ep->in);
}
kfree(umidi);
}
/*
* Unlinks all URBs (must be done before the usb_device is deleted).
*/
void snd_usbmidi_disconnect(struct list_head* p)
{
snd_usb_midi_t* umidi;
int i;
umidi = list_entry(p, snd_usb_midi_t, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
if (ep->out && ep->out->urb) {
usb_kill_urb(ep->out->urb);
if (umidi->usb_protocol_ops->finish_out_endpoint)
umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
}
if (ep->in && ep->in->urb)
usb_kill_urb(ep->in->urb);
}
}
static void snd_usbmidi_rawmidi_free(snd_rawmidi_t* rmidi)
{
snd_usb_midi_t* umidi = rmidi->private_data;
snd_usbmidi_free(umidi);
}
static snd_rawmidi_substream_t* snd_usbmidi_find_substream(snd_usb_midi_t* umidi,
int stream, int number)
{
struct list_head* list;
list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
snd_rawmidi_substream_t* substream = list_entry(list, snd_rawmidi_substream_t, list);
if (substream->number == number)
return substream;
}
return NULL;
}
/*
* This list specifies names for ports that do not fit into the standard
* "(product) MIDI (n)" schema because they aren't external MIDI ports,
* such as internal control or synthesizer ports.
*/
static struct {
u32 id;
int port;
const char *name_format;
} snd_usbmidi_port_names[] = {
/* Roland UA-100 */
{ USB_ID(0x0582, 0x0000), 2, "%s Control" },
/* Roland SC-8850 */
{ USB_ID(0x0582, 0x0003), 0, "%s Part A" },
{ USB_ID(0x0582, 0x0003), 1, "%s Part B" },
{ USB_ID(0x0582, 0x0003), 2, "%s Part C" },
{ USB_ID(0x0582, 0x0003), 3, "%s Part D" },
{ USB_ID(0x0582, 0x0003), 4, "%s MIDI 1" },
{ USB_ID(0x0582, 0x0003), 5, "%s MIDI 2" },
/* Roland U-8 */
{ USB_ID(0x0582, 0x0004), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x0004), 1, "%s Control" },
/* Roland SC-8820 */
{ USB_ID(0x0582, 0x0007), 0, "%s Part A" },
{ USB_ID(0x0582, 0x0007), 1, "%s Part B" },
{ USB_ID(0x0582, 0x0007), 2, "%s MIDI" },
/* Roland SK-500 */
{ USB_ID(0x0582, 0x000b), 0, "%s Part A" },
{ USB_ID(0x0582, 0x000b), 1, "%s Part B" },
{ USB_ID(0x0582, 0x000b), 2, "%s MIDI" },
/* Roland SC-D70 */
{ USB_ID(0x0582, 0x000c), 0, "%s Part A" },
{ USB_ID(0x0582, 0x000c), 1, "%s Part B" },
{ USB_ID(0x0582, 0x000c), 2, "%s MIDI" },
/* Edirol UM-880 */
{ USB_ID(0x0582, 0x0014), 8, "%s Control" },
/* Edirol SD-90 */
{ USB_ID(0x0582, 0x0016), 0, "%s Part A" },
{ USB_ID(0x0582, 0x0016), 1, "%s Part B" },
{ USB_ID(0x0582, 0x0016), 2, "%s MIDI 1" },
{ USB_ID(0x0582, 0x0016), 3, "%s MIDI 2" },
/* Edirol UM-550 */
{ USB_ID(0x0582, 0x0023), 5, "%s Control" },
/* Edirol SD-20 */
{ USB_ID(0x0582, 0x0027), 0, "%s Part A" },
{ USB_ID(0x0582, 0x0027), 1, "%s Part B" },
{ USB_ID(0x0582, 0x0027), 2, "%s MIDI" },
/* Edirol SD-80 */
{ USB_ID(0x0582, 0x0029), 0, "%s Part A" },
{ USB_ID(0x0582, 0x0029), 1, "%s Part B" },
{ USB_ID(0x0582, 0x0029), 2, "%s MIDI 1" },
{ USB_ID(0x0582, 0x0029), 3, "%s MIDI 2" },
/* Edirol UA-700 */
{ USB_ID(0x0582, 0x002b), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x002b), 1, "%s Control" },
/* Roland VariOS */
{ USB_ID(0x0582, 0x002f), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x002f), 1, "%s External MIDI" },
{ USB_ID(0x0582, 0x002f), 2, "%s Sync" },
/* Edirol PCR */
{ USB_ID(0x0582, 0x0033), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x0033), 1, "%s 1" },
{ USB_ID(0x0582, 0x0033), 2, "%s 2" },
/* BOSS GS-10 */
{ USB_ID(0x0582, 0x003b), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x003b), 1, "%s Control" },
/* Edirol UA-1000 */
{ USB_ID(0x0582, 0x0044), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x0044), 1, "%s Control" },
/* Edirol UR-80 */
{ USB_ID(0x0582, 0x0048), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x0048), 1, "%s 1" },
{ USB_ID(0x0582, 0x0048), 2, "%s 2" },
/* Edirol PCR-A */
{ USB_ID(0x0582, 0x004d), 0, "%s MIDI" },
{ USB_ID(0x0582, 0x004d), 1, "%s 1" },
{ USB_ID(0x0582, 0x004d), 2, "%s 2" },
/* M-Audio MidiSport 8x8 */
{ USB_ID(0x0763, 0x1031), 8, "%s Control" },
{ USB_ID(0x0763, 0x1033), 8, "%s Control" },
/* MOTU Fastlane */
{ USB_ID(0x07fd, 0x0001), 0, "%s MIDI A" },
{ USB_ID(0x07fd, 0x0001), 1, "%s MIDI B" },
/* Emagic Unitor8/AMT8/MT4 */
{ USB_ID(0x086a, 0x0001), 8, "%s Broadcast" },
{ USB_ID(0x086a, 0x0002), 8, "%s Broadcast" },
{ USB_ID(0x086a, 0x0003), 4, "%s Broadcast" },
};
static void snd_usbmidi_init_substream(snd_usb_midi_t* umidi,
int stream, int number,
snd_rawmidi_substream_t** rsubstream)
{
int i;
const char *name_format;
snd_rawmidi_substream_t* substream = snd_usbmidi_find_substream(umidi, stream, number);
if (!substream) {
snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
return;
}
/* TODO: read port name from jack descriptor */
name_format = "%s MIDI %d";
for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_names); ++i) {
if (snd_usbmidi_port_names[i].id == umidi->chip->usb_id &&
snd_usbmidi_port_names[i].port == number) {
name_format = snd_usbmidi_port_names[i].name_format;
break;
}
}
snprintf(substream->name, sizeof(substream->name),
name_format, umidi->chip->card->shortname, number + 1);
*rsubstream = substream;
}
/*
* Creates the endpoints and their ports.
*/
static int snd_usbmidi_create_endpoints(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoints)
{
int i, j, err;
int out_ports = 0, in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_cables) {
err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
if (endpoints[i].in_cables) {
err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
&umidi->endpoints[i]);
if (err < 0)
return err;
}
for (j = 0; j < 0x10; ++j) {
if (endpoints[i].out_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
&umidi->endpoints[i].out->ports[j].substream);
++out_ports;
}
if (endpoints[i].in_cables & (1 << j)) {
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
&umidi->endpoints[i].in->ports[j].substream);
++in_ports;
}
}
}
snd_printdd(KERN_INFO "created %d output and %d input ports\n",
out_ports, in_ports);
return 0;
}
/*
* Returns MIDIStreaming device capabilities.
*/
static int snd_usbmidi_get_ms_info(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_ms_header_descriptor* ms_header;
struct usb_host_endpoint *hostep;
struct usb_endpoint_descriptor* ep;
struct usb_ms_endpoint_descriptor* ms_ep;
int i, epidx;
intf = umidi->iface;
if (!intf)
return -ENXIO;
hostif = &intf->altsetting[0];
intfd = get_iface_desc(hostif);
ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
if (hostif->extralen >= 7 &&
ms_header->bLength >= 7 &&
ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
ms_header->bDescriptorSubtype == HEADER)
snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
else
snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
epidx = 0;
for (i = 0; i < intfd->bNumEndpoints; ++i) {
hostep = &hostif->endpoint[i];
ep = get_ep_desc(hostep);
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
if (hostep->extralen < 4 ||
ms_ep->bLength < 4 ||
ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
ms_ep->bDescriptorSubtype != MS_GENERAL)
continue;
if ((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
if (endpoints[epidx].out_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].out_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].out_interval = ep->bInterval;
endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
} else {
if (endpoints[epidx].in_ep) {
if (++epidx >= MIDI_MAX_ENDPOINTS) {
snd_printk(KERN_WARNING "too many endpoints\n");
break;
}
}
endpoints[epidx].in_ep = ep->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoints[epidx].in_interval = ep->bInterval;
endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
}
}
return 0;
}
/*
* On Roland devices, use the second alternate setting to be able to use
* the interrupt input endpoint.
*/
static void snd_usbmidi_switch_roland_altsetting(snd_usb_midi_t* umidi)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
intf = umidi->iface;
if (!intf || intf->num_altsetting != 2)
return;
hostif = &intf->altsetting[1];
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints != 2 ||
(get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
(get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
return;
snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
intfd->bAlternateSetting);
usb_set_interface(umidi->chip->dev, intfd->bInterfaceNumber,
intfd->bAlternateSetting);
}
/*
* Try to find any usable endpoints in the interface.
*/
static int snd_usbmidi_detect_endpoints(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoint,
int max_endpoints)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int i, out_eps = 0, in_eps = 0;
if (USB_ID_VENDOR(umidi->chip->usb_id) == 0x0582)
snd_usbmidi_switch_roland_altsetting(umidi);
if (endpoint[0].out_ep || endpoint[0].in_ep)
return 0;
intf = umidi->iface;
if (!intf || intf->num_altsetting < 1)
return -ENOENT;
hostif = intf->cur_altsetting;
intfd = get_iface_desc(hostif);
for (i = 0; i < intfd->bNumEndpoints; ++i) {
epd = get_endpoint(hostif, i);
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK &&
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
continue;
if (out_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) {
endpoint[out_eps].out_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[out_eps].out_interval = epd->bInterval;
++out_eps;
}
if (in_eps < max_endpoints &&
(epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
endpoint[in_eps].in_ep = epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
if ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_INT)
endpoint[in_eps].in_interval = epd->bInterval;
++in_eps;
}
}
return (out_eps || in_eps) ? 0 : -ENOENT;
}
/*
* Detects the endpoints for one-port-per-endpoint protocols.
*/
static int snd_usbmidi_detect_per_port_endpoints(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoints)
{
int err, i;
err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
if (endpoints[i].out_ep)
endpoints[i].out_cables = 0x0001;
if (endpoints[i].in_ep)
endpoints[i].in_cables = 0x0001;
}
return err;
}
/*
* Detects the endpoints and ports of Yamaha devices.
*/
static int snd_usbmidi_detect_yamaha(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoint)
{
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
uint8_t* cs_desc;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
if (intfd->bNumEndpoints < 1)
return -ENOENT;
/*
* For each port there is one MIDI_IN/OUT_JACK descriptor, not
* necessarily with any useful contents. So simply count 'em.
*/
for (cs_desc = hostif->extra;
cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
cs_desc += cs_desc[0]) {
if (cs_desc[1] == CS_AUDIO_INTERFACE) {
if (cs_desc[2] == MIDI_IN_JACK)
endpoint->in_cables = (endpoint->in_cables << 1) | 1;
else if (cs_desc[2] == MIDI_OUT_JACK)
endpoint->out_cables = (endpoint->out_cables << 1) | 1;
}
}
if (!endpoint->in_cables && !endpoint->out_cables)
return -ENOENT;
return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
}
/*
* Creates the endpoints and their ports for Midiman devices.
*/
static int snd_usbmidi_create_endpoints_midiman(snd_usb_midi_t* umidi,
snd_usb_midi_endpoint_info_t* endpoint)
{
snd_usb_midi_endpoint_info_t ep_info;
struct usb_interface* intf;
struct usb_host_interface *hostif;
struct usb_interface_descriptor* intfd;
struct usb_endpoint_descriptor* epd;
int cable, err;
intf = umidi->iface;
if (!intf)
return -ENOENT;
hostif = intf->altsetting;
intfd = get_iface_desc(hostif);
/*
* The various MidiSport devices have more or less random endpoint
* numbers, so we have to identify the endpoints by their index in
* the descriptor array, like the driver for that other OS does.
*
* There is one interrupt input endpoint for all input ports, one
* bulk output endpoint for even-numbered ports, and one for odd-
* numbered ports. Both bulk output endpoints have corresponding
* input bulk endpoints (at indices 1 and 3) which aren't used.
*/
if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
snd_printdd(KERN_ERR "not enough endpoints\n");
return -ENOENT;
}
epd = get_endpoint(hostif, 0);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_IN ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT) {
snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
return -ENXIO;
}
epd = get_endpoint(hostif, 2);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
return -ENXIO;
}
if (endpoint->out_cables > 0x0001) {
epd = get_endpoint(hostif, 4);
if ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) != USB_DIR_OUT ||
(epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK) {
snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
return -ENXIO;
}
}
ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0x5555;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
ep_info.in_cables = endpoint->in_cables;
err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
if (err < 0)
return err;
if (endpoint->out_cables > 0x0001) {
ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
ep_info.out_cables = endpoint->out_cables & 0xaaaa;
err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
if (err < 0)
return err;
}
for (cable = 0; cable < 0x10; ++cable) {
if (endpoint->out_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
&umidi->endpoints[cable & 1].out->ports[cable].substream);
if (endpoint->in_cables & (1 << cable))
snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
&umidi->endpoints[0].in->ports[cable].substream);
}
return 0;
}
static int snd_usbmidi_create_rawmidi(snd_usb_midi_t* umidi,
int out_ports, int in_ports)
{
snd_rawmidi_t* rmidi;
int err;
err = snd_rawmidi_new(umidi->chip->card, "USB MIDI",
umidi->chip->next_midi_device++,
out_ports, in_ports, &rmidi);
if (err < 0)
return err;
strcpy(rmidi->name, umidi->chip->card->shortname);
rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
SNDRV_RAWMIDI_INFO_INPUT |
SNDRV_RAWMIDI_INFO_DUPLEX;
rmidi->private_data = umidi;
rmidi->private_free = snd_usbmidi_rawmidi_free;
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
umidi->rmidi = rmidi;
return 0;
}
/*
* Temporarily stop input.
*/
void snd_usbmidi_input_stop(struct list_head* p)
{
snd_usb_midi_t* umidi;
int i;
umidi = list_entry(p, snd_usb_midi_t, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
snd_usb_midi_endpoint_t* ep = &umidi->endpoints[i];
if (ep->in)
usb_kill_urb(ep->in->urb);
}
}
static void snd_usbmidi_input_start_ep(snd_usb_midi_in_endpoint_t* ep)
{
if (ep) {
struct urb* urb = ep->urb;
urb->dev = ep->umidi->chip->dev;
snd_usbmidi_submit_urb(urb, GFP_KERNEL);
}
}
/*
* Resume input after a call to snd_usbmidi_input_stop().
*/
void snd_usbmidi_input_start(struct list_head* p)
{
snd_usb_midi_t* umidi;
int i;
umidi = list_entry(p, snd_usb_midi_t, list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
}
/*
* Creates and registers everything needed for a MIDI streaming interface.
*/
int snd_usb_create_midi_interface(snd_usb_audio_t* chip,
struct usb_interface* iface,
const snd_usb_audio_quirk_t* quirk)
{
snd_usb_midi_t* umidi;
snd_usb_midi_endpoint_info_t endpoints[MIDI_MAX_ENDPOINTS];
int out_ports, in_ports;
int i, err;
umidi = kcalloc(1, sizeof(*umidi), GFP_KERNEL);
if (!umidi)
return -ENOMEM;
umidi->chip = chip;
umidi->iface = iface;
umidi->quirk = quirk;
umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
/* detect the endpoint(s) to use */
memset(endpoints, 0, sizeof(endpoints));
if (!quirk) {
err = snd_usbmidi_get_ms_info(umidi, endpoints);
} else {
switch (quirk->type) {
case QUIRK_MIDI_FIXED_ENDPOINT:
memcpy(&endpoints[0], quirk->data,
sizeof(snd_usb_midi_endpoint_info_t));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_YAMAHA:
err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
break;
case QUIRK_MIDI_MIDIMAN:
umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(snd_usb_midi_endpoint_info_t));
err = 0;
break;
case QUIRK_MIDI_NOVATION:
umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_RAW:
umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
case QUIRK_MIDI_EMAGIC:
umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
memcpy(&endpoints[0], quirk->data,
sizeof(snd_usb_midi_endpoint_info_t));
err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
break;
case QUIRK_MIDI_MIDITECH:
err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
break;
default:
snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
err = -ENXIO;
break;
}
}
if (err < 0) {
kfree(umidi);
return err;
}
/* create rawmidi device */
out_ports = 0;
in_ports = 0;
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
out_ports += snd_usbmidi_count_bits(endpoints[i].out_cables);
in_ports += snd_usbmidi_count_bits(endpoints[i].in_cables);
}
err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
if (err < 0) {
kfree(umidi);
return err;
}
/* create endpoint/port structures */
if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
else
err = snd_usbmidi_create_endpoints(umidi, endpoints);
if (err < 0) {
snd_usbmidi_free(umidi);
return err;
}
list_add(&umidi->list, &umidi->chip->midi_list);
for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
return 0;
}
EXPORT_SYMBOL(snd_usb_create_midi_interface);
EXPORT_SYMBOL(snd_usbmidi_input_stop);
EXPORT_SYMBOL(snd_usbmidi_input_start);
EXPORT_SYMBOL(snd_usbmidi_disconnect);