linux-stable/drivers/gpu/drm/xe/xe_gt.c

831 lines
18 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <linux/minmax.h>
#include <drm/drm_managed.h>
#include "xe_bb.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_engine.h"
#include "xe_execlist.h"
#include "xe_force_wake.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_gt_clock.h"
#include "xe_gt_mcr.h"
#include "xe_gt_pagefault.h"
#include "xe_gt_sysfs.h"
#include "xe_gt_topology.h"
#include "xe_hw_fence.h"
#include "xe_irq.h"
#include "xe_lrc.h"
#include "xe_map.h"
#include "xe_migrate.h"
#include "xe_mmio.h"
#include "xe_mocs.h"
#include "xe_reg_sr.h"
#include "xe_ring_ops.h"
#include "xe_sa.h"
#include "xe_sched_job.h"
#include "xe_ttm_gtt_mgr.h"
#include "xe_ttm_vram_mgr.h"
#include "xe_tuning.h"
#include "xe_uc.h"
#include "xe_vm.h"
#include "xe_wa.h"
#include "xe_wopcm.h"
#include "gt/intel_gt_regs.h"
struct xe_gt *xe_find_full_gt(struct xe_gt *gt)
{
struct xe_gt *search;
u8 id;
XE_BUG_ON(!xe_gt_is_media_type(gt));
for_each_gt(search, gt_to_xe(gt), id) {
if (search->info.vram_id == gt->info.vram_id)
return search;
}
XE_BUG_ON("NOT POSSIBLE");
return NULL;
}
int xe_gt_alloc(struct xe_device *xe, struct xe_gt *gt)
{
struct drm_device *drm = &xe->drm;
XE_BUG_ON(gt->info.type == XE_GT_TYPE_UNINITIALIZED);
if (!xe_gt_is_media_type(gt)) {
gt->mem.ggtt = drmm_kzalloc(drm, sizeof(*gt->mem.ggtt),
GFP_KERNEL);
if (!gt->mem.ggtt)
return -ENOMEM;
gt->mem.vram_mgr = drmm_kzalloc(drm, sizeof(*gt->mem.vram_mgr),
GFP_KERNEL);
if (!gt->mem.vram_mgr)
return -ENOMEM;
gt->mem.gtt_mgr = drmm_kzalloc(drm, sizeof(*gt->mem.gtt_mgr),
GFP_KERNEL);
if (!gt->mem.gtt_mgr)
return -ENOMEM;
} else {
struct xe_gt *full_gt = xe_find_full_gt(gt);
gt->mem.ggtt = full_gt->mem.ggtt;
gt->mem.vram_mgr = full_gt->mem.vram_mgr;
gt->mem.gtt_mgr = full_gt->mem.gtt_mgr;
}
gt->ordered_wq = alloc_ordered_workqueue("gt-ordered-wq", 0);
return 0;
}
/* FIXME: These should be in a common file */
#define CHV_PPAT_SNOOP REG_BIT(6)
#define GEN8_PPAT_AGE(x) ((x)<<4)
#define GEN8_PPAT_LLCeLLC (3<<2)
#define GEN8_PPAT_LLCELLC (2<<2)
#define GEN8_PPAT_LLC (1<<2)
#define GEN8_PPAT_WB (3<<0)
#define GEN8_PPAT_WT (2<<0)
#define GEN8_PPAT_WC (1<<0)
#define GEN8_PPAT_UC (0<<0)
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
#define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8))
#define GEN12_PPAT_CLOS(x) ((x)<<2)
static void tgl_setup_private_ppat(struct xe_gt *gt)
{
/* TGL doesn't support LLC or AGE settings */
xe_mmio_write32(gt, GEN12_PAT_INDEX(0).reg, GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(1).reg, GEN8_PPAT_WC);
xe_mmio_write32(gt, GEN12_PAT_INDEX(2).reg, GEN8_PPAT_WT);
xe_mmio_write32(gt, GEN12_PAT_INDEX(3).reg, GEN8_PPAT_UC);
xe_mmio_write32(gt, GEN12_PAT_INDEX(4).reg, GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(5).reg, GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(6).reg, GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(7).reg, GEN8_PPAT_WB);
}
static void pvc_setup_private_ppat(struct xe_gt *gt)
{
xe_mmio_write32(gt, GEN12_PAT_INDEX(0).reg, GEN8_PPAT_UC);
xe_mmio_write32(gt, GEN12_PAT_INDEX(1).reg, GEN8_PPAT_WC);
xe_mmio_write32(gt, GEN12_PAT_INDEX(2).reg, GEN8_PPAT_WT);
xe_mmio_write32(gt, GEN12_PAT_INDEX(3).reg, GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(4).reg,
GEN12_PPAT_CLOS(1) | GEN8_PPAT_WT);
xe_mmio_write32(gt, GEN12_PAT_INDEX(5).reg,
GEN12_PPAT_CLOS(1) | GEN8_PPAT_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(6).reg,
GEN12_PPAT_CLOS(2) | GEN8_PPAT_WT);
xe_mmio_write32(gt, GEN12_PAT_INDEX(7).reg,
GEN12_PPAT_CLOS(2) | GEN8_PPAT_WB);
}
#define MTL_PPAT_L4_CACHE_POLICY_MASK REG_GENMASK(3, 2)
#define MTL_PAT_INDEX_COH_MODE_MASK REG_GENMASK(1, 0)
#define MTL_PPAT_3_UC REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 3)
#define MTL_PPAT_1_WT REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 1)
#define MTL_PPAT_0_WB REG_FIELD_PREP(MTL_PPAT_L4_CACHE_POLICY_MASK, 0)
#define MTL_3_COH_2W REG_FIELD_PREP(MTL_PAT_INDEX_COH_MODE_MASK, 3)
#define MTL_2_COH_1W REG_FIELD_PREP(MTL_PAT_INDEX_COH_MODE_MASK, 2)
#define MTL_0_COH_NON REG_FIELD_PREP(MTL_PAT_INDEX_COH_MODE_MASK, 0)
static void mtl_setup_private_ppat(struct xe_gt *gt)
{
xe_mmio_write32(gt, GEN12_PAT_INDEX(0).reg, MTL_PPAT_0_WB);
xe_mmio_write32(gt, GEN12_PAT_INDEX(1).reg,
MTL_PPAT_1_WT | MTL_2_COH_1W);
xe_mmio_write32(gt, GEN12_PAT_INDEX(2).reg,
MTL_PPAT_3_UC | MTL_2_COH_1W);
xe_mmio_write32(gt, GEN12_PAT_INDEX(3).reg,
MTL_PPAT_0_WB | MTL_2_COH_1W);
xe_mmio_write32(gt, GEN12_PAT_INDEX(4).reg,
MTL_PPAT_0_WB | MTL_3_COH_2W);
}
static void setup_private_ppat(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
if (xe->info.platform == XE_METEORLAKE)
mtl_setup_private_ppat(gt);
else if (xe->info.platform == XE_PVC)
pvc_setup_private_ppat(gt);
else
tgl_setup_private_ppat(gt);
}
static int gt_ttm_mgr_init(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int err;
struct sysinfo si;
u64 gtt_size;
si_meminfo(&si);
gtt_size = (u64)si.totalram * si.mem_unit * 3/4;
if (gt->mem.vram.size) {
err = xe_ttm_vram_mgr_init(gt, gt->mem.vram_mgr);
if (err)
return err;
gtt_size = min(max((XE_DEFAULT_GTT_SIZE_MB << 20),
gt->mem.vram.size),
gtt_size);
xe->info.mem_region_mask |= BIT(gt->info.vram_id) << 1;
}
err = xe_ttm_gtt_mgr_init(gt, gt->mem.gtt_mgr, gtt_size);
if (err)
return err;
return 0;
}
static void gt_fini(struct drm_device *drm, void *arg)
{
struct xe_gt *gt = arg;
int i;
destroy_workqueue(gt->ordered_wq);
for (i = 0; i < XE_ENGINE_CLASS_MAX; ++i)
xe_hw_fence_irq_finish(&gt->fence_irq[i]);
}
static void gt_reset_worker(struct work_struct *w);
int emit_nop_job(struct xe_gt *gt, struct xe_engine *e)
{
struct xe_sched_job *job;
struct xe_bb *bb;
struct dma_fence *fence;
u64 batch_ofs;
long timeout;
bb = xe_bb_new(gt, 4, false);
if (IS_ERR(bb))
return PTR_ERR(bb);
batch_ofs = xe_bo_ggtt_addr(gt->kernel_bb_pool.bo);
job = xe_bb_create_wa_job(e, bb, batch_ofs);
if (IS_ERR(job)) {
xe_bb_free(bb, NULL);
return PTR_ERR(bb);
}
xe_sched_job_arm(job);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
timeout = dma_fence_wait_timeout(fence, false, HZ);
dma_fence_put(fence);
xe_bb_free(bb, NULL);
if (timeout < 0)
return timeout;
else if (!timeout)
return -ETIME;
return 0;
}
int emit_wa_job(struct xe_gt *gt, struct xe_engine *e)
{
struct xe_reg_sr *sr = &e->hwe->reg_lrc;
struct xe_reg_sr_entry *entry;
unsigned long reg;
struct xe_sched_job *job;
struct xe_bb *bb;
struct dma_fence *fence;
u64 batch_ofs;
long timeout;
int count = 0;
bb = xe_bb_new(gt, SZ_4K, false); /* Just pick a large BB size */
if (IS_ERR(bb))
return PTR_ERR(bb);
xa_for_each(&sr->xa, reg, entry)
++count;
if (count) {
bb->cs[bb->len++] = MI_LOAD_REGISTER_IMM(count);
xa_for_each(&sr->xa, reg, entry) {
bb->cs[bb->len++] = reg;
bb->cs[bb->len++] = entry->set_bits;
}
}
bb->cs[bb->len++] = MI_NOOP;
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
batch_ofs = xe_bo_ggtt_addr(gt->kernel_bb_pool.bo);
job = xe_bb_create_wa_job(e, bb, batch_ofs);
if (IS_ERR(job)) {
xe_bb_free(bb, NULL);
return PTR_ERR(bb);
}
xe_sched_job_arm(job);
fence = dma_fence_get(&job->drm.s_fence->finished);
xe_sched_job_push(job);
timeout = dma_fence_wait_timeout(fence, false, HZ);
dma_fence_put(fence);
xe_bb_free(bb, NULL);
if (timeout < 0)
return timeout;
else if (!timeout)
return -ETIME;
return 0;
}
int xe_gt_record_default_lrcs(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
int err = 0;
for_each_hw_engine(hwe, gt, id) {
struct xe_engine *e, *nop_e;
struct xe_vm *vm;
void *default_lrc;
if (gt->default_lrc[hwe->class])
continue;
xe_reg_sr_init(&hwe->reg_lrc, "LRC", xe);
xe_wa_process_lrc(hwe);
default_lrc = drmm_kzalloc(&xe->drm,
xe_lrc_size(xe, hwe->class),
GFP_KERNEL);
if (!default_lrc)
return -ENOMEM;
vm = xe_migrate_get_vm(gt->migrate);
e = xe_engine_create(xe, vm, BIT(hwe->logical_instance), 1,
hwe, ENGINE_FLAG_WA);
if (IS_ERR(e)) {
err = PTR_ERR(e);
goto put_vm;
}
/* Prime golden LRC with known good state */
err = emit_wa_job(gt, e);
if (err)
goto put_engine;
nop_e = xe_engine_create(xe, vm, BIT(hwe->logical_instance),
1, hwe, ENGINE_FLAG_WA);
if (IS_ERR(nop_e)) {
err = PTR_ERR(nop_e);
goto put_engine;
}
/* Switch to different LRC */
err = emit_nop_job(gt, nop_e);
if (err)
goto put_nop_e;
/* Reload golden LRC to record the effect of any indirect W/A */
err = emit_nop_job(gt, e);
if (err)
goto put_nop_e;
xe_map_memcpy_from(xe, default_lrc,
&e->lrc[0].bo->vmap,
xe_lrc_pphwsp_offset(&e->lrc[0]),
xe_lrc_size(xe, hwe->class));
gt->default_lrc[hwe->class] = default_lrc;
put_nop_e:
xe_engine_put(nop_e);
put_engine:
xe_engine_put(e);
put_vm:
xe_vm_put(vm);
if (err)
break;
}
return err;
}
int xe_gt_init_early(struct xe_gt *gt)
{
int err;
xe_force_wake_init_gt(gt, gt_to_fw(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
xe_gt_topology_init(gt);
xe_gt_mcr_init(gt);
err = xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
if (err)
return err;
xe_reg_sr_init(&gt->reg_sr, "GT", gt_to_xe(gt));
xe_wa_process_gt(gt);
xe_tuning_process_gt(gt);
return 0;
}
/**
* xe_gt_init_noalloc - Init GT up to the point where allocations can happen.
* @gt: The GT to initialize.
*
* This function prepares the GT to allow memory allocations to VRAM, but is not
* allowed to allocate memory itself. This state is useful for display readout,
* because the inherited display framebuffer will otherwise be overwritten as it
* is usually put at the start of VRAM.
*
* Returns: 0 on success, negative error code on error.
*/
int xe_gt_init_noalloc(struct xe_gt *gt)
{
int err, err2;
if (xe_gt_is_media_type(gt))
return 0;
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
goto err;
err = gt_ttm_mgr_init(gt);
if (err)
goto err_force_wake;
err = xe_ggtt_init_noalloc(gt, gt->mem.ggtt);
err_force_wake:
err2 = xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
XE_WARN_ON(err2);
xe_device_mem_access_put(gt_to_xe(gt));
err:
return err;
}
static int gt_fw_domain_init(struct xe_gt *gt)
{
int err, i;
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
goto err_hw_fence_irq;
if (!xe_gt_is_media_type(gt)) {
err = xe_ggtt_init(gt, gt->mem.ggtt);
if (err)
goto err_force_wake;
}
/* Allow driver to load if uC init fails (likely missing firmware) */
err = xe_uc_init(&gt->uc);
XE_WARN_ON(err);
err = xe_uc_init_hwconfig(&gt->uc);
if (err)
goto err_force_wake;
/* Enables per hw engine IRQs */
xe_gt_irq_postinstall(gt);
/* Rerun MCR init as we now have hw engine list */
xe_gt_mcr_init(gt);
err = xe_hw_engines_init_early(gt);
if (err)
goto err_force_wake;
err = xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
XE_WARN_ON(err);
xe_device_mem_access_put(gt_to_xe(gt));
return 0;
err_force_wake:
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
err_hw_fence_irq:
for (i = 0; i < XE_ENGINE_CLASS_MAX; ++i)
xe_hw_fence_irq_finish(&gt->fence_irq[i]);
xe_device_mem_access_put(gt_to_xe(gt));
return err;
}
static int all_fw_domain_init(struct xe_gt *gt)
{
int err, i;
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (err)
goto err_hw_fence_irq;
setup_private_ppat(gt);
xe_reg_sr_apply_mmio(&gt->reg_sr, gt);
err = xe_gt_clock_init(gt);
if (err)
goto err_force_wake;
xe_mocs_init(gt);
err = xe_execlist_init(gt);
if (err)
goto err_force_wake;
err = xe_hw_engines_init(gt);
if (err)
goto err_force_wake;
err = xe_uc_init_post_hwconfig(&gt->uc);
if (err)
goto err_force_wake;
/*
* FIXME: This should be ok as SA should only be used by gt->migrate and
* vm->gt->migrate and both should be pointing to a non-media GT. But to
* realy safe, convert gt->kernel_bb_pool to a pointer and point a media
* GT to the kernel_bb_pool on a real tile.
*/
if (!xe_gt_is_media_type(gt)) {
err = xe_sa_bo_manager_init(gt, &gt->kernel_bb_pool, SZ_1M, 16);
if (err)
goto err_force_wake;
/*
* USM has its only SA pool to non-block behind user operations
*/
if (gt_to_xe(gt)->info.supports_usm) {
err = xe_sa_bo_manager_init(gt, &gt->usm.bb_pool,
SZ_1M, 16);
if (err)
goto err_force_wake;
}
}
if (!xe_gt_is_media_type(gt)) {
gt->migrate = xe_migrate_init(gt);
if (IS_ERR(gt->migrate))
goto err_force_wake;
} else {
gt->migrate = xe_find_full_gt(gt)->migrate;
}
err = xe_uc_init_hw(&gt->uc);
if (err)
goto err_force_wake;
err = xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
XE_WARN_ON(err);
xe_device_mem_access_put(gt_to_xe(gt));
return 0;
err_force_wake:
xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
err_hw_fence_irq:
for (i = 0; i < XE_ENGINE_CLASS_MAX; ++i)
xe_hw_fence_irq_finish(&gt->fence_irq[i]);
xe_device_mem_access_put(gt_to_xe(gt));
return err;
}
int xe_gt_init(struct xe_gt *gt)
{
int err;
int i;
INIT_WORK(&gt->reset.worker, gt_reset_worker);
for (i = 0; i < XE_ENGINE_CLASS_MAX; ++i) {
gt->ring_ops[i] = xe_ring_ops_get(gt, i);
xe_hw_fence_irq_init(&gt->fence_irq[i]);
}
err = xe_gt_pagefault_init(gt);
if (err)
return err;
xe_gt_sysfs_init(gt);
err = gt_fw_domain_init(gt);
if (err)
return err;
xe_force_wake_init_engines(gt, gt_to_fw(gt));
err = all_fw_domain_init(gt);
if (err)
return err;
xe_force_wake_prune(gt, gt_to_fw(gt));
err = drmm_add_action_or_reset(&gt_to_xe(gt)->drm, gt_fini, gt);
if (err)
return err;
return 0;
}
int do_gt_reset(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int err;
xe_mmio_write32(gt, GEN6_GDRST.reg, GEN11_GRDOM_FULL);
err = xe_mmio_wait32(gt, GEN6_GDRST.reg, 0, GEN11_GRDOM_FULL, 5);
if (err)
drm_err(&xe->drm,
"GT reset failed to clear GEN11_GRDOM_FULL\n");
return err;
}
static int do_gt_restart(struct xe_gt *gt)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
int err;
setup_private_ppat(gt);
xe_reg_sr_apply_mmio(&gt->reg_sr, gt);
err = xe_wopcm_init(&gt->uc.wopcm);
if (err)
return err;
for_each_hw_engine(hwe, gt, id)
xe_hw_engine_enable_ring(hwe);
err = xe_uc_init_hw(&gt->uc);
if (err)
return err;
xe_mocs_init(gt);
err = xe_uc_start(&gt->uc);
if (err)
return err;
for_each_hw_engine(hwe, gt, id) {
xe_reg_sr_apply_mmio(&hwe->reg_sr, gt);
xe_reg_sr_apply_whitelist(&hwe->reg_whitelist,
hwe->mmio_base, gt);
}
return 0;
}
static int gt_reset(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int err;
/* We only support GT resets with GuC submission */
if (!xe_device_guc_submission_enabled(gt_to_xe(gt)))
return -ENODEV;
drm_info(&xe->drm, "GT reset started\n");
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (err)
goto err_msg;
xe_uc_stop_prepare(&gt->uc);
xe_gt_pagefault_reset(gt);
err = xe_uc_stop(&gt->uc);
if (err)
goto err_out;
err = do_gt_reset(gt);
if (err)
goto err_out;
err = do_gt_restart(gt);
if (err)
goto err_out;
xe_device_mem_access_put(gt_to_xe(gt));
err = xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
XE_WARN_ON(err);
drm_info(&xe->drm, "GT reset done\n");
return 0;
err_out:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
err_msg:
XE_WARN_ON(xe_uc_start(&gt->uc));
xe_device_mem_access_put(gt_to_xe(gt));
drm_err(&xe->drm, "GT reset failed, err=%d\n", err);
return err;
}
static void gt_reset_worker(struct work_struct *w)
{
struct xe_gt *gt = container_of(w, typeof(*gt), reset.worker);
gt_reset(gt);
}
void xe_gt_reset_async(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
drm_info(&xe->drm, "Try GT reset\n");
/* Don't do a reset while one is already in flight */
if (xe_uc_reset_prepare(&gt->uc))
return;
drm_info(&xe->drm, "Doing GT reset\n");
queue_work(gt->ordered_wq, &gt->reset.worker);
}
void xe_gt_suspend_prepare(struct xe_gt *gt)
{
xe_device_mem_access_get(gt_to_xe(gt));
XE_WARN_ON(xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
xe_uc_stop_prepare(&gt->uc);
xe_device_mem_access_put(gt_to_xe(gt));
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
}
int xe_gt_suspend(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int err;
/* For now suspend/resume is only allowed with GuC */
if (!xe_device_guc_submission_enabled(gt_to_xe(gt)))
return -ENODEV;
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (err)
goto err_msg;
err = xe_uc_suspend(&gt->uc);
if (err)
goto err_force_wake;
xe_device_mem_access_put(gt_to_xe(gt));
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
drm_info(&xe->drm, "GT suspended\n");
return 0;
err_force_wake:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
err_msg:
xe_device_mem_access_put(gt_to_xe(gt));
drm_err(&xe->drm, "GT suspend failed: %d\n", err);
return err;
}
int xe_gt_resume(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
int err;
xe_device_mem_access_get(gt_to_xe(gt));
err = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
if (err)
goto err_msg;
err = do_gt_restart(gt);
if (err)
goto err_force_wake;
xe_device_mem_access_put(gt_to_xe(gt));
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
drm_info(&xe->drm, "GT resumed\n");
return 0;
err_force_wake:
XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL));
err_msg:
xe_device_mem_access_put(gt_to_xe(gt));
drm_err(&xe->drm, "GT resume failed: %d\n", err);
return err;
}
void xe_gt_migrate_wait(struct xe_gt *gt)
{
xe_migrate_wait(gt->migrate);
}
struct xe_hw_engine *xe_gt_hw_engine(struct xe_gt *gt,
enum xe_engine_class class,
u16 instance, bool logical)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
for_each_hw_engine(hwe, gt, id)
if (hwe->class == class &&
((!logical && hwe->instance == instance) ||
(logical && hwe->logical_instance == instance)))
return hwe;
return NULL;
}
struct xe_hw_engine *xe_gt_any_hw_engine_by_reset_domain(struct xe_gt *gt,
enum xe_engine_class class)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
for_each_hw_engine(hwe, gt, id) {
switch (class) {
case XE_ENGINE_CLASS_RENDER:
case XE_ENGINE_CLASS_COMPUTE:
if (hwe->class == XE_ENGINE_CLASS_RENDER ||
hwe->class == XE_ENGINE_CLASS_COMPUTE)
return hwe;
break;
default:
if (hwe->class == class)
return hwe;
}
}
return NULL;
}