linux-stable/drivers/gpu/drm/xe/xe_guc_ct.c

1197 lines
30 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include <linux/bitfield.h>
#include <linux/circ_buf.h>
#include <linux/delay.h>
#include <drm/drm_managed.h>
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_guc.h"
#include "xe_guc_ct.h"
#include "xe_gt_pagefault.h"
#include "xe_guc_submit.h"
#include "xe_map.h"
#include "xe_trace.h"
/* Used when a CT send wants to block and / or receive data */
struct g2h_fence {
wait_queue_head_t wq;
u32 *response_buffer;
u32 seqno;
u16 response_len;
u16 error;
u16 hint;
u16 reason;
bool retry;
bool fail;
bool done;
};
static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
{
g2h_fence->response_buffer = response_buffer;
g2h_fence->response_len = 0;
g2h_fence->fail = false;
g2h_fence->retry = false;
g2h_fence->done = false;
g2h_fence->seqno = ~0x0;
}
static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
{
return g2h_fence->seqno == ~0x0;
}
static struct xe_guc *
ct_to_guc(struct xe_guc_ct *ct)
{
return container_of(ct, struct xe_guc, ct);
}
static struct xe_gt *
ct_to_gt(struct xe_guc_ct *ct)
{
return container_of(ct, struct xe_gt, uc.guc.ct);
}
static struct xe_device *
ct_to_xe(struct xe_guc_ct *ct)
{
return gt_to_xe(ct_to_gt(ct));
}
/**
* DOC: GuC CTB Blob
*
* We allocate single blob to hold both CTB descriptors and buffers:
*
* +--------+-----------------------------------------------+------+
* | offset | contents | size |
* +========+===============================================+======+
* | 0x0000 | H2G CTB Descriptor (send) | |
* +--------+-----------------------------------------------+ 4K |
* | 0x0800 | G2H CTB Descriptor (g2h) | |
* +--------+-----------------------------------------------+------+
* | 0x1000 | H2G CT Buffer (send) | n*4K |
* | | | |
* +--------+-----------------------------------------------+------+
* | 0x1000 | G2H CT Buffer (g2h) | m*4K |
* | + n*4K | | |
* +--------+-----------------------------------------------+------+
*
* Size of each ``CT Buffer`` must be multiple of 4K.
* We don't expect too many messages in flight at any time, unless we are
* using the GuC submission. In that case each request requires a minimum
* 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
* enough space to avoid backpressure on the driver. We increase the size
* of the receive buffer (relative to the send) to ensure a G2H response
* CTB has a landing spot.
*/
#define CTB_DESC_SIZE ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
#define CTB_H2G_BUFFER_SIZE (SZ_4K)
#define CTB_G2H_BUFFER_SIZE (4 * CTB_H2G_BUFFER_SIZE)
#define G2H_ROOM_BUFFER_SIZE (CTB_G2H_BUFFER_SIZE / 4)
static size_t guc_ct_size(void)
{
return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
CTB_G2H_BUFFER_SIZE;
}
static void guc_ct_fini(struct drm_device *drm, void *arg)
{
struct xe_guc_ct *ct = arg;
xa_destroy(&ct->fence_lookup);
xe_bo_unpin_map_no_vm(ct->bo);
}
static void g2h_worker_func(struct work_struct *w);
static void primelockdep(struct xe_guc_ct *ct)
{
if (!IS_ENABLED(CONFIG_LOCKDEP))
return;
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&ct->lock);
fs_reclaim_release(GFP_KERNEL);
}
int xe_guc_ct_init(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_gt *gt = ct_to_gt(ct);
struct xe_bo *bo;
int err;
XE_BUG_ON(guc_ct_size() % PAGE_SIZE);
mutex_init(&ct->lock);
spin_lock_init(&ct->fast_lock);
xa_init(&ct->fence_lookup);
ct->fence_context = dma_fence_context_alloc(1);
INIT_WORK(&ct->g2h_worker, g2h_worker_func);
init_waitqueue_head(&ct->wq);
primelockdep(ct);
bo = xe_bo_create_pin_map(xe, gt, NULL, guc_ct_size(),
ttm_bo_type_kernel,
XE_BO_CREATE_VRAM_IF_DGFX(gt) |
XE_BO_CREATE_GGTT_BIT);
if (IS_ERR(bo))
return PTR_ERR(bo);
ct->bo = bo;
err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
if (err)
return err;
return 0;
}
#define desc_read(xe_, guc_ctb__, field_) \
xe_map_rd_field(xe_, &guc_ctb__->desc, 0, \
struct guc_ct_buffer_desc, field_)
#define desc_write(xe_, guc_ctb__, field_, val_) \
xe_map_wr_field(xe_, &guc_ctb__->desc, 0, \
struct guc_ct_buffer_desc, field_, val_)
static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
struct iosys_map *map)
{
h2g->size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
h2g->resv_space = 0;
h2g->tail = 0;
h2g->head = 0;
h2g->space = CIRC_SPACE(h2g->tail, h2g->head, h2g->size) -
h2g->resv_space;
h2g->broken = false;
h2g->desc = *map;
xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
}
static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
struct iosys_map *map)
{
g2h->size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
g2h->resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
g2h->head = 0;
g2h->tail = 0;
g2h->space = CIRC_SPACE(g2h->tail, g2h->head, g2h->size) -
g2h->resv_space;
g2h->broken = false;
g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
CTB_H2G_BUFFER_SIZE);
}
static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
{
struct xe_guc *guc = ct_to_guc(ct);
u32 desc_addr, ctb_addr, size;
int err;
desc_addr = xe_bo_ggtt_addr(ct->bo);
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
size = ct->ctbs.h2g.size * sizeof(u32);
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
desc_addr);
if (err)
return err;
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
ctb_addr);
if (err)
return err;
return xe_guc_self_cfg32(guc,
GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
size);
}
static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
{
struct xe_guc *guc = ct_to_guc(ct);
u32 desc_addr, ctb_addr, size;
int err;
desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
CTB_H2G_BUFFER_SIZE;
size = ct->ctbs.g2h.size * sizeof(u32);
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
desc_addr);
if (err)
return err;
err = xe_guc_self_cfg64(guc,
GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
ctb_addr);
if (err)
return err;
return xe_guc_self_cfg32(guc,
GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
size);
}
static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
{
u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
GUC_ACTION_HOST2GUC_CONTROL_CTB),
FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
enable ? GUC_CTB_CONTROL_ENABLE :
GUC_CTB_CONTROL_DISABLE),
};
int ret = xe_guc_send_mmio(ct_to_guc(ct), request, ARRAY_SIZE(request));
return ret > 0 ? -EPROTO : ret;
}
int xe_guc_ct_enable(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
int err;
XE_BUG_ON(ct->enabled);
guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
err = guc_ct_ctb_h2g_register(ct);
if (err)
goto err_out;
err = guc_ct_ctb_g2h_register(ct);
if (err)
goto err_out;
err = guc_ct_control_toggle(ct, true);
if (err)
goto err_out;
mutex_lock(&ct->lock);
ct->g2h_outstanding = 0;
ct->enabled = true;
mutex_unlock(&ct->lock);
smp_mb();
wake_up_all(&ct->wq);
drm_dbg(&xe->drm, "GuC CT communication channel enabled\n");
return 0;
err_out:
drm_err(&xe->drm, "Failed to enabled CT (%d)\n", err);
return err;
}
void xe_guc_ct_disable(struct xe_guc_ct *ct)
{
mutex_lock(&ct->lock);
ct->enabled = false;
mutex_unlock(&ct->lock);
xa_destroy(&ct->fence_lookup);
}
static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
{
struct guc_ctb *h2g = &ct->ctbs.h2g;
lockdep_assert_held(&ct->lock);
if (cmd_len > h2g->space) {
h2g->head = desc_read(ct_to_xe(ct), h2g, head);
h2g->space = CIRC_SPACE(h2g->tail, h2g->head, h2g->size) -
h2g->resv_space;
if (cmd_len > h2g->space)
return false;
}
return true;
}
static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
{
lockdep_assert_held(&ct->lock);
return ct->ctbs.g2h.space > g2h_len;
}
static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
{
lockdep_assert_held(&ct->lock);
if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
return -EBUSY;
return 0;
}
static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
{
lockdep_assert_held(&ct->lock);
ct->ctbs.h2g.space -= cmd_len;
}
static void g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
{
XE_BUG_ON(g2h_len > ct->ctbs.g2h.space);
if (g2h_len) {
spin_lock_irq(&ct->fast_lock);
ct->ctbs.g2h.space -= g2h_len;
ct->g2h_outstanding += num_g2h;
spin_unlock_irq(&ct->fast_lock);
}
}
static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
lockdep_assert_held(&ct->fast_lock);
XE_WARN_ON(ct->ctbs.g2h.space + g2h_len >
ct->ctbs.g2h.size - ct->ctbs.g2h.resv_space);
ct->ctbs.g2h.space += g2h_len;
--ct->g2h_outstanding;
}
static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
{
spin_lock_irq(&ct->fast_lock);
__g2h_release_space(ct, g2h_len);
spin_unlock_irq(&ct->fast_lock);
}
static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 ct_fence_value, bool want_response)
{
struct xe_device *xe = ct_to_xe(ct);
struct guc_ctb *h2g = &ct->ctbs.h2g;
u32 cmd[GUC_CTB_MSG_MAX_LEN / sizeof(u32)];
u32 cmd_len = len + GUC_CTB_HDR_LEN;
u32 cmd_idx = 0, i;
u32 tail = h2g->tail;
struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
tail * sizeof(u32));
lockdep_assert_held(&ct->lock);
XE_BUG_ON(len * sizeof(u32) > GUC_CTB_MSG_MAX_LEN);
XE_BUG_ON(tail > h2g->size);
/* Command will wrap, zero fill (NOPs), return and check credits again */
if (tail + cmd_len > h2g->size) {
xe_map_memset(xe, &map, 0, 0, (h2g->size - tail) * sizeof(u32));
h2g_reserve_space(ct, (h2g->size - tail));
h2g->tail = 0;
desc_write(xe, h2g, tail, h2g->tail);
return -EAGAIN;
}
/*
* dw0: CT header (including fence)
* dw1: HXG header (including action code)
* dw2+: action data
*/
cmd[cmd_idx++] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
if (want_response) {
cmd[cmd_idx++] =
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
} else {
cmd[cmd_idx++] =
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_EVENT) |
FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
}
for (i = 1; i < len; ++i)
cmd[cmd_idx++] = action[i];
/* Write H2G ensuring visable before descriptor update */
xe_map_memcpy_to(xe, &map, 0, cmd, cmd_len * sizeof(u32));
xe_device_wmb(ct_to_xe(ct));
/* Update local copies */
h2g->tail = (tail + cmd_len) % h2g->size;
h2g_reserve_space(ct, cmd_len);
/* Update descriptor */
desc_write(xe, h2g, tail, h2g->tail);
return 0;
}
static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
u32 len, u32 g2h_len, u32 num_g2h,
struct g2h_fence *g2h_fence)
{
int ret;
XE_BUG_ON(g2h_len && g2h_fence);
XE_BUG_ON(num_g2h && g2h_fence);
XE_BUG_ON(g2h_len && !num_g2h);
XE_BUG_ON(!g2h_len && num_g2h);
lockdep_assert_held(&ct->lock);
if (unlikely(ct->ctbs.h2g.broken)) {
ret = -EPIPE;
goto out;
}
if (unlikely(!ct->enabled)) {
ret = -ENODEV;
goto out;
}
if (g2h_fence) {
g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
num_g2h = 1;
if (g2h_fence_needs_alloc(g2h_fence)) {
void *ptr;
g2h_fence->seqno = (ct->fence_seqno++ & 0xffff);
init_waitqueue_head(&g2h_fence->wq);
ptr = xa_store(&ct->fence_lookup,
g2h_fence->seqno,
g2h_fence, GFP_ATOMIC);
if (IS_ERR(ptr)) {
ret = PTR_ERR(ptr);
goto out;
}
}
}
xe_device_mem_access_get(ct_to_xe(ct));
retry:
ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
if (unlikely(ret))
goto put_wa;
ret = h2g_write(ct, action, len, g2h_fence ? g2h_fence->seqno : 0,
!!g2h_fence);
if (unlikely(ret)) {
if (ret == -EAGAIN)
goto retry;
goto put_wa;
}
g2h_reserve_space(ct, g2h_len, num_g2h);
xe_guc_notify(ct_to_guc(ct));
put_wa:
xe_device_mem_access_put(ct_to_xe(ct));
out:
return ret;
}
static void kick_reset(struct xe_guc_ct *ct)
{
xe_gt_reset_async(ct_to_gt(ct));
}
static int dequeue_one_g2h(struct xe_guc_ct *ct);
static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h,
struct g2h_fence *g2h_fence)
{
struct drm_device *drm = &ct_to_xe(ct)->drm;
struct drm_printer p = drm_info_printer(drm->dev);
unsigned int sleep_period_ms = 1;
int ret;
XE_BUG_ON(g2h_len && g2h_fence);
lockdep_assert_held(&ct->lock);
try_again:
ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
g2h_fence);
/*
* We wait to try to restore credits for about 1 second before bailing.
* In the case of H2G credits we have no choice but just to wait for the
* GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
* the case of G2H we process any G2H in the channel, hopefully freeing
* credits as we consume the G2H messages.
*/
if (unlikely(ret == -EBUSY &&
!h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
struct guc_ctb *h2g = &ct->ctbs.h2g;
if (sleep_period_ms == 1024)
goto broken;
trace_xe_guc_ct_h2g_flow_control(h2g->head, h2g->tail,
h2g->size, h2g->space,
len + GUC_CTB_HDR_LEN);
msleep(sleep_period_ms);
sleep_period_ms <<= 1;
goto try_again;
} else if (unlikely(ret == -EBUSY)) {
struct xe_device *xe = ct_to_xe(ct);
struct guc_ctb *g2h = &ct->ctbs.g2h;
trace_xe_guc_ct_g2h_flow_control(g2h->head,
desc_read(xe, g2h, tail),
g2h->size, g2h->space,
g2h_fence ?
GUC_CTB_HXG_MSG_MAX_LEN :
g2h_len);
#define g2h_avail(ct) \
(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.head)
if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
g2h_avail(ct), HZ))
goto broken;
#undef g2h_avail
if (dequeue_one_g2h(ct) < 0)
goto broken;
goto try_again;
}
return ret;
broken:
drm_err(drm, "No forward process on H2G, reset required");
xe_guc_ct_print(ct, &p);
ct->ctbs.h2g.broken = true;
return -EDEADLK;
}
static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
{
int ret;
XE_BUG_ON(g2h_len && g2h_fence);
mutex_lock(&ct->lock);
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
mutex_unlock(&ct->lock);
return ret;
}
int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h)
{
int ret;
ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 g2h_len, u32 num_g2h)
{
int ret;
ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
{
int ret;
lockdep_assert_held(&ct->lock);
ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
if (ret == -EDEADLK)
kick_reset(ct);
return ret;
}
/*
* Check if a GT reset is in progress or will occur and if GT reset brought the
* CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
*/
static bool retry_failure(struct xe_guc_ct *ct, int ret)
{
if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
return false;
#define ct_alive(ct) \
(ct->enabled && !ct->ctbs.h2g.broken && !ct->ctbs.g2h.broken)
if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
return false;
#undef ct_alive
return true;
}
static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 *response_buffer, bool no_fail)
{
struct xe_device *xe = ct_to_xe(ct);
struct g2h_fence g2h_fence;
int ret = 0;
/*
* We use a fence to implement blocking sends / receiving response data.
* The seqno of the fence is sent in the H2G, returned in the G2H, and
* an xarray is used as storage media with the seqno being to key.
* Fields in the fence hold success, failure, retry status and the
* response data. Safe to allocate on the stack as the xarray is the
* only reference and it cannot be present after this function exits.
*/
retry:
g2h_fence_init(&g2h_fence, response_buffer);
retry_same_fence:
ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
if (unlikely(ret == -ENOMEM)) {
void *ptr;
/* Retry allocation /w GFP_KERNEL */
ptr = xa_store(&ct->fence_lookup,
g2h_fence.seqno,
&g2h_fence, GFP_KERNEL);
if (IS_ERR(ptr)) {
return PTR_ERR(ptr);
}
goto retry_same_fence;
} else if (unlikely(ret)) {
if (ret == -EDEADLK)
kick_reset(ct);
if (no_fail && retry_failure(ct, ret))
goto retry_same_fence;
if (!g2h_fence_needs_alloc(&g2h_fence))
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
return ret;
}
ret = wait_event_timeout(g2h_fence.wq, g2h_fence.done, HZ);
if (!ret) {
drm_err(&xe->drm, "Timed out wait for G2H, fence %u, action %04x",
g2h_fence.seqno, action[0]);
xa_erase_irq(&ct->fence_lookup, g2h_fence.seqno);
return -ETIME;
}
if (g2h_fence.retry) {
drm_warn(&xe->drm, "Send retry, action 0x%04x, reason %d",
action[0], g2h_fence.reason);
goto retry;
}
if (g2h_fence.fail) {
drm_err(&xe->drm, "Send failed, action 0x%04x, error %d, hint %d",
action[0], g2h_fence.error, g2h_fence.hint);
ret = -EIO;
}
return ret > 0 ? 0 : ret;
}
int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
u32 *response_buffer)
{
return guc_ct_send_recv(ct, action, len, response_buffer, false);
}
int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
u32 len, u32 *response_buffer)
{
return guc_ct_send_recv(ct, action, len, response_buffer, true);
}
static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
lockdep_assert_held(&ct->lock);
switch (action) {
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
g2h_release_space(ct, len);
}
return 0;
}
static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_device *xe = ct_to_xe(ct);
u32 response_len = len - GUC_CTB_MSG_MIN_LEN;
u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]);
struct g2h_fence *g2h_fence;
lockdep_assert_held(&ct->lock);
g2h_fence = xa_erase(&ct->fence_lookup, fence);
if (unlikely(!g2h_fence)) {
/* Don't tear down channel, as send could've timed out */
drm_warn(&xe->drm, "G2H fence (%u) not found!\n", fence);
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
return 0;
}
XE_WARN_ON(fence != g2h_fence->seqno);
if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
g2h_fence->fail = true;
g2h_fence->error =
FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, msg[0]);
g2h_fence->hint =
FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, msg[0]);
} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
g2h_fence->retry = true;
g2h_fence->reason =
FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, msg[0]);
} else if (g2h_fence->response_buffer) {
g2h_fence->response_len = response_len;
memcpy(g2h_fence->response_buffer, msg + GUC_CTB_MSG_MIN_LEN,
response_len * sizeof(u32));
}
g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
g2h_fence->done = true;
smp_mb();
wake_up(&g2h_fence->wq);
return 0;
}
static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_device *xe = ct_to_xe(ct);
u32 header, hxg, origin, type;
int ret;
lockdep_assert_held(&ct->lock);
header = msg[0];
hxg = msg[1];
origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg);
if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
drm_err(&xe->drm,
"G2H channel broken on read, origin=%d, reset required\n",
origin);
ct->ctbs.g2h.broken = true;
return -EPROTO;
}
type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg);
switch (type) {
case GUC_HXG_TYPE_EVENT:
ret = parse_g2h_event(ct, msg, len);
break;
case GUC_HXG_TYPE_RESPONSE_SUCCESS:
case GUC_HXG_TYPE_RESPONSE_FAILURE:
case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
ret = parse_g2h_response(ct, msg, len);
break;
default:
drm_err(&xe->drm,
"G2H channel broken on read, type=%d, reset required\n",
type);
ct->ctbs.g2h.broken = true;
ret = -EOPNOTSUPP;
}
return ret;
}
static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_guc *guc = ct_to_guc(ct);
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN;
u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN;
int ret = 0;
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT)
return 0;
switch (action) {
case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
ret = xe_guc_sched_done_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
ret = xe_guc_engine_reset_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
ret = xe_guc_engine_reset_failure_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
/* Selftest only at the moment */
break;
case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
/* FIXME: Handle this */
break;
case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
ret = xe_guc_engine_memory_cat_error_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
adj_len);
break;
case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
ret = xe_guc_access_counter_notify_handler(guc, payload,
adj_len);
break;
default:
drm_err(&xe->drm, "unexpected action 0x%04x\n", action);
}
if (ret)
drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
action, ret);
return 0;
}
static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
{
struct xe_device *xe = ct_to_xe(ct);
struct guc_ctb *g2h = &ct->ctbs.g2h;
u32 tail, head, len;
s32 avail;
lockdep_assert_held(&ct->fast_lock);
if (!ct->enabled)
return -ENODEV;
if (g2h->broken)
return -EPIPE;
/* Calculate DW available to read */
tail = desc_read(xe, g2h, tail);
avail = tail - g2h->head;
if (unlikely(avail == 0))
return 0;
if (avail < 0)
avail += g2h->size;
/* Read header */
xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->head, sizeof(u32));
len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
if (len > avail) {
drm_err(&xe->drm,
"G2H channel broken on read, avail=%d, len=%d, reset required\n",
avail, len);
g2h->broken = true;
return -EPROTO;
}
head = (g2h->head + 1) % g2h->size;
avail = len - 1;
/* Read G2H message */
if (avail + head > g2h->size) {
u32 avail_til_wrap = g2h->size - head;
xe_map_memcpy_from(xe, msg + 1,
&g2h->cmds, sizeof(u32) * head,
avail_til_wrap * sizeof(u32));
xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
&g2h->cmds, 0,
(avail - avail_til_wrap) * sizeof(u32));
} else {
xe_map_memcpy_from(xe, msg + 1,
&g2h->cmds, sizeof(u32) * head,
avail * sizeof(u32));
}
if (fast_path) {
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, msg[1]) != GUC_HXG_TYPE_EVENT)
return 0;
switch (FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1])) {
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
break; /* Process these in fast-path */
default:
return 0;
}
}
/* Update local / descriptor header */
g2h->head = (head + avail) % g2h->size;
desc_write(xe, g2h, head, g2h->head);
return len;
}
static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
{
struct xe_device *xe = ct_to_xe(ct);
struct xe_guc *guc = ct_to_guc(ct);
u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, msg[1]);
u32 *payload = msg + GUC_CTB_HXG_MSG_MIN_LEN;
u32 adj_len = len - GUC_CTB_HXG_MSG_MIN_LEN;
int ret = 0;
switch (action) {
case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
ret = xe_guc_pagefault_handler(guc, payload, adj_len);
break;
case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
__g2h_release_space(ct, len);
ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
adj_len);
break;
default:
XE_WARN_ON("NOT_POSSIBLE");
}
if (ret)
drm_err(&xe->drm, "action 0x%04x failed processing, ret=%d\n",
action, ret);
}
/**
* xe_guc_ct_fast_path - process critical G2H in the IRQ handler
* @ct: GuC CT object
*
* Anything related to page faults is critical for performance, process these
* critical G2H in the IRQ. This is safe as these handlers either just wake up
* waiters or queue another worker.
*/
void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
{
struct xe_device *xe = ct_to_xe(ct);
int len;
if (!xe_device_in_fault_mode(xe) || !xe_device_mem_access_ongoing(xe))
return;
spin_lock(&ct->fast_lock);
do {
len = g2h_read(ct, ct->fast_msg, true);
if (len > 0)
g2h_fast_path(ct, ct->fast_msg, len);
} while (len > 0);
spin_unlock(&ct->fast_lock);
}
/* Returns less than zero on error, 0 on done, 1 on more available */
static int dequeue_one_g2h(struct xe_guc_ct *ct)
{
int len;
int ret;
lockdep_assert_held(&ct->lock);
spin_lock_irq(&ct->fast_lock);
len = g2h_read(ct, ct->msg, false);
spin_unlock_irq(&ct->fast_lock);
if (len <= 0)
return len;
ret = parse_g2h_msg(ct, ct->msg, len);
if (unlikely(ret < 0))
return ret;
ret = process_g2h_msg(ct, ct->msg, len);
if (unlikely(ret < 0))
return ret;
return 1;
}
static void g2h_worker_func(struct work_struct *w)
{
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
int ret;
xe_device_mem_access_get(ct_to_xe(ct));
do {
mutex_lock(&ct->lock);
ret = dequeue_one_g2h(ct);
mutex_unlock(&ct->lock);
if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
struct drm_device *drm = &ct_to_xe(ct)->drm;
struct drm_printer p = drm_info_printer(drm->dev);
xe_guc_ct_print(ct, &p);
kick_reset(ct);
}
} while (ret == 1);
xe_device_mem_access_put(ct_to_xe(ct));
}
static void guc_ct_ctb_print(struct xe_device *xe, struct guc_ctb *ctb,
struct drm_printer *p)
{
u32 head, tail;
drm_printf(p, "\tsize: %d\n", ctb->size);
drm_printf(p, "\tresv_space: %d\n", ctb->resv_space);
drm_printf(p, "\thead: %d\n", ctb->head);
drm_printf(p, "\ttail: %d\n", ctb->tail);
drm_printf(p, "\tspace: %d\n", ctb->space);
drm_printf(p, "\tbroken: %d\n", ctb->broken);
head = desc_read(xe, ctb, head);
tail = desc_read(xe, ctb, tail);
drm_printf(p, "\thead (memory): %d\n", head);
drm_printf(p, "\ttail (memory): %d\n", tail);
drm_printf(p, "\tstatus (memory): 0x%x\n", desc_read(xe, ctb, status));
if (head != tail) {
struct iosys_map map =
IOSYS_MAP_INIT_OFFSET(&ctb->cmds, head * sizeof(u32));
while (head != tail) {
drm_printf(p, "\tcmd[%d]: 0x%08x\n", head,
xe_map_rd(xe, &map, 0, u32));
++head;
if (head == ctb->size) {
head = 0;
map = ctb->cmds;
} else {
iosys_map_incr(&map, sizeof(u32));
}
}
}
}
void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p)
{
if (ct->enabled) {
drm_puts(p, "\nH2G CTB (all sizes in DW):\n");
guc_ct_ctb_print(ct_to_xe(ct), &ct->ctbs.h2g, p);
drm_puts(p, "\nG2H CTB (all sizes in DW):\n");
guc_ct_ctb_print(ct_to_xe(ct), &ct->ctbs.g2h, p);
drm_printf(p, "\tg2h outstanding: %d\n", ct->g2h_outstanding);
} else {
drm_puts(p, "\nCT disabled\n");
}
}
#ifdef XE_GUC_CT_SELFTEST
/*
* Disable G2H processing in IRQ handler to force xe_guc_ct_send to enter flow
* control if enough sent, 8k sends is enough. Verify forward process, verify
* credits expected values on exit.
*/
void xe_guc_ct_selftest(struct xe_guc_ct *ct, struct drm_printer *p)
{
struct guc_ctb *g2h = &ct->ctbs.g2h;
u32 action[] = { XE_GUC_ACTION_SCHED_ENGINE_MODE_SET, 0, 0, 1, };
u32 bad_action[] = { XE_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 0, 0, };
int ret;
int i;
ct->suppress_irq_handler = true;
drm_puts(p, "Starting GuC CT selftest\n");
for (i = 0; i < 8192; ++i) {
ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 4, 1);
if (ret) {
drm_printf(p, "Aborted pass %d, ret %d\n", i, ret);
xe_guc_ct_print(ct, p);
break;
}
}
ct->suppress_irq_handler = false;
if (!ret) {
xe_guc_ct_irq_handler(ct);
msleep(200);
if (g2h->space !=
CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space) {
drm_printf(p, "Mismatch on space %d, %d\n",
g2h->space,
CIRC_SPACE(0, 0, g2h->size) -
g2h->resv_space);
ret = -EIO;
}
if (ct->g2h_outstanding) {
drm_printf(p, "Outstanding G2H, %d\n",
ct->g2h_outstanding);
ret = -EIO;
}
}
/* Check failure path for blocking CTs too */
xe_guc_ct_send_block(ct, bad_action, ARRAY_SIZE(bad_action));
if (g2h->space !=
CIRC_SPACE(0, 0, g2h->size) - g2h->resv_space) {
drm_printf(p, "Mismatch on space %d, %d\n",
g2h->space,
CIRC_SPACE(0, 0, g2h->size) -
g2h->resv_space);
ret = -EIO;
}
if (ct->g2h_outstanding) {
drm_printf(p, "Outstanding G2H, %d\n",
ct->g2h_outstanding);
ret = -EIO;
}
drm_printf(p, "GuC CT selftest done - %s\n", ret ? "FAIL" : "PASS");
}
#endif