mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 08:58:07 +00:00
2543 lines
66 KiB
C
2543 lines
66 KiB
C
/*
|
|
* TI EDMA DMA engine driver
|
|
*
|
|
* Copyright 2012 Texas Instruments
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation version 2.
|
|
*
|
|
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
* kind, whether express or implied; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/edma.h>
|
|
#include <linux/err.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/platform_data/edma.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "virt-dma.h"
|
|
|
|
/* Offsets matching "struct edmacc_param" */
|
|
#define PARM_OPT 0x00
|
|
#define PARM_SRC 0x04
|
|
#define PARM_A_B_CNT 0x08
|
|
#define PARM_DST 0x0c
|
|
#define PARM_SRC_DST_BIDX 0x10
|
|
#define PARM_LINK_BCNTRLD 0x14
|
|
#define PARM_SRC_DST_CIDX 0x18
|
|
#define PARM_CCNT 0x1c
|
|
|
|
#define PARM_SIZE 0x20
|
|
|
|
/* Offsets for EDMA CC global channel registers and their shadows */
|
|
#define SH_ER 0x00 /* 64 bits */
|
|
#define SH_ECR 0x08 /* 64 bits */
|
|
#define SH_ESR 0x10 /* 64 bits */
|
|
#define SH_CER 0x18 /* 64 bits */
|
|
#define SH_EER 0x20 /* 64 bits */
|
|
#define SH_EECR 0x28 /* 64 bits */
|
|
#define SH_EESR 0x30 /* 64 bits */
|
|
#define SH_SER 0x38 /* 64 bits */
|
|
#define SH_SECR 0x40 /* 64 bits */
|
|
#define SH_IER 0x50 /* 64 bits */
|
|
#define SH_IECR 0x58 /* 64 bits */
|
|
#define SH_IESR 0x60 /* 64 bits */
|
|
#define SH_IPR 0x68 /* 64 bits */
|
|
#define SH_ICR 0x70 /* 64 bits */
|
|
#define SH_IEVAL 0x78
|
|
#define SH_QER 0x80
|
|
#define SH_QEER 0x84
|
|
#define SH_QEECR 0x88
|
|
#define SH_QEESR 0x8c
|
|
#define SH_QSER 0x90
|
|
#define SH_QSECR 0x94
|
|
#define SH_SIZE 0x200
|
|
|
|
/* Offsets for EDMA CC global registers */
|
|
#define EDMA_REV 0x0000
|
|
#define EDMA_CCCFG 0x0004
|
|
#define EDMA_QCHMAP 0x0200 /* 8 registers */
|
|
#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
|
|
#define EDMA_QDMAQNUM 0x0260
|
|
#define EDMA_QUETCMAP 0x0280
|
|
#define EDMA_QUEPRI 0x0284
|
|
#define EDMA_EMR 0x0300 /* 64 bits */
|
|
#define EDMA_EMCR 0x0308 /* 64 bits */
|
|
#define EDMA_QEMR 0x0310
|
|
#define EDMA_QEMCR 0x0314
|
|
#define EDMA_CCERR 0x0318
|
|
#define EDMA_CCERRCLR 0x031c
|
|
#define EDMA_EEVAL 0x0320
|
|
#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
|
|
#define EDMA_QRAE 0x0380 /* 4 registers */
|
|
#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
|
|
#define EDMA_QSTAT 0x0600 /* 2 registers */
|
|
#define EDMA_QWMTHRA 0x0620
|
|
#define EDMA_QWMTHRB 0x0624
|
|
#define EDMA_CCSTAT 0x0640
|
|
|
|
#define EDMA_M 0x1000 /* global channel registers */
|
|
#define EDMA_ECR 0x1008
|
|
#define EDMA_ECRH 0x100C
|
|
#define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
|
|
#define EDMA_PARM 0x4000 /* PaRAM entries */
|
|
|
|
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
|
|
|
|
#define EDMA_DCHMAP 0x0100 /* 64 registers */
|
|
|
|
/* CCCFG register */
|
|
#define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
|
|
#define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
|
|
#define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
|
|
#define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
|
|
#define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
|
|
#define CHMAP_EXIST BIT(24)
|
|
|
|
/* CCSTAT register */
|
|
#define EDMA_CCSTAT_ACTV BIT(4)
|
|
|
|
/*
|
|
* Max of 20 segments per channel to conserve PaRAM slots
|
|
* Also note that MAX_NR_SG should be atleast the no.of periods
|
|
* that are required for ASoC, otherwise DMA prep calls will
|
|
* fail. Today davinci-pcm is the only user of this driver and
|
|
* requires atleast 17 slots, so we setup the default to 20.
|
|
*/
|
|
#define MAX_NR_SG 20
|
|
#define EDMA_MAX_SLOTS MAX_NR_SG
|
|
#define EDMA_DESCRIPTORS 16
|
|
|
|
#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
|
|
#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
|
|
#define EDMA_CONT_PARAMS_ANY 1001
|
|
#define EDMA_CONT_PARAMS_FIXED_EXACT 1002
|
|
#define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
|
|
|
|
/* PaRAM slots are laid out like this */
|
|
struct edmacc_param {
|
|
u32 opt;
|
|
u32 src;
|
|
u32 a_b_cnt;
|
|
u32 dst;
|
|
u32 src_dst_bidx;
|
|
u32 link_bcntrld;
|
|
u32 src_dst_cidx;
|
|
u32 ccnt;
|
|
} __packed;
|
|
|
|
/* fields in edmacc_param.opt */
|
|
#define SAM BIT(0)
|
|
#define DAM BIT(1)
|
|
#define SYNCDIM BIT(2)
|
|
#define STATIC BIT(3)
|
|
#define EDMA_FWID (0x07 << 8)
|
|
#define TCCMODE BIT(11)
|
|
#define EDMA_TCC(t) ((t) << 12)
|
|
#define TCINTEN BIT(20)
|
|
#define ITCINTEN BIT(21)
|
|
#define TCCHEN BIT(22)
|
|
#define ITCCHEN BIT(23)
|
|
|
|
struct edma_pset {
|
|
u32 len;
|
|
dma_addr_t addr;
|
|
struct edmacc_param param;
|
|
};
|
|
|
|
struct edma_desc {
|
|
struct virt_dma_desc vdesc;
|
|
struct list_head node;
|
|
enum dma_transfer_direction direction;
|
|
int cyclic;
|
|
int absync;
|
|
int pset_nr;
|
|
struct edma_chan *echan;
|
|
int processed;
|
|
|
|
/*
|
|
* The following 4 elements are used for residue accounting.
|
|
*
|
|
* - processed_stat: the number of SG elements we have traversed
|
|
* so far to cover accounting. This is updated directly to processed
|
|
* during edma_callback and is always <= processed, because processed
|
|
* refers to the number of pending transfer (programmed to EDMA
|
|
* controller), where as processed_stat tracks number of transfers
|
|
* accounted for so far.
|
|
*
|
|
* - residue: The amount of bytes we have left to transfer for this desc
|
|
*
|
|
* - residue_stat: The residue in bytes of data we have covered
|
|
* so far for accounting. This is updated directly to residue
|
|
* during callbacks to keep it current.
|
|
*
|
|
* - sg_len: Tracks the length of the current intermediate transfer,
|
|
* this is required to update the residue during intermediate transfer
|
|
* completion callback.
|
|
*/
|
|
int processed_stat;
|
|
u32 sg_len;
|
|
u32 residue;
|
|
u32 residue_stat;
|
|
|
|
struct edma_pset pset[0];
|
|
};
|
|
|
|
struct edma_cc;
|
|
|
|
struct edma_tc {
|
|
struct device_node *node;
|
|
u16 id;
|
|
};
|
|
|
|
struct edma_chan {
|
|
struct virt_dma_chan vchan;
|
|
struct list_head node;
|
|
struct edma_desc *edesc;
|
|
struct edma_cc *ecc;
|
|
struct edma_tc *tc;
|
|
int ch_num;
|
|
bool alloced;
|
|
bool hw_triggered;
|
|
int slot[EDMA_MAX_SLOTS];
|
|
int missed;
|
|
struct dma_slave_config cfg;
|
|
};
|
|
|
|
struct edma_cc {
|
|
struct device *dev;
|
|
struct edma_soc_info *info;
|
|
void __iomem *base;
|
|
int id;
|
|
bool legacy_mode;
|
|
|
|
/* eDMA3 resource information */
|
|
unsigned num_channels;
|
|
unsigned num_qchannels;
|
|
unsigned num_region;
|
|
unsigned num_slots;
|
|
unsigned num_tc;
|
|
bool chmap_exist;
|
|
enum dma_event_q default_queue;
|
|
|
|
unsigned int ccint;
|
|
unsigned int ccerrint;
|
|
|
|
/*
|
|
* The slot_inuse bit for each PaRAM slot is clear unless the slot is
|
|
* in use by Linux or if it is allocated to be used by DSP.
|
|
*/
|
|
unsigned long *slot_inuse;
|
|
|
|
struct dma_device dma_slave;
|
|
struct dma_device *dma_memcpy;
|
|
struct edma_chan *slave_chans;
|
|
struct edma_tc *tc_list;
|
|
int dummy_slot;
|
|
};
|
|
|
|
/* dummy param set used to (re)initialize parameter RAM slots */
|
|
static const struct edmacc_param dummy_paramset = {
|
|
.link_bcntrld = 0xffff,
|
|
.ccnt = 1,
|
|
};
|
|
|
|
#define EDMA_BINDING_LEGACY 0
|
|
#define EDMA_BINDING_TPCC 1
|
|
static const u32 edma_binding_type[] = {
|
|
[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
|
|
[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
|
|
};
|
|
|
|
static const struct of_device_id edma_of_ids[] = {
|
|
{
|
|
.compatible = "ti,edma3",
|
|
.data = &edma_binding_type[EDMA_BINDING_LEGACY],
|
|
},
|
|
{
|
|
.compatible = "ti,edma3-tpcc",
|
|
.data = &edma_binding_type[EDMA_BINDING_TPCC],
|
|
},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, edma_of_ids);
|
|
|
|
static const struct of_device_id edma_tptc_of_ids[] = {
|
|
{ .compatible = "ti,edma3-tptc", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
|
|
|
|
static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
|
|
{
|
|
return (unsigned int)__raw_readl(ecc->base + offset);
|
|
}
|
|
|
|
static inline void edma_write(struct edma_cc *ecc, int offset, int val)
|
|
{
|
|
__raw_writel(val, ecc->base + offset);
|
|
}
|
|
|
|
static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
|
|
unsigned or)
|
|
{
|
|
unsigned val = edma_read(ecc, offset);
|
|
|
|
val &= and;
|
|
val |= or;
|
|
edma_write(ecc, offset, val);
|
|
}
|
|
|
|
static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
|
|
{
|
|
unsigned val = edma_read(ecc, offset);
|
|
|
|
val &= and;
|
|
edma_write(ecc, offset, val);
|
|
}
|
|
|
|
static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
|
|
{
|
|
unsigned val = edma_read(ecc, offset);
|
|
|
|
val |= or;
|
|
edma_write(ecc, offset, val);
|
|
}
|
|
|
|
static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
|
|
int i)
|
|
{
|
|
return edma_read(ecc, offset + (i << 2));
|
|
}
|
|
|
|
static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
|
|
unsigned val)
|
|
{
|
|
edma_write(ecc, offset + (i << 2), val);
|
|
}
|
|
|
|
static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
|
|
unsigned and, unsigned or)
|
|
{
|
|
edma_modify(ecc, offset + (i << 2), and, or);
|
|
}
|
|
|
|
static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
|
|
unsigned or)
|
|
{
|
|
edma_or(ecc, offset + (i << 2), or);
|
|
}
|
|
|
|
static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
|
|
unsigned or)
|
|
{
|
|
edma_or(ecc, offset + ((i * 2 + j) << 2), or);
|
|
}
|
|
|
|
static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
|
|
int j, unsigned val)
|
|
{
|
|
edma_write(ecc, offset + ((i * 2 + j) << 2), val);
|
|
}
|
|
|
|
static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
|
|
{
|
|
return edma_read(ecc, EDMA_SHADOW0 + offset);
|
|
}
|
|
|
|
static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
|
|
int offset, int i)
|
|
{
|
|
return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
|
|
}
|
|
|
|
static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
|
|
unsigned val)
|
|
{
|
|
edma_write(ecc, EDMA_SHADOW0 + offset, val);
|
|
}
|
|
|
|
static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
|
|
int i, unsigned val)
|
|
{
|
|
edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
|
|
}
|
|
|
|
static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
|
|
int param_no)
|
|
{
|
|
return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
|
|
}
|
|
|
|
static inline void edma_param_write(struct edma_cc *ecc, int offset,
|
|
int param_no, unsigned val)
|
|
{
|
|
edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
|
|
}
|
|
|
|
static inline void edma_param_modify(struct edma_cc *ecc, int offset,
|
|
int param_no, unsigned and, unsigned or)
|
|
{
|
|
edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
|
|
}
|
|
|
|
static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
|
|
unsigned and)
|
|
{
|
|
edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
|
|
}
|
|
|
|
static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
|
|
unsigned or)
|
|
{
|
|
edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
|
|
}
|
|
|
|
static inline void edma_set_bits(int offset, int len, unsigned long *p)
|
|
{
|
|
for (; len > 0; len--)
|
|
set_bit(offset + (len - 1), p);
|
|
}
|
|
|
|
static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
|
|
int priority)
|
|
{
|
|
int bit = queue_no * 4;
|
|
|
|
edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
|
|
}
|
|
|
|
static void edma_set_chmap(struct edma_chan *echan, int slot)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
|
|
if (ecc->chmap_exist) {
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
|
|
}
|
|
}
|
|
|
|
static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
|
|
if (enable) {
|
|
edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
|
|
BIT(channel & 0x1f));
|
|
edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
|
|
BIT(channel & 0x1f));
|
|
} else {
|
|
edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
|
|
BIT(channel & 0x1f));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* paRAM slot management functions
|
|
*/
|
|
static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
|
|
const struct edmacc_param *param)
|
|
{
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot >= ecc->num_slots)
|
|
return;
|
|
memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
|
|
}
|
|
|
|
static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
|
|
struct edmacc_param *param)
|
|
{
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot >= ecc->num_slots)
|
|
return -EINVAL;
|
|
memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* edma_alloc_slot - allocate DMA parameter RAM
|
|
* @ecc: pointer to edma_cc struct
|
|
* @slot: specific slot to allocate; negative for "any unused slot"
|
|
*
|
|
* This allocates a parameter RAM slot, initializing it to hold a
|
|
* dummy transfer. Slots allocated using this routine have not been
|
|
* mapped to a hardware DMA channel, and will normally be used by
|
|
* linking to them from a slot associated with a DMA channel.
|
|
*
|
|
* Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
|
|
* slots may be allocated on behalf of DSP firmware.
|
|
*
|
|
* Returns the number of the slot, else negative errno.
|
|
*/
|
|
static int edma_alloc_slot(struct edma_cc *ecc, int slot)
|
|
{
|
|
if (slot >= 0) {
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
/* Requesting entry paRAM slot for a HW triggered channel. */
|
|
if (ecc->chmap_exist && slot < ecc->num_channels)
|
|
slot = EDMA_SLOT_ANY;
|
|
}
|
|
|
|
if (slot < 0) {
|
|
if (ecc->chmap_exist)
|
|
slot = 0;
|
|
else
|
|
slot = ecc->num_channels;
|
|
for (;;) {
|
|
slot = find_next_zero_bit(ecc->slot_inuse,
|
|
ecc->num_slots,
|
|
slot);
|
|
if (slot == ecc->num_slots)
|
|
return -ENOMEM;
|
|
if (!test_and_set_bit(slot, ecc->slot_inuse))
|
|
break;
|
|
}
|
|
} else if (slot >= ecc->num_slots) {
|
|
return -EINVAL;
|
|
} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
edma_write_slot(ecc, slot, &dummy_paramset);
|
|
|
|
return EDMA_CTLR_CHAN(ecc->id, slot);
|
|
}
|
|
|
|
static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
|
|
{
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
if (slot >= ecc->num_slots)
|
|
return;
|
|
|
|
edma_write_slot(ecc, slot, &dummy_paramset);
|
|
clear_bit(slot, ecc->slot_inuse);
|
|
}
|
|
|
|
/**
|
|
* edma_link - link one parameter RAM slot to another
|
|
* @ecc: pointer to edma_cc struct
|
|
* @from: parameter RAM slot originating the link
|
|
* @to: parameter RAM slot which is the link target
|
|
*
|
|
* The originating slot should not be part of any active DMA transfer.
|
|
*/
|
|
static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
|
|
{
|
|
if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
|
|
dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
|
|
|
|
from = EDMA_CHAN_SLOT(from);
|
|
to = EDMA_CHAN_SLOT(to);
|
|
if (from >= ecc->num_slots || to >= ecc->num_slots)
|
|
return;
|
|
|
|
edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
|
|
PARM_OFFSET(to));
|
|
}
|
|
|
|
/**
|
|
* edma_get_position - returns the current transfer point
|
|
* @ecc: pointer to edma_cc struct
|
|
* @slot: parameter RAM slot being examined
|
|
* @dst: true selects the dest position, false the source
|
|
*
|
|
* Returns the position of the current active slot
|
|
*/
|
|
static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
|
|
bool dst)
|
|
{
|
|
u32 offs;
|
|
|
|
slot = EDMA_CHAN_SLOT(slot);
|
|
offs = PARM_OFFSET(slot);
|
|
offs += dst ? PARM_DST : PARM_SRC;
|
|
|
|
return edma_read(ecc, offs);
|
|
}
|
|
|
|
/*
|
|
* Channels with event associations will be triggered by their hardware
|
|
* events, and channels without such associations will be triggered by
|
|
* software. (At this writing there is no interface for using software
|
|
* triggers except with channels that don't support hardware triggers.)
|
|
*/
|
|
static void edma_start(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
int j = (channel >> 5);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
if (!echan->hw_triggered) {
|
|
/* EDMA channels without event association */
|
|
dev_dbg(ecc->dev, "ESR%d %08x\n", j,
|
|
edma_shadow0_read_array(ecc, SH_ESR, j));
|
|
edma_shadow0_write_array(ecc, SH_ESR, j, mask);
|
|
} else {
|
|
/* EDMA channel with event association */
|
|
dev_dbg(ecc->dev, "ER%d %08x\n", j,
|
|
edma_shadow0_read_array(ecc, SH_ER, j));
|
|
/* Clear any pending event or error */
|
|
edma_write_array(ecc, EDMA_ECR, j, mask);
|
|
edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
edma_shadow0_write_array(ecc, SH_EESR, j, mask);
|
|
dev_dbg(ecc->dev, "EER%d %08x\n", j,
|
|
edma_shadow0_read_array(ecc, SH_EER, j));
|
|
}
|
|
}
|
|
|
|
static void edma_stop(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
int j = (channel >> 5);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(ecc, SH_EECR, j, mask);
|
|
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
|
|
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
|
|
/* clear possibly pending completion interrupt */
|
|
edma_shadow0_write_array(ecc, SH_ICR, j, mask);
|
|
|
|
dev_dbg(ecc->dev, "EER%d %08x\n", j,
|
|
edma_shadow0_read_array(ecc, SH_EER, j));
|
|
|
|
/* REVISIT: consider guarding against inappropriate event
|
|
* chaining by overwriting with dummy_paramset.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Temporarily disable EDMA hardware events on the specified channel,
|
|
* preventing them from triggering new transfers
|
|
*/
|
|
static void edma_pause(struct edma_chan *echan)
|
|
{
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
|
|
}
|
|
|
|
/* Re-enable EDMA hardware events on the specified channel. */
|
|
static void edma_resume(struct edma_chan *echan)
|
|
{
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
|
|
}
|
|
|
|
static void edma_trigger_channel(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
|
|
|
|
dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
|
|
edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
|
|
}
|
|
|
|
static void edma_clean_channel(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
int j = (channel >> 5);
|
|
unsigned int mask = BIT(channel & 0x1f);
|
|
|
|
dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
|
|
edma_shadow0_write_array(ecc, SH_ECR, j, mask);
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(ecc, EDMA_EMCR, j, mask);
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ecc, SH_SECR, j, mask);
|
|
edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
|
|
}
|
|
|
|
/* Move channel to a specific event queue */
|
|
static void edma_assign_channel_eventq(struct edma_chan *echan,
|
|
enum dma_event_q eventq_no)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
int bit = (channel & 0x7) * 4;
|
|
|
|
/* default to low priority queue */
|
|
if (eventq_no == EVENTQ_DEFAULT)
|
|
eventq_no = ecc->default_queue;
|
|
if (eventq_no >= ecc->num_tc)
|
|
return;
|
|
|
|
eventq_no &= 7;
|
|
edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
|
|
eventq_no << bit);
|
|
}
|
|
|
|
static int edma_alloc_channel(struct edma_chan *echan,
|
|
enum dma_event_q eventq_no)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
int channel = EDMA_CHAN_SLOT(echan->ch_num);
|
|
|
|
/* ensure access through shadow region 0 */
|
|
edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
|
|
|
|
/* ensure no events are pending */
|
|
edma_stop(echan);
|
|
|
|
edma_setup_interrupt(echan, true);
|
|
|
|
edma_assign_channel_eventq(echan, eventq_no);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void edma_free_channel(struct edma_chan *echan)
|
|
{
|
|
/* ensure no events are pending */
|
|
edma_stop(echan);
|
|
/* REVISIT should probably take out of shadow region 0 */
|
|
edma_setup_interrupt(echan, false);
|
|
}
|
|
|
|
static inline struct edma_cc *to_edma_cc(struct dma_device *d)
|
|
{
|
|
return container_of(d, struct edma_cc, dma_slave);
|
|
}
|
|
|
|
static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
|
|
{
|
|
return container_of(c, struct edma_chan, vchan.chan);
|
|
}
|
|
|
|
static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
return container_of(tx, struct edma_desc, vdesc.tx);
|
|
}
|
|
|
|
static void edma_desc_free(struct virt_dma_desc *vdesc)
|
|
{
|
|
kfree(container_of(vdesc, struct edma_desc, vdesc));
|
|
}
|
|
|
|
/* Dispatch a queued descriptor to the controller (caller holds lock) */
|
|
static void edma_execute(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
struct virt_dma_desc *vdesc;
|
|
struct edma_desc *edesc;
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
int i, j, left, nslots;
|
|
|
|
if (!echan->edesc) {
|
|
/* Setup is needed for the first transfer */
|
|
vdesc = vchan_next_desc(&echan->vchan);
|
|
if (!vdesc)
|
|
return;
|
|
list_del(&vdesc->node);
|
|
echan->edesc = to_edma_desc(&vdesc->tx);
|
|
}
|
|
|
|
edesc = echan->edesc;
|
|
|
|
/* Find out how many left */
|
|
left = edesc->pset_nr - edesc->processed;
|
|
nslots = min(MAX_NR_SG, left);
|
|
edesc->sg_len = 0;
|
|
|
|
/* Write descriptor PaRAM set(s) */
|
|
for (i = 0; i < nslots; i++) {
|
|
j = i + edesc->processed;
|
|
edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
|
|
edesc->sg_len += edesc->pset[j].len;
|
|
dev_vdbg(dev,
|
|
"\n pset[%d]:\n"
|
|
" chnum\t%d\n"
|
|
" slot\t%d\n"
|
|
" opt\t%08x\n"
|
|
" src\t%08x\n"
|
|
" dst\t%08x\n"
|
|
" abcnt\t%08x\n"
|
|
" ccnt\t%08x\n"
|
|
" bidx\t%08x\n"
|
|
" cidx\t%08x\n"
|
|
" lkrld\t%08x\n",
|
|
j, echan->ch_num, echan->slot[i],
|
|
edesc->pset[j].param.opt,
|
|
edesc->pset[j].param.src,
|
|
edesc->pset[j].param.dst,
|
|
edesc->pset[j].param.a_b_cnt,
|
|
edesc->pset[j].param.ccnt,
|
|
edesc->pset[j].param.src_dst_bidx,
|
|
edesc->pset[j].param.src_dst_cidx,
|
|
edesc->pset[j].param.link_bcntrld);
|
|
/* Link to the previous slot if not the last set */
|
|
if (i != (nslots - 1))
|
|
edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
|
|
}
|
|
|
|
edesc->processed += nslots;
|
|
|
|
/*
|
|
* If this is either the last set in a set of SG-list transactions
|
|
* then setup a link to the dummy slot, this results in all future
|
|
* events being absorbed and that's OK because we're done
|
|
*/
|
|
if (edesc->processed == edesc->pset_nr) {
|
|
if (edesc->cyclic)
|
|
edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
|
|
else
|
|
edma_link(ecc, echan->slot[nslots - 1],
|
|
echan->ecc->dummy_slot);
|
|
}
|
|
|
|
if (echan->missed) {
|
|
/*
|
|
* This happens due to setup times between intermediate
|
|
* transfers in long SG lists which have to be broken up into
|
|
* transfers of MAX_NR_SG
|
|
*/
|
|
dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
|
|
edma_clean_channel(echan);
|
|
edma_stop(echan);
|
|
edma_start(echan);
|
|
edma_trigger_channel(echan);
|
|
echan->missed = 0;
|
|
} else if (edesc->processed <= MAX_NR_SG) {
|
|
dev_dbg(dev, "first transfer starting on channel %d\n",
|
|
echan->ch_num);
|
|
edma_start(echan);
|
|
} else {
|
|
dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
|
|
echan->ch_num, edesc->processed);
|
|
edma_resume(echan);
|
|
}
|
|
}
|
|
|
|
static int edma_terminate_all(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
|
|
/*
|
|
* Stop DMA activity: we assume the callback will not be called
|
|
* after edma_dma() returns (even if it does, it will see
|
|
* echan->edesc is NULL and exit.)
|
|
*/
|
|
if (echan->edesc) {
|
|
edma_stop(echan);
|
|
/* Move the cyclic channel back to default queue */
|
|
if (!echan->tc && echan->edesc->cyclic)
|
|
edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
|
|
/*
|
|
* free the running request descriptor
|
|
* since it is not in any of the vdesc lists
|
|
*/
|
|
edma_desc_free(&echan->edesc->vdesc);
|
|
echan->edesc = NULL;
|
|
}
|
|
|
|
vchan_get_all_descriptors(&echan->vchan, &head);
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
vchan_dma_desc_free_list(&echan->vchan, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void edma_synchronize(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
vchan_synchronize(&echan->vchan);
|
|
}
|
|
|
|
static int edma_slave_config(struct dma_chan *chan,
|
|
struct dma_slave_config *cfg)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
|
|
cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
|
|
return -EINVAL;
|
|
|
|
memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edma_dma_pause(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
if (!echan->edesc)
|
|
return -EINVAL;
|
|
|
|
edma_pause(echan);
|
|
return 0;
|
|
}
|
|
|
|
static int edma_dma_resume(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
|
|
edma_resume(echan);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A PaRAM set configuration abstraction used by other modes
|
|
* @chan: Channel who's PaRAM set we're configuring
|
|
* @pset: PaRAM set to initialize and setup.
|
|
* @src_addr: Source address of the DMA
|
|
* @dst_addr: Destination address of the DMA
|
|
* @burst: In units of dev_width, how much to send
|
|
* @dev_width: How much is the dev_width
|
|
* @dma_length: Total length of the DMA transfer
|
|
* @direction: Direction of the transfer
|
|
*/
|
|
static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
|
|
dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
|
|
unsigned int acnt, unsigned int dma_length,
|
|
enum dma_transfer_direction direction)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edmacc_param *param = &epset->param;
|
|
int bcnt, ccnt, cidx;
|
|
int src_bidx, dst_bidx, src_cidx, dst_cidx;
|
|
int absync;
|
|
|
|
/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
|
|
if (!burst)
|
|
burst = 1;
|
|
/*
|
|
* If the maxburst is equal to the fifo width, use
|
|
* A-synced transfers. This allows for large contiguous
|
|
* buffer transfers using only one PaRAM set.
|
|
*/
|
|
if (burst == 1) {
|
|
/*
|
|
* For the A-sync case, bcnt and ccnt are the remainder
|
|
* and quotient respectively of the division of:
|
|
* (dma_length / acnt) by (SZ_64K -1). This is so
|
|
* that in case bcnt over flows, we have ccnt to use.
|
|
* Note: In A-sync tranfer only, bcntrld is used, but it
|
|
* only applies for sg_dma_len(sg) >= SZ_64K.
|
|
* In this case, the best way adopted is- bccnt for the
|
|
* first frame will be the remainder below. Then for
|
|
* every successive frame, bcnt will be SZ_64K-1. This
|
|
* is assured as bcntrld = 0xffff in end of function.
|
|
*/
|
|
absync = false;
|
|
ccnt = dma_length / acnt / (SZ_64K - 1);
|
|
bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
|
|
/*
|
|
* If bcnt is non-zero, we have a remainder and hence an
|
|
* extra frame to transfer, so increment ccnt.
|
|
*/
|
|
if (bcnt)
|
|
ccnt++;
|
|
else
|
|
bcnt = SZ_64K - 1;
|
|
cidx = acnt;
|
|
} else {
|
|
/*
|
|
* If maxburst is greater than the fifo address_width,
|
|
* use AB-synced transfers where A count is the fifo
|
|
* address_width and B count is the maxburst. In this
|
|
* case, we are limited to transfers of C count frames
|
|
* of (address_width * maxburst) where C count is limited
|
|
* to SZ_64K-1. This places an upper bound on the length
|
|
* of an SG segment that can be handled.
|
|
*/
|
|
absync = true;
|
|
bcnt = burst;
|
|
ccnt = dma_length / (acnt * bcnt);
|
|
if (ccnt > (SZ_64K - 1)) {
|
|
dev_err(dev, "Exceeded max SG segment size\n");
|
|
return -EINVAL;
|
|
}
|
|
cidx = acnt * bcnt;
|
|
}
|
|
|
|
epset->len = dma_length;
|
|
|
|
if (direction == DMA_MEM_TO_DEV) {
|
|
src_bidx = acnt;
|
|
src_cidx = cidx;
|
|
dst_bidx = 0;
|
|
dst_cidx = 0;
|
|
epset->addr = src_addr;
|
|
} else if (direction == DMA_DEV_TO_MEM) {
|
|
src_bidx = 0;
|
|
src_cidx = 0;
|
|
dst_bidx = acnt;
|
|
dst_cidx = cidx;
|
|
epset->addr = dst_addr;
|
|
} else if (direction == DMA_MEM_TO_MEM) {
|
|
src_bidx = acnt;
|
|
src_cidx = cidx;
|
|
dst_bidx = acnt;
|
|
dst_cidx = cidx;
|
|
} else {
|
|
dev_err(dev, "%s: direction not implemented yet\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
|
|
/* Configure A or AB synchronized transfers */
|
|
if (absync)
|
|
param->opt |= SYNCDIM;
|
|
|
|
param->src = src_addr;
|
|
param->dst = dst_addr;
|
|
|
|
param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
|
|
param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
|
|
|
|
param->a_b_cnt = bcnt << 16 | acnt;
|
|
param->ccnt = ccnt;
|
|
/*
|
|
* Only time when (bcntrld) auto reload is required is for
|
|
* A-sync case, and in this case, a requirement of reload value
|
|
* of SZ_64K-1 only is assured. 'link' is initially set to NULL
|
|
* and then later will be populated by edma_execute.
|
|
*/
|
|
param->link_bcntrld = 0xffffffff;
|
|
return absync;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *edma_prep_slave_sg(
|
|
struct dma_chan *chan, struct scatterlist *sgl,
|
|
unsigned int sg_len, enum dma_transfer_direction direction,
|
|
unsigned long tx_flags, void *context)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_desc *edesc;
|
|
dma_addr_t src_addr = 0, dst_addr = 0;
|
|
enum dma_slave_buswidth dev_width;
|
|
u32 burst;
|
|
struct scatterlist *sg;
|
|
int i, nslots, ret;
|
|
|
|
if (unlikely(!echan || !sgl || !sg_len))
|
|
return NULL;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
src_addr = echan->cfg.src_addr;
|
|
dev_width = echan->cfg.src_addr_width;
|
|
burst = echan->cfg.src_maxburst;
|
|
} else if (direction == DMA_MEM_TO_DEV) {
|
|
dst_addr = echan->cfg.dst_addr;
|
|
dev_width = echan->cfg.dst_addr_width;
|
|
burst = echan->cfg.dst_maxburst;
|
|
} else {
|
|
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
|
|
GFP_ATOMIC);
|
|
if (!edesc)
|
|
return NULL;
|
|
|
|
edesc->pset_nr = sg_len;
|
|
edesc->residue = 0;
|
|
edesc->direction = direction;
|
|
edesc->echan = echan;
|
|
|
|
/* Allocate a PaRAM slot, if needed */
|
|
nslots = min_t(unsigned, MAX_NR_SG, sg_len);
|
|
|
|
for (i = 0; i < nslots; i++) {
|
|
if (echan->slot[i] < 0) {
|
|
echan->slot[i] =
|
|
edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
|
|
if (echan->slot[i] < 0) {
|
|
kfree(edesc);
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Configure PaRAM sets for each SG */
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
/* Get address for each SG */
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
dst_addr = sg_dma_address(sg);
|
|
else
|
|
src_addr = sg_dma_address(sg);
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
|
|
dst_addr, burst, dev_width,
|
|
sg_dma_len(sg), direction);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->absync = ret;
|
|
edesc->residue += sg_dma_len(sg);
|
|
|
|
if (i == sg_len - 1)
|
|
/* Enable completion interrupt */
|
|
edesc->pset[i].param.opt |= TCINTEN;
|
|
else if (!((i+1) % MAX_NR_SG))
|
|
/*
|
|
* Enable early completion interrupt for the
|
|
* intermediateset. In this case the driver will be
|
|
* notified when the paRAM set is submitted to TC. This
|
|
* will allow more time to set up the next set of slots.
|
|
*/
|
|
edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
|
|
}
|
|
edesc->residue_stat = edesc->residue;
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
|
|
size_t len, unsigned long tx_flags)
|
|
{
|
|
int ret, nslots;
|
|
struct edma_desc *edesc;
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned int width, pset_len;
|
|
|
|
if (unlikely(!echan || !len))
|
|
return NULL;
|
|
|
|
if (len < SZ_64K) {
|
|
/*
|
|
* Transfer size less than 64K can be handled with one paRAM
|
|
* slot and with one burst.
|
|
* ACNT = length
|
|
*/
|
|
width = len;
|
|
pset_len = len;
|
|
nslots = 1;
|
|
} else {
|
|
/*
|
|
* Transfer size bigger than 64K will be handled with maximum of
|
|
* two paRAM slots.
|
|
* slot1: (full_length / 32767) times 32767 bytes bursts.
|
|
* ACNT = 32767, length1: (full_length / 32767) * 32767
|
|
* slot2: the remaining amount of data after slot1.
|
|
* ACNT = full_length - length1, length2 = ACNT
|
|
*
|
|
* When the full_length is multibple of 32767 one slot can be
|
|
* used to complete the transfer.
|
|
*/
|
|
width = SZ_32K - 1;
|
|
pset_len = rounddown(len, width);
|
|
/* One slot is enough for lengths multiple of (SZ_32K -1) */
|
|
if (unlikely(pset_len == len))
|
|
nslots = 1;
|
|
else
|
|
nslots = 2;
|
|
}
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
|
|
GFP_ATOMIC);
|
|
if (!edesc)
|
|
return NULL;
|
|
|
|
edesc->pset_nr = nslots;
|
|
edesc->residue = edesc->residue_stat = len;
|
|
edesc->direction = DMA_MEM_TO_MEM;
|
|
edesc->echan = echan;
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
|
|
width, pset_len, DMA_MEM_TO_MEM);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->absync = ret;
|
|
|
|
edesc->pset[0].param.opt |= ITCCHEN;
|
|
if (nslots == 1) {
|
|
/* Enable transfer complete interrupt */
|
|
edesc->pset[0].param.opt |= TCINTEN;
|
|
} else {
|
|
/* Enable transfer complete chaining for the first slot */
|
|
edesc->pset[0].param.opt |= TCCHEN;
|
|
|
|
if (echan->slot[1] < 0) {
|
|
echan->slot[1] = edma_alloc_slot(echan->ecc,
|
|
EDMA_SLOT_ANY);
|
|
if (echan->slot[1] < 0) {
|
|
kfree(edesc);
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
dest += pset_len;
|
|
src += pset_len;
|
|
pset_len = width = len % (SZ_32K - 1);
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
|
|
width, pset_len, DMA_MEM_TO_MEM);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
edesc->pset[1].param.opt |= ITCCHEN;
|
|
edesc->pset[1].param.opt |= TCINTEN;
|
|
}
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
|
|
struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
|
|
size_t period_len, enum dma_transfer_direction direction,
|
|
unsigned long tx_flags)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = chan->device->dev;
|
|
struct edma_desc *edesc;
|
|
dma_addr_t src_addr, dst_addr;
|
|
enum dma_slave_buswidth dev_width;
|
|
bool use_intermediate = false;
|
|
u32 burst;
|
|
int i, ret, nslots;
|
|
|
|
if (unlikely(!echan || !buf_len || !period_len))
|
|
return NULL;
|
|
|
|
if (direction == DMA_DEV_TO_MEM) {
|
|
src_addr = echan->cfg.src_addr;
|
|
dst_addr = buf_addr;
|
|
dev_width = echan->cfg.src_addr_width;
|
|
burst = echan->cfg.src_maxburst;
|
|
} else if (direction == DMA_MEM_TO_DEV) {
|
|
src_addr = buf_addr;
|
|
dst_addr = echan->cfg.dst_addr;
|
|
dev_width = echan->cfg.dst_addr_width;
|
|
burst = echan->cfg.dst_maxburst;
|
|
} else {
|
|
dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
|
|
dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(buf_len % period_len)) {
|
|
dev_err(dev, "Period should be multiple of Buffer length\n");
|
|
return NULL;
|
|
}
|
|
|
|
nslots = (buf_len / period_len) + 1;
|
|
|
|
/*
|
|
* Cyclic DMA users such as audio cannot tolerate delays introduced
|
|
* by cases where the number of periods is more than the maximum
|
|
* number of SGs the EDMA driver can handle at a time. For DMA types
|
|
* such as Slave SGs, such delays are tolerable and synchronized,
|
|
* but the synchronization is difficult to achieve with Cyclic and
|
|
* cannot be guaranteed, so we error out early.
|
|
*/
|
|
if (nslots > MAX_NR_SG) {
|
|
/*
|
|
* If the burst and period sizes are the same, we can put
|
|
* the full buffer into a single period and activate
|
|
* intermediate interrupts. This will produce interrupts
|
|
* after each burst, which is also after each desired period.
|
|
*/
|
|
if (burst == period_len) {
|
|
period_len = buf_len;
|
|
nslots = 2;
|
|
use_intermediate = true;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
|
|
GFP_ATOMIC);
|
|
if (!edesc)
|
|
return NULL;
|
|
|
|
edesc->cyclic = 1;
|
|
edesc->pset_nr = nslots;
|
|
edesc->residue = edesc->residue_stat = buf_len;
|
|
edesc->direction = direction;
|
|
edesc->echan = echan;
|
|
|
|
dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
|
|
__func__, echan->ch_num, nslots, period_len, buf_len);
|
|
|
|
for (i = 0; i < nslots; i++) {
|
|
/* Allocate a PaRAM slot, if needed */
|
|
if (echan->slot[i] < 0) {
|
|
echan->slot[i] =
|
|
edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
|
|
if (echan->slot[i] < 0) {
|
|
kfree(edesc);
|
|
dev_err(dev, "%s: Failed to allocate slot\n",
|
|
__func__);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (i == nslots - 1) {
|
|
memcpy(&edesc->pset[i], &edesc->pset[0],
|
|
sizeof(edesc->pset[0]));
|
|
break;
|
|
}
|
|
|
|
ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
|
|
dst_addr, burst, dev_width, period_len,
|
|
direction);
|
|
if (ret < 0) {
|
|
kfree(edesc);
|
|
return NULL;
|
|
}
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
dst_addr += period_len;
|
|
else
|
|
src_addr += period_len;
|
|
|
|
dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
|
|
dev_vdbg(dev,
|
|
"\n pset[%d]:\n"
|
|
" chnum\t%d\n"
|
|
" slot\t%d\n"
|
|
" opt\t%08x\n"
|
|
" src\t%08x\n"
|
|
" dst\t%08x\n"
|
|
" abcnt\t%08x\n"
|
|
" ccnt\t%08x\n"
|
|
" bidx\t%08x\n"
|
|
" cidx\t%08x\n"
|
|
" lkrld\t%08x\n",
|
|
i, echan->ch_num, echan->slot[i],
|
|
edesc->pset[i].param.opt,
|
|
edesc->pset[i].param.src,
|
|
edesc->pset[i].param.dst,
|
|
edesc->pset[i].param.a_b_cnt,
|
|
edesc->pset[i].param.ccnt,
|
|
edesc->pset[i].param.src_dst_bidx,
|
|
edesc->pset[i].param.src_dst_cidx,
|
|
edesc->pset[i].param.link_bcntrld);
|
|
|
|
edesc->absync = ret;
|
|
|
|
/*
|
|
* Enable period interrupt only if it is requested
|
|
*/
|
|
if (tx_flags & DMA_PREP_INTERRUPT) {
|
|
edesc->pset[i].param.opt |= TCINTEN;
|
|
|
|
/* Also enable intermediate interrupts if necessary */
|
|
if (use_intermediate)
|
|
edesc->pset[i].param.opt |= ITCINTEN;
|
|
}
|
|
}
|
|
|
|
/* Place the cyclic channel to highest priority queue */
|
|
if (!echan->tc)
|
|
edma_assign_channel_eventq(echan, EVENTQ_0);
|
|
|
|
return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
|
|
}
|
|
|
|
static void edma_completion_handler(struct edma_chan *echan)
|
|
{
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
struct edma_desc *edesc;
|
|
|
|
spin_lock(&echan->vchan.lock);
|
|
edesc = echan->edesc;
|
|
if (edesc) {
|
|
if (edesc->cyclic) {
|
|
vchan_cyclic_callback(&edesc->vdesc);
|
|
spin_unlock(&echan->vchan.lock);
|
|
return;
|
|
} else if (edesc->processed == edesc->pset_nr) {
|
|
edesc->residue = 0;
|
|
edma_stop(echan);
|
|
vchan_cookie_complete(&edesc->vdesc);
|
|
echan->edesc = NULL;
|
|
|
|
dev_dbg(dev, "Transfer completed on channel %d\n",
|
|
echan->ch_num);
|
|
} else {
|
|
dev_dbg(dev, "Sub transfer completed on channel %d\n",
|
|
echan->ch_num);
|
|
|
|
edma_pause(echan);
|
|
|
|
/* Update statistics for tx_status */
|
|
edesc->residue -= edesc->sg_len;
|
|
edesc->residue_stat = edesc->residue;
|
|
edesc->processed_stat = edesc->processed;
|
|
}
|
|
edma_execute(echan);
|
|
}
|
|
|
|
spin_unlock(&echan->vchan.lock);
|
|
}
|
|
|
|
/* eDMA interrupt handler */
|
|
static irqreturn_t dma_irq_handler(int irq, void *data)
|
|
{
|
|
struct edma_cc *ecc = data;
|
|
int ctlr;
|
|
u32 sh_ier;
|
|
u32 sh_ipr;
|
|
u32 bank;
|
|
|
|
ctlr = ecc->id;
|
|
if (ctlr < 0)
|
|
return IRQ_NONE;
|
|
|
|
dev_vdbg(ecc->dev, "dma_irq_handler\n");
|
|
|
|
sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
|
|
if (!sh_ipr) {
|
|
sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
|
|
if (!sh_ipr)
|
|
return IRQ_NONE;
|
|
sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
|
|
bank = 1;
|
|
} else {
|
|
sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
|
|
bank = 0;
|
|
}
|
|
|
|
do {
|
|
u32 slot;
|
|
u32 channel;
|
|
|
|
slot = __ffs(sh_ipr);
|
|
sh_ipr &= ~(BIT(slot));
|
|
|
|
if (sh_ier & BIT(slot)) {
|
|
channel = (bank << 5) | slot;
|
|
/* Clear the corresponding IPR bits */
|
|
edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
|
|
edma_completion_handler(&ecc->slave_chans[channel]);
|
|
}
|
|
} while (sh_ipr);
|
|
|
|
edma_shadow0_write(ecc, SH_IEVAL, 1);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void edma_error_handler(struct edma_chan *echan)
|
|
{
|
|
struct edma_cc *ecc = echan->ecc;
|
|
struct device *dev = echan->vchan.chan.device->dev;
|
|
struct edmacc_param p;
|
|
int err;
|
|
|
|
if (!echan->edesc)
|
|
return;
|
|
|
|
spin_lock(&echan->vchan.lock);
|
|
|
|
err = edma_read_slot(ecc, echan->slot[0], &p);
|
|
|
|
/*
|
|
* Issue later based on missed flag which will be sure
|
|
* to happen as:
|
|
* (1) we finished transmitting an intermediate slot and
|
|
* edma_execute is coming up.
|
|
* (2) or we finished current transfer and issue will
|
|
* call edma_execute.
|
|
*
|
|
* Important note: issuing can be dangerous here and
|
|
* lead to some nasty recursion when we are in a NULL
|
|
* slot. So we avoid doing so and set the missed flag.
|
|
*/
|
|
if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
|
|
dev_dbg(dev, "Error on null slot, setting miss\n");
|
|
echan->missed = 1;
|
|
} else {
|
|
/*
|
|
* The slot is already programmed but the event got
|
|
* missed, so its safe to issue it here.
|
|
*/
|
|
dev_dbg(dev, "Missed event, TRIGGERING\n");
|
|
edma_clean_channel(echan);
|
|
edma_stop(echan);
|
|
edma_start(echan);
|
|
edma_trigger_channel(echan);
|
|
}
|
|
spin_unlock(&echan->vchan.lock);
|
|
}
|
|
|
|
static inline bool edma_error_pending(struct edma_cc *ecc)
|
|
{
|
|
if (edma_read_array(ecc, EDMA_EMR, 0) ||
|
|
edma_read_array(ecc, EDMA_EMR, 1) ||
|
|
edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* eDMA error interrupt handler */
|
|
static irqreturn_t dma_ccerr_handler(int irq, void *data)
|
|
{
|
|
struct edma_cc *ecc = data;
|
|
int i, j;
|
|
int ctlr;
|
|
unsigned int cnt = 0;
|
|
unsigned int val;
|
|
|
|
ctlr = ecc->id;
|
|
if (ctlr < 0)
|
|
return IRQ_NONE;
|
|
|
|
dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
|
|
|
|
if (!edma_error_pending(ecc)) {
|
|
/*
|
|
* The registers indicate no pending error event but the irq
|
|
* handler has been called.
|
|
* Ask eDMA to re-evaluate the error registers.
|
|
*/
|
|
dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
|
|
__func__);
|
|
edma_write(ecc, EDMA_EEVAL, 1);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
while (1) {
|
|
/* Event missed register(s) */
|
|
for (j = 0; j < 2; j++) {
|
|
unsigned long emr;
|
|
|
|
val = edma_read_array(ecc, EDMA_EMR, j);
|
|
if (!val)
|
|
continue;
|
|
|
|
dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
|
|
emr = val;
|
|
for (i = find_next_bit(&emr, 32, 0); i < 32;
|
|
i = find_next_bit(&emr, 32, i + 1)) {
|
|
int k = (j << 5) + i;
|
|
|
|
/* Clear the corresponding EMR bits */
|
|
edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
|
|
/* Clear any SER */
|
|
edma_shadow0_write_array(ecc, SH_SECR, j,
|
|
BIT(i));
|
|
edma_error_handler(&ecc->slave_chans[k]);
|
|
}
|
|
}
|
|
|
|
val = edma_read(ecc, EDMA_QEMR);
|
|
if (val) {
|
|
dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
|
|
/* Not reported, just clear the interrupt reason. */
|
|
edma_write(ecc, EDMA_QEMCR, val);
|
|
edma_shadow0_write(ecc, SH_QSECR, val);
|
|
}
|
|
|
|
val = edma_read(ecc, EDMA_CCERR);
|
|
if (val) {
|
|
dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
|
|
/* Not reported, just clear the interrupt reason. */
|
|
edma_write(ecc, EDMA_CCERRCLR, val);
|
|
}
|
|
|
|
if (!edma_error_pending(ecc))
|
|
break;
|
|
cnt++;
|
|
if (cnt > 10)
|
|
break;
|
|
}
|
|
edma_write(ecc, EDMA_EEVAL, 1);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Alloc channel resources */
|
|
static int edma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct edma_cc *ecc = echan->ecc;
|
|
struct device *dev = ecc->dev;
|
|
enum dma_event_q eventq_no = EVENTQ_DEFAULT;
|
|
int ret;
|
|
|
|
if (echan->tc) {
|
|
eventq_no = echan->tc->id;
|
|
} else if (ecc->tc_list) {
|
|
/* memcpy channel */
|
|
echan->tc = &ecc->tc_list[ecc->info->default_queue];
|
|
eventq_no = echan->tc->id;
|
|
}
|
|
|
|
ret = edma_alloc_channel(echan, eventq_no);
|
|
if (ret)
|
|
return ret;
|
|
|
|
echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
|
|
if (echan->slot[0] < 0) {
|
|
dev_err(dev, "Entry slot allocation failed for channel %u\n",
|
|
EDMA_CHAN_SLOT(echan->ch_num));
|
|
goto err_slot;
|
|
}
|
|
|
|
/* Set up channel -> slot mapping for the entry slot */
|
|
edma_set_chmap(echan, echan->slot[0]);
|
|
echan->alloced = true;
|
|
|
|
dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
|
|
EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
|
|
echan->hw_triggered ? "HW" : "SW");
|
|
|
|
return 0;
|
|
|
|
err_slot:
|
|
edma_free_channel(echan);
|
|
return ret;
|
|
}
|
|
|
|
/* Free channel resources */
|
|
static void edma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct device *dev = echan->ecc->dev;
|
|
int i;
|
|
|
|
/* Terminate transfers */
|
|
edma_stop(echan);
|
|
|
|
vchan_free_chan_resources(&echan->vchan);
|
|
|
|
/* Free EDMA PaRAM slots */
|
|
for (i = 0; i < EDMA_MAX_SLOTS; i++) {
|
|
if (echan->slot[i] >= 0) {
|
|
edma_free_slot(echan->ecc, echan->slot[i]);
|
|
echan->slot[i] = -1;
|
|
}
|
|
}
|
|
|
|
/* Set entry slot to the dummy slot */
|
|
edma_set_chmap(echan, echan->ecc->dummy_slot);
|
|
|
|
/* Free EDMA channel */
|
|
if (echan->alloced) {
|
|
edma_free_channel(echan);
|
|
echan->alloced = false;
|
|
}
|
|
|
|
echan->tc = NULL;
|
|
echan->hw_triggered = false;
|
|
|
|
dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
|
|
EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
|
|
}
|
|
|
|
/* Send pending descriptor to hardware */
|
|
static void edma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
|
|
edma_execute(echan);
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This limit exists to avoid a possible infinite loop when waiting for proof
|
|
* that a particular transfer is completed. This limit can be hit if there
|
|
* are large bursts to/from slow devices or the CPU is never able to catch
|
|
* the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
|
|
* RX-FIFO, as many as 55 loops have been seen.
|
|
*/
|
|
#define EDMA_MAX_TR_WAIT_LOOPS 1000
|
|
|
|
static u32 edma_residue(struct edma_desc *edesc)
|
|
{
|
|
bool dst = edesc->direction == DMA_DEV_TO_MEM;
|
|
int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
|
|
struct edma_chan *echan = edesc->echan;
|
|
struct edma_pset *pset = edesc->pset;
|
|
dma_addr_t done, pos;
|
|
int i;
|
|
|
|
/*
|
|
* We always read the dst/src position from the first RamPar
|
|
* pset. That's the one which is active now.
|
|
*/
|
|
pos = edma_get_position(echan->ecc, echan->slot[0], dst);
|
|
|
|
/*
|
|
* "pos" may represent a transfer request that is still being
|
|
* processed by the EDMACC or EDMATC. We will busy wait until
|
|
* any one of the situations occurs:
|
|
* 1. the DMA hardware is idle
|
|
* 2. a new transfer request is setup
|
|
* 3. we hit the loop limit
|
|
*/
|
|
while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
|
|
/* check if a new transfer request is setup */
|
|
if (edma_get_position(echan->ecc,
|
|
echan->slot[0], dst) != pos) {
|
|
break;
|
|
}
|
|
|
|
if (!--loop_count) {
|
|
dev_dbg_ratelimited(echan->vchan.chan.device->dev,
|
|
"%s: timeout waiting for PaRAM update\n",
|
|
__func__);
|
|
break;
|
|
}
|
|
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* Cyclic is simple. Just subtract pset[0].addr from pos.
|
|
*
|
|
* We never update edesc->residue in the cyclic case, so we
|
|
* can tell the remaining room to the end of the circular
|
|
* buffer.
|
|
*/
|
|
if (edesc->cyclic) {
|
|
done = pos - pset->addr;
|
|
edesc->residue_stat = edesc->residue - done;
|
|
return edesc->residue_stat;
|
|
}
|
|
|
|
/*
|
|
* For SG operation we catch up with the last processed
|
|
* status.
|
|
*/
|
|
pset += edesc->processed_stat;
|
|
|
|
for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
|
|
/*
|
|
* If we are inside this pset address range, we know
|
|
* this is the active one. Get the current delta and
|
|
* stop walking the psets.
|
|
*/
|
|
if (pos >= pset->addr && pos < pset->addr + pset->len)
|
|
return edesc->residue_stat - (pos - pset->addr);
|
|
|
|
/* Otherwise mark it done and update residue_stat. */
|
|
edesc->processed_stat++;
|
|
edesc->residue_stat -= pset->len;
|
|
}
|
|
return edesc->residue_stat;
|
|
}
|
|
|
|
/* Check request completion status */
|
|
static enum dma_status edma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
struct virt_dma_desc *vdesc;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret == DMA_COMPLETE || !txstate)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&echan->vchan.lock, flags);
|
|
if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
|
|
txstate->residue = edma_residue(echan->edesc);
|
|
else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
|
|
txstate->residue = to_edma_desc(&vdesc->tx)->residue;
|
|
spin_unlock_irqrestore(&echan->vchan.lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
|
|
{
|
|
if (!memcpy_channels)
|
|
return false;
|
|
while (*memcpy_channels != -1) {
|
|
if (*memcpy_channels == ch_num)
|
|
return true;
|
|
memcpy_channels++;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
|
|
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
|
|
|
|
static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
|
|
{
|
|
struct dma_device *s_ddev = &ecc->dma_slave;
|
|
struct dma_device *m_ddev = NULL;
|
|
s32 *memcpy_channels = ecc->info->memcpy_channels;
|
|
int i, j;
|
|
|
|
dma_cap_zero(s_ddev->cap_mask);
|
|
dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
|
|
if (ecc->legacy_mode && !memcpy_channels) {
|
|
dev_warn(ecc->dev,
|
|
"Legacy memcpy is enabled, things might not work\n");
|
|
|
|
dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
|
|
s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
|
|
s_ddev->directions = BIT(DMA_MEM_TO_MEM);
|
|
}
|
|
|
|
s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
|
|
s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
|
|
s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
|
|
s_ddev->device_free_chan_resources = edma_free_chan_resources;
|
|
s_ddev->device_issue_pending = edma_issue_pending;
|
|
s_ddev->device_tx_status = edma_tx_status;
|
|
s_ddev->device_config = edma_slave_config;
|
|
s_ddev->device_pause = edma_dma_pause;
|
|
s_ddev->device_resume = edma_dma_resume;
|
|
s_ddev->device_terminate_all = edma_terminate_all;
|
|
s_ddev->device_synchronize = edma_synchronize;
|
|
|
|
s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
|
|
s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
|
|
s_ddev->dev = ecc->dev;
|
|
INIT_LIST_HEAD(&s_ddev->channels);
|
|
|
|
if (memcpy_channels) {
|
|
m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
|
|
ecc->dma_memcpy = m_ddev;
|
|
|
|
dma_cap_zero(m_ddev->cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
|
|
|
|
m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
|
|
m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
|
|
m_ddev->device_free_chan_resources = edma_free_chan_resources;
|
|
m_ddev->device_issue_pending = edma_issue_pending;
|
|
m_ddev->device_tx_status = edma_tx_status;
|
|
m_ddev->device_config = edma_slave_config;
|
|
m_ddev->device_pause = edma_dma_pause;
|
|
m_ddev->device_resume = edma_dma_resume;
|
|
m_ddev->device_terminate_all = edma_terminate_all;
|
|
m_ddev->device_synchronize = edma_synchronize;
|
|
|
|
m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
|
|
m_ddev->directions = BIT(DMA_MEM_TO_MEM);
|
|
m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
|
|
|
|
m_ddev->dev = ecc->dev;
|
|
INIT_LIST_HEAD(&m_ddev->channels);
|
|
} else if (!ecc->legacy_mode) {
|
|
dev_info(ecc->dev, "memcpy is disabled\n");
|
|
}
|
|
|
|
for (i = 0; i < ecc->num_channels; i++) {
|
|
struct edma_chan *echan = &ecc->slave_chans[i];
|
|
echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
|
|
echan->ecc = ecc;
|
|
echan->vchan.desc_free = edma_desc_free;
|
|
|
|
if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
|
|
vchan_init(&echan->vchan, m_ddev);
|
|
else
|
|
vchan_init(&echan->vchan, s_ddev);
|
|
|
|
INIT_LIST_HEAD(&echan->node);
|
|
for (j = 0; j < EDMA_MAX_SLOTS; j++)
|
|
echan->slot[j] = -1;
|
|
}
|
|
}
|
|
|
|
static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
|
|
struct edma_cc *ecc)
|
|
{
|
|
int i;
|
|
u32 value, cccfg;
|
|
s8 (*queue_priority_map)[2];
|
|
|
|
/* Decode the eDMA3 configuration from CCCFG register */
|
|
cccfg = edma_read(ecc, EDMA_CCCFG);
|
|
|
|
value = GET_NUM_REGN(cccfg);
|
|
ecc->num_region = BIT(value);
|
|
|
|
value = GET_NUM_DMACH(cccfg);
|
|
ecc->num_channels = BIT(value + 1);
|
|
|
|
value = GET_NUM_QDMACH(cccfg);
|
|
ecc->num_qchannels = value * 2;
|
|
|
|
value = GET_NUM_PAENTRY(cccfg);
|
|
ecc->num_slots = BIT(value + 4);
|
|
|
|
value = GET_NUM_EVQUE(cccfg);
|
|
ecc->num_tc = value + 1;
|
|
|
|
ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
|
|
|
|
dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
|
|
dev_dbg(dev, "num_region: %u\n", ecc->num_region);
|
|
dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
|
|
dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
|
|
dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
|
|
dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
|
|
dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
|
|
|
|
/* Nothing need to be done if queue priority is provided */
|
|
if (pdata->queue_priority_mapping)
|
|
return 0;
|
|
|
|
/*
|
|
* Configure TC/queue priority as follows:
|
|
* Q0 - priority 0
|
|
* Q1 - priority 1
|
|
* Q2 - priority 2
|
|
* ...
|
|
* The meaning of priority numbers: 0 highest priority, 7 lowest
|
|
* priority. So Q0 is the highest priority queue and the last queue has
|
|
* the lowest priority.
|
|
*/
|
|
queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
|
|
GFP_KERNEL);
|
|
if (!queue_priority_map)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ecc->num_tc; i++) {
|
|
queue_priority_map[i][0] = i;
|
|
queue_priority_map[i][1] = i;
|
|
}
|
|
queue_priority_map[i][0] = -1;
|
|
queue_priority_map[i][1] = -1;
|
|
|
|
pdata->queue_priority_mapping = queue_priority_map;
|
|
/* Default queue has the lowest priority */
|
|
pdata->default_queue = i - 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_OF)
|
|
static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
|
|
size_t sz)
|
|
{
|
|
const char pname[] = "ti,edma-xbar-event-map";
|
|
struct resource res;
|
|
void __iomem *xbar;
|
|
s16 (*xbar_chans)[2];
|
|
size_t nelm = sz / sizeof(s16);
|
|
u32 shift, offset, mux;
|
|
int ret, i;
|
|
|
|
xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
|
|
if (!xbar_chans)
|
|
return -ENOMEM;
|
|
|
|
ret = of_address_to_resource(dev->of_node, 1, &res);
|
|
if (ret)
|
|
return -ENOMEM;
|
|
|
|
xbar = devm_ioremap(dev, res.start, resource_size(&res));
|
|
if (!xbar)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
|
|
nelm);
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
/* Invalidate last entry for the other user of this mess */
|
|
nelm >>= 1;
|
|
xbar_chans[nelm][0] = -1;
|
|
xbar_chans[nelm][1] = -1;
|
|
|
|
for (i = 0; i < nelm; i++) {
|
|
shift = (xbar_chans[i][1] & 0x03) << 3;
|
|
offset = xbar_chans[i][1] & 0xfffffffc;
|
|
mux = readl(xbar + offset);
|
|
mux &= ~(0xff << shift);
|
|
mux |= xbar_chans[i][0] << shift;
|
|
writel(mux, (xbar + offset));
|
|
}
|
|
|
|
pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
|
|
return 0;
|
|
}
|
|
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
bool legacy_mode)
|
|
{
|
|
struct edma_soc_info *info;
|
|
struct property *prop;
|
|
int sz, ret;
|
|
|
|
info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (legacy_mode) {
|
|
prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
|
|
&sz);
|
|
if (prop) {
|
|
ret = edma_xbar_event_map(dev, info, sz);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
return info;
|
|
}
|
|
|
|
/* Get the list of channels allocated to be used for memcpy */
|
|
prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
|
|
if (prop) {
|
|
const char pname[] = "ti,edma-memcpy-channels";
|
|
size_t nelm = sz / sizeof(s32);
|
|
s32 *memcpy_ch;
|
|
|
|
memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
|
|
GFP_KERNEL);
|
|
if (!memcpy_ch)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
ret = of_property_read_u32_array(dev->of_node, pname,
|
|
(u32 *)memcpy_ch, nelm);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
memcpy_ch[nelm] = -1;
|
|
info->memcpy_channels = memcpy_ch;
|
|
}
|
|
|
|
prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
|
|
&sz);
|
|
if (prop) {
|
|
const char pname[] = "ti,edma-reserved-slot-ranges";
|
|
u32 (*tmp)[2];
|
|
s16 (*rsv_slots)[2];
|
|
size_t nelm = sz / sizeof(*tmp);
|
|
struct edma_rsv_info *rsv_info;
|
|
int i;
|
|
|
|
if (!nelm)
|
|
return info;
|
|
|
|
tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
|
|
if (!tmp)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
|
|
if (!rsv_info) {
|
|
kfree(tmp);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
|
|
GFP_KERNEL);
|
|
if (!rsv_slots) {
|
|
kfree(tmp);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ret = of_property_read_u32_array(dev->of_node, pname,
|
|
(u32 *)tmp, nelm * 2);
|
|
if (ret) {
|
|
kfree(tmp);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
for (i = 0; i < nelm; i++) {
|
|
rsv_slots[i][0] = tmp[i][0];
|
|
rsv_slots[i][1] = tmp[i][1];
|
|
}
|
|
rsv_slots[nelm][0] = -1;
|
|
rsv_slots[nelm][1] = -1;
|
|
|
|
info->rsv = rsv_info;
|
|
info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
|
|
|
|
kfree(tmp);
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
struct edma_cc *ecc = ofdma->of_dma_data;
|
|
struct dma_chan *chan = NULL;
|
|
struct edma_chan *echan;
|
|
int i;
|
|
|
|
if (!ecc || dma_spec->args_count < 1)
|
|
return NULL;
|
|
|
|
for (i = 0; i < ecc->num_channels; i++) {
|
|
echan = &ecc->slave_chans[i];
|
|
if (echan->ch_num == dma_spec->args[0]) {
|
|
chan = &echan->vchan.chan;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!chan)
|
|
return NULL;
|
|
|
|
if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
|
|
goto out;
|
|
|
|
if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
|
|
dma_spec->args[1] < echan->ecc->num_tc) {
|
|
echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
|
|
goto out;
|
|
}
|
|
|
|
return NULL;
|
|
out:
|
|
/* The channel is going to be used as HW synchronized */
|
|
echan->hw_triggered = true;
|
|
return dma_get_slave_channel(chan);
|
|
}
|
|
#else
|
|
static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
|
|
bool legacy_mode)
|
|
{
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
|
|
struct of_dma *ofdma)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static int edma_probe(struct platform_device *pdev)
|
|
{
|
|
struct edma_soc_info *info = pdev->dev.platform_data;
|
|
s8 (*queue_priority_mapping)[2];
|
|
int i, off, ln;
|
|
const s16 (*rsv_slots)[2];
|
|
const s16 (*xbar_chans)[2];
|
|
int irq;
|
|
char *irq_name;
|
|
struct resource *mem;
|
|
struct device_node *node = pdev->dev.of_node;
|
|
struct device *dev = &pdev->dev;
|
|
struct edma_cc *ecc;
|
|
bool legacy_mode = true;
|
|
int ret;
|
|
|
|
if (node) {
|
|
const struct of_device_id *match;
|
|
|
|
match = of_match_node(edma_of_ids, node);
|
|
if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
|
|
legacy_mode = false;
|
|
|
|
info = edma_setup_info_from_dt(dev, legacy_mode);
|
|
if (IS_ERR(info)) {
|
|
dev_err(dev, "failed to get DT data\n");
|
|
return PTR_ERR(info);
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
return -ENODEV;
|
|
|
|
pm_runtime_enable(dev);
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "pm_runtime_get_sync() failed\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
|
|
if (!ecc)
|
|
return -ENOMEM;
|
|
|
|
ecc->dev = dev;
|
|
ecc->id = pdev->id;
|
|
ecc->legacy_mode = legacy_mode;
|
|
/* When booting with DT the pdev->id is -1 */
|
|
if (ecc->id < 0)
|
|
ecc->id = 0;
|
|
|
|
mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
|
|
if (!mem) {
|
|
dev_dbg(dev, "mem resource not found, using index 0\n");
|
|
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!mem) {
|
|
dev_err(dev, "no mem resource?\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
ecc->base = devm_ioremap_resource(dev, mem);
|
|
if (IS_ERR(ecc->base))
|
|
return PTR_ERR(ecc->base);
|
|
|
|
platform_set_drvdata(pdev, ecc);
|
|
|
|
/* Get eDMA3 configuration from IP */
|
|
ret = edma_setup_from_hw(dev, info, ecc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Allocate memory based on the information we got from the IP */
|
|
ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
|
|
sizeof(*ecc->slave_chans), GFP_KERNEL);
|
|
if (!ecc->slave_chans)
|
|
return -ENOMEM;
|
|
|
|
ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
|
|
sizeof(unsigned long), GFP_KERNEL);
|
|
if (!ecc->slot_inuse)
|
|
return -ENOMEM;
|
|
|
|
ecc->default_queue = info->default_queue;
|
|
|
|
for (i = 0; i < ecc->num_slots; i++)
|
|
edma_write_slot(ecc, i, &dummy_paramset);
|
|
|
|
if (info->rsv) {
|
|
/* Set the reserved slots in inuse list */
|
|
rsv_slots = info->rsv->rsv_slots;
|
|
if (rsv_slots) {
|
|
for (i = 0; rsv_slots[i][0] != -1; i++) {
|
|
off = rsv_slots[i][0];
|
|
ln = rsv_slots[i][1];
|
|
edma_set_bits(off, ln, ecc->slot_inuse);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Clear the xbar mapped channels in unused list */
|
|
xbar_chans = info->xbar_chans;
|
|
if (xbar_chans) {
|
|
for (i = 0; xbar_chans[i][1] != -1; i++) {
|
|
off = xbar_chans[i][1];
|
|
}
|
|
}
|
|
|
|
irq = platform_get_irq_byname(pdev, "edma3_ccint");
|
|
if (irq < 0 && node)
|
|
irq = irq_of_parse_and_map(node, 0);
|
|
|
|
if (irq >= 0) {
|
|
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
|
|
dev_name(dev));
|
|
ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
|
|
ecc);
|
|
if (ret) {
|
|
dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
|
|
return ret;
|
|
}
|
|
ecc->ccint = irq;
|
|
}
|
|
|
|
irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
|
|
if (irq < 0 && node)
|
|
irq = irq_of_parse_and_map(node, 2);
|
|
|
|
if (irq >= 0) {
|
|
irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
|
|
dev_name(dev));
|
|
ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
|
|
ecc);
|
|
if (ret) {
|
|
dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
|
|
return ret;
|
|
}
|
|
ecc->ccerrint = irq;
|
|
}
|
|
|
|
ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
|
|
if (ecc->dummy_slot < 0) {
|
|
dev_err(dev, "Can't allocate PaRAM dummy slot\n");
|
|
return ecc->dummy_slot;
|
|
}
|
|
|
|
queue_priority_mapping = info->queue_priority_mapping;
|
|
|
|
if (!ecc->legacy_mode) {
|
|
int lowest_priority = 0;
|
|
struct of_phandle_args tc_args;
|
|
|
|
ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
|
|
sizeof(*ecc->tc_list), GFP_KERNEL);
|
|
if (!ecc->tc_list)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0;; i++) {
|
|
ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
|
|
1, i, &tc_args);
|
|
if (ret || i == ecc->num_tc)
|
|
break;
|
|
|
|
ecc->tc_list[i].node = tc_args.np;
|
|
ecc->tc_list[i].id = i;
|
|
queue_priority_mapping[i][1] = tc_args.args[0];
|
|
if (queue_priority_mapping[i][1] > lowest_priority) {
|
|
lowest_priority = queue_priority_mapping[i][1];
|
|
info->default_queue = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Event queue priority mapping */
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
|
|
queue_priority_mapping[i][1]);
|
|
|
|
for (i = 0; i < ecc->num_region; i++) {
|
|
edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
|
|
edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
|
|
edma_write_array(ecc, EDMA_QRAE, i, 0x0);
|
|
}
|
|
ecc->info = info;
|
|
|
|
/* Init the dma device and channels */
|
|
edma_dma_init(ecc, legacy_mode);
|
|
|
|
for (i = 0; i < ecc->num_channels; i++) {
|
|
/* Assign all channels to the default queue */
|
|
edma_assign_channel_eventq(&ecc->slave_chans[i],
|
|
info->default_queue);
|
|
/* Set entry slot to the dummy slot */
|
|
edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
|
|
}
|
|
|
|
ecc->dma_slave.filter.map = info->slave_map;
|
|
ecc->dma_slave.filter.mapcnt = info->slavecnt;
|
|
ecc->dma_slave.filter.fn = edma_filter_fn;
|
|
|
|
ret = dma_async_device_register(&ecc->dma_slave);
|
|
if (ret) {
|
|
dev_err(dev, "slave ddev registration failed (%d)\n", ret);
|
|
goto err_reg1;
|
|
}
|
|
|
|
if (ecc->dma_memcpy) {
|
|
ret = dma_async_device_register(ecc->dma_memcpy);
|
|
if (ret) {
|
|
dev_err(dev, "memcpy ddev registration failed (%d)\n",
|
|
ret);
|
|
dma_async_device_unregister(&ecc->dma_slave);
|
|
goto err_reg1;
|
|
}
|
|
}
|
|
|
|
if (node)
|
|
of_dma_controller_register(node, of_edma_xlate, ecc);
|
|
|
|
dev_info(dev, "TI EDMA DMA engine driver\n");
|
|
|
|
return 0;
|
|
|
|
err_reg1:
|
|
edma_free_slot(ecc, ecc->dummy_slot);
|
|
return ret;
|
|
}
|
|
|
|
static void edma_cleanupp_vchan(struct dma_device *dmadev)
|
|
{
|
|
struct edma_chan *echan, *_echan;
|
|
|
|
list_for_each_entry_safe(echan, _echan,
|
|
&dmadev->channels, vchan.chan.device_node) {
|
|
list_del(&echan->vchan.chan.device_node);
|
|
tasklet_kill(&echan->vchan.task);
|
|
}
|
|
}
|
|
|
|
static int edma_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
|
|
devm_free_irq(dev, ecc->ccint, ecc);
|
|
devm_free_irq(dev, ecc->ccerrint, ecc);
|
|
|
|
edma_cleanupp_vchan(&ecc->dma_slave);
|
|
|
|
if (dev->of_node)
|
|
of_dma_controller_free(dev->of_node);
|
|
dma_async_device_unregister(&ecc->dma_slave);
|
|
if (ecc->dma_memcpy)
|
|
dma_async_device_unregister(ecc->dma_memcpy);
|
|
edma_free_slot(ecc, ecc->dummy_slot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int edma_pm_suspend(struct device *dev)
|
|
{
|
|
struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
struct edma_chan *echan = ecc->slave_chans;
|
|
int i;
|
|
|
|
for (i = 0; i < ecc->num_channels; i++) {
|
|
if (echan[i].alloced)
|
|
edma_setup_interrupt(&echan[i], false);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edma_pm_resume(struct device *dev)
|
|
{
|
|
struct edma_cc *ecc = dev_get_drvdata(dev);
|
|
struct edma_chan *echan = ecc->slave_chans;
|
|
int i;
|
|
s8 (*queue_priority_mapping)[2];
|
|
|
|
queue_priority_mapping = ecc->info->queue_priority_mapping;
|
|
|
|
/* Event queue priority mapping */
|
|
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
|
|
edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
|
|
queue_priority_mapping[i][1]);
|
|
|
|
for (i = 0; i < ecc->num_channels; i++) {
|
|
if (echan[i].alloced) {
|
|
/* ensure access through shadow region 0 */
|
|
edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
|
|
BIT(i & 0x1f));
|
|
|
|
edma_setup_interrupt(&echan[i], true);
|
|
|
|
/* Set up channel -> slot mapping for the entry slot */
|
|
edma_set_chmap(&echan[i], echan[i].slot[0]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops edma_pm_ops = {
|
|
SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
|
|
};
|
|
|
|
static struct platform_driver edma_driver = {
|
|
.probe = edma_probe,
|
|
.remove = edma_remove,
|
|
.driver = {
|
|
.name = "edma",
|
|
.pm = &edma_pm_ops,
|
|
.of_match_table = edma_of_ids,
|
|
},
|
|
};
|
|
|
|
static int edma_tptc_probe(struct platform_device *pdev)
|
|
{
|
|
pm_runtime_enable(&pdev->dev);
|
|
return pm_runtime_get_sync(&pdev->dev);
|
|
}
|
|
|
|
static struct platform_driver edma_tptc_driver = {
|
|
.probe = edma_tptc_probe,
|
|
.driver = {
|
|
.name = "edma3-tptc",
|
|
.of_match_table = edma_tptc_of_ids,
|
|
},
|
|
};
|
|
|
|
bool edma_filter_fn(struct dma_chan *chan, void *param)
|
|
{
|
|
bool match = false;
|
|
|
|
if (chan->device->dev->driver == &edma_driver.driver) {
|
|
struct edma_chan *echan = to_edma_chan(chan);
|
|
unsigned ch_req = *(unsigned *)param;
|
|
if (ch_req == echan->ch_num) {
|
|
/* The channel is going to be used as HW synchronized */
|
|
echan->hw_triggered = true;
|
|
match = true;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
EXPORT_SYMBOL(edma_filter_fn);
|
|
|
|
static int edma_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = platform_driver_register(&edma_tptc_driver);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return platform_driver_register(&edma_driver);
|
|
}
|
|
subsys_initcall(edma_init);
|
|
|
|
static void __exit edma_exit(void)
|
|
{
|
|
platform_driver_unregister(&edma_driver);
|
|
platform_driver_unregister(&edma_tptc_driver);
|
|
}
|
|
module_exit(edma_exit);
|
|
|
|
MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
|
|
MODULE_DESCRIPTION("TI EDMA DMA engine driver");
|
|
MODULE_LICENSE("GPL v2");
|