linux-stable/security/integrity/ima/ima_main.c
Lakshmi Ramasubramanian dea87d0889 ima: select ima-buf template for buffer measurement
The default IMA template used for all policy rules is the value set
for CONFIG_IMA_DEFAULT_TEMPLATE if the policy rule does not specify
a template. The default IMA template for buffer measurements should be
'ima-buf' - so that the measured buffer is correctly included in the IMA
measurement log entry.

With the default template format, buffer measurements are added to
the measurement list, but do not include the buffer data, making it
difficult, if not impossible, to validate. Including 'ima-buf'
template records in the measurement list by default, should not impact
existing attestation servers without 'ima-buf' template support.

Initialize a global 'ima-buf' template and select that template,
by default, for buffer measurements.

Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
2020-11-20 13:52:43 -05:00

928 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Integrity Measurement Architecture
*
* Copyright (C) 2005,2006,2007,2008 IBM Corporation
*
* Authors:
* Reiner Sailer <sailer@watson.ibm.com>
* Serge Hallyn <serue@us.ibm.com>
* Kylene Hall <kylene@us.ibm.com>
* Mimi Zohar <zohar@us.ibm.com>
*
* File: ima_main.c
* implements the IMA hooks: ima_bprm_check, ima_file_mmap,
* and ima_file_check.
*/
#include <linux/module.h>
#include <linux/file.h>
#include <linux/binfmts.h>
#include <linux/kernel_read_file.h>
#include <linux/mount.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/xattr.h>
#include <linux/ima.h>
#include <linux/iversion.h>
#include <linux/fs.h>
#include "ima.h"
#ifdef CONFIG_IMA_APPRAISE
int ima_appraise = IMA_APPRAISE_ENFORCE;
#else
int ima_appraise;
#endif
int ima_hash_algo = HASH_ALGO_SHA1;
static int hash_setup_done;
static struct notifier_block ima_lsm_policy_notifier = {
.notifier_call = ima_lsm_policy_change,
};
static int __init hash_setup(char *str)
{
struct ima_template_desc *template_desc = ima_template_desc_current();
int i;
if (hash_setup_done)
return 1;
if (strcmp(template_desc->name, IMA_TEMPLATE_IMA_NAME) == 0) {
if (strncmp(str, "sha1", 4) == 0) {
ima_hash_algo = HASH_ALGO_SHA1;
} else if (strncmp(str, "md5", 3) == 0) {
ima_hash_algo = HASH_ALGO_MD5;
} else {
pr_err("invalid hash algorithm \"%s\" for template \"%s\"",
str, IMA_TEMPLATE_IMA_NAME);
return 1;
}
goto out;
}
i = match_string(hash_algo_name, HASH_ALGO__LAST, str);
if (i < 0) {
pr_err("invalid hash algorithm \"%s\"", str);
return 1;
}
ima_hash_algo = i;
out:
hash_setup_done = 1;
return 1;
}
__setup("ima_hash=", hash_setup);
/* Prevent mmap'ing a file execute that is already mmap'ed write */
static int mmap_violation_check(enum ima_hooks func, struct file *file,
char **pathbuf, const char **pathname,
char *filename)
{
struct inode *inode;
int rc = 0;
if ((func == MMAP_CHECK) && mapping_writably_mapped(file->f_mapping)) {
rc = -ETXTBSY;
inode = file_inode(file);
if (!*pathbuf) /* ima_rdwr_violation possibly pre-fetched */
*pathname = ima_d_path(&file->f_path, pathbuf,
filename);
integrity_audit_msg(AUDIT_INTEGRITY_DATA, inode, *pathname,
"mmap_file", "mmapped_writers", rc, 0);
}
return rc;
}
/*
* ima_rdwr_violation_check
*
* Only invalidate the PCR for measured files:
* - Opening a file for write when already open for read,
* results in a time of measure, time of use (ToMToU) error.
* - Opening a file for read when already open for write,
* could result in a file measurement error.
*
*/
static void ima_rdwr_violation_check(struct file *file,
struct integrity_iint_cache *iint,
int must_measure,
char **pathbuf,
const char **pathname,
char *filename)
{
struct inode *inode = file_inode(file);
fmode_t mode = file->f_mode;
bool send_tomtou = false, send_writers = false;
if (mode & FMODE_WRITE) {
if (atomic_read(&inode->i_readcount) && IS_IMA(inode)) {
if (!iint)
iint = integrity_iint_find(inode);
/* IMA_MEASURE is set from reader side */
if (iint && test_bit(IMA_MUST_MEASURE,
&iint->atomic_flags))
send_tomtou = true;
}
} else {
if (must_measure)
set_bit(IMA_MUST_MEASURE, &iint->atomic_flags);
if (inode_is_open_for_write(inode) && must_measure)
send_writers = true;
}
if (!send_tomtou && !send_writers)
return;
*pathname = ima_d_path(&file->f_path, pathbuf, filename);
if (send_tomtou)
ima_add_violation(file, *pathname, iint,
"invalid_pcr", "ToMToU");
if (send_writers)
ima_add_violation(file, *pathname, iint,
"invalid_pcr", "open_writers");
}
static void ima_check_last_writer(struct integrity_iint_cache *iint,
struct inode *inode, struct file *file)
{
fmode_t mode = file->f_mode;
bool update;
if (!(mode & FMODE_WRITE))
return;
mutex_lock(&iint->mutex);
if (atomic_read(&inode->i_writecount) == 1) {
update = test_and_clear_bit(IMA_UPDATE_XATTR,
&iint->atomic_flags);
if (!IS_I_VERSION(inode) ||
!inode_eq_iversion(inode, iint->version) ||
(iint->flags & IMA_NEW_FILE)) {
iint->flags &= ~(IMA_DONE_MASK | IMA_NEW_FILE);
iint->measured_pcrs = 0;
if (update)
ima_update_xattr(iint, file);
}
}
mutex_unlock(&iint->mutex);
}
/**
* ima_file_free - called on __fput()
* @file: pointer to file structure being freed
*
* Flag files that changed, based on i_version
*/
void ima_file_free(struct file *file)
{
struct inode *inode = file_inode(file);
struct integrity_iint_cache *iint;
if (!ima_policy_flag || !S_ISREG(inode->i_mode))
return;
iint = integrity_iint_find(inode);
if (!iint)
return;
ima_check_last_writer(iint, inode, file);
}
static int process_measurement(struct file *file, const struct cred *cred,
u32 secid, char *buf, loff_t size, int mask,
enum ima_hooks func)
{
struct inode *inode = file_inode(file);
struct integrity_iint_cache *iint = NULL;
struct ima_template_desc *template_desc = NULL;
char *pathbuf = NULL;
char filename[NAME_MAX];
const char *pathname = NULL;
int rc = 0, action, must_appraise = 0;
int pcr = CONFIG_IMA_MEASURE_PCR_IDX;
struct evm_ima_xattr_data *xattr_value = NULL;
struct modsig *modsig = NULL;
int xattr_len = 0;
bool violation_check;
enum hash_algo hash_algo;
if (!ima_policy_flag || !S_ISREG(inode->i_mode))
return 0;
/* Return an IMA_MEASURE, IMA_APPRAISE, IMA_AUDIT action
* bitmask based on the appraise/audit/measurement policy.
* Included is the appraise submask.
*/
action = ima_get_action(inode, cred, secid, mask, func, &pcr,
&template_desc, NULL);
violation_check = ((func == FILE_CHECK || func == MMAP_CHECK) &&
(ima_policy_flag & IMA_MEASURE));
if (!action && !violation_check)
return 0;
must_appraise = action & IMA_APPRAISE;
/* Is the appraise rule hook specific? */
if (action & IMA_FILE_APPRAISE)
func = FILE_CHECK;
inode_lock(inode);
if (action) {
iint = integrity_inode_get(inode);
if (!iint)
rc = -ENOMEM;
}
if (!rc && violation_check)
ima_rdwr_violation_check(file, iint, action & IMA_MEASURE,
&pathbuf, &pathname, filename);
inode_unlock(inode);
if (rc)
goto out;
if (!action)
goto out;
mutex_lock(&iint->mutex);
if (test_and_clear_bit(IMA_CHANGE_ATTR, &iint->atomic_flags))
/* reset appraisal flags if ima_inode_post_setattr was called */
iint->flags &= ~(IMA_APPRAISE | IMA_APPRAISED |
IMA_APPRAISE_SUBMASK | IMA_APPRAISED_SUBMASK |
IMA_ACTION_FLAGS);
/*
* Re-evaulate the file if either the xattr has changed or the
* kernel has no way of detecting file change on the filesystem.
* (Limited to privileged mounted filesystems.)
*/
if (test_and_clear_bit(IMA_CHANGE_XATTR, &iint->atomic_flags) ||
((inode->i_sb->s_iflags & SB_I_IMA_UNVERIFIABLE_SIGNATURE) &&
!(inode->i_sb->s_iflags & SB_I_UNTRUSTED_MOUNTER) &&
!(action & IMA_FAIL_UNVERIFIABLE_SIGS))) {
iint->flags &= ~IMA_DONE_MASK;
iint->measured_pcrs = 0;
}
/* Determine if already appraised/measured based on bitmask
* (IMA_MEASURE, IMA_MEASURED, IMA_XXXX_APPRAISE, IMA_XXXX_APPRAISED,
* IMA_AUDIT, IMA_AUDITED)
*/
iint->flags |= action;
action &= IMA_DO_MASK;
action &= ~((iint->flags & (IMA_DONE_MASK ^ IMA_MEASURED)) >> 1);
/* If target pcr is already measured, unset IMA_MEASURE action */
if ((action & IMA_MEASURE) && (iint->measured_pcrs & (0x1 << pcr)))
action ^= IMA_MEASURE;
/* HASH sets the digital signature and update flags, nothing else */
if ((action & IMA_HASH) &&
!(test_bit(IMA_DIGSIG, &iint->atomic_flags))) {
xattr_len = ima_read_xattr(file_dentry(file), &xattr_value);
if ((xattr_value && xattr_len > 2) &&
(xattr_value->type == EVM_IMA_XATTR_DIGSIG))
set_bit(IMA_DIGSIG, &iint->atomic_flags);
iint->flags |= IMA_HASHED;
action ^= IMA_HASH;
set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags);
}
/* Nothing to do, just return existing appraised status */
if (!action) {
if (must_appraise) {
rc = mmap_violation_check(func, file, &pathbuf,
&pathname, filename);
if (!rc)
rc = ima_get_cache_status(iint, func);
}
goto out_locked;
}
if ((action & IMA_APPRAISE_SUBMASK) ||
strcmp(template_desc->name, IMA_TEMPLATE_IMA_NAME) != 0) {
/* read 'security.ima' */
xattr_len = ima_read_xattr(file_dentry(file), &xattr_value);
/*
* Read the appended modsig if allowed by the policy, and allow
* an additional measurement list entry, if needed, based on the
* template format and whether the file was already measured.
*/
if (iint->flags & IMA_MODSIG_ALLOWED) {
rc = ima_read_modsig(func, buf, size, &modsig);
if (!rc && ima_template_has_modsig(template_desc) &&
iint->flags & IMA_MEASURED)
action |= IMA_MEASURE;
}
}
hash_algo = ima_get_hash_algo(xattr_value, xattr_len);
rc = ima_collect_measurement(iint, file, buf, size, hash_algo, modsig);
if (rc != 0 && rc != -EBADF && rc != -EINVAL)
goto out_locked;
if (!pathbuf) /* ima_rdwr_violation possibly pre-fetched */
pathname = ima_d_path(&file->f_path, &pathbuf, filename);
if (action & IMA_MEASURE)
ima_store_measurement(iint, file, pathname,
xattr_value, xattr_len, modsig, pcr,
template_desc);
if (rc == 0 && (action & IMA_APPRAISE_SUBMASK)) {
rc = ima_check_blacklist(iint, modsig, pcr);
if (rc != -EPERM) {
inode_lock(inode);
rc = ima_appraise_measurement(func, iint, file,
pathname, xattr_value,
xattr_len, modsig);
inode_unlock(inode);
}
if (!rc)
rc = mmap_violation_check(func, file, &pathbuf,
&pathname, filename);
}
if (action & IMA_AUDIT)
ima_audit_measurement(iint, pathname);
if ((file->f_flags & O_DIRECT) && (iint->flags & IMA_PERMIT_DIRECTIO))
rc = 0;
out_locked:
if ((mask & MAY_WRITE) && test_bit(IMA_DIGSIG, &iint->atomic_flags) &&
!(iint->flags & IMA_NEW_FILE))
rc = -EACCES;
mutex_unlock(&iint->mutex);
kfree(xattr_value);
ima_free_modsig(modsig);
out:
if (pathbuf)
__putname(pathbuf);
if (must_appraise) {
if (rc && (ima_appraise & IMA_APPRAISE_ENFORCE))
return -EACCES;
if (file->f_mode & FMODE_WRITE)
set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags);
}
return 0;
}
/**
* ima_file_mmap - based on policy, collect/store measurement.
* @file: pointer to the file to be measured (May be NULL)
* @prot: contains the protection that will be applied by the kernel.
*
* Measure files being mmapped executable based on the ima_must_measure()
* policy decision.
*
* On success return 0. On integrity appraisal error, assuming the file
* is in policy and IMA-appraisal is in enforcing mode, return -EACCES.
*/
int ima_file_mmap(struct file *file, unsigned long prot)
{
u32 secid;
if (file && (prot & PROT_EXEC)) {
security_task_getsecid(current, &secid);
return process_measurement(file, current_cred(), secid, NULL,
0, MAY_EXEC, MMAP_CHECK);
}
return 0;
}
/**
* ima_file_mprotect - based on policy, limit mprotect change
* @prot: contains the protection that will be applied by the kernel.
*
* Files can be mmap'ed read/write and later changed to execute to circumvent
* IMA's mmap appraisal policy rules. Due to locking issues (mmap semaphore
* would be taken before i_mutex), files can not be measured or appraised at
* this point. Eliminate this integrity gap by denying the mprotect
* PROT_EXECUTE change, if an mmap appraise policy rule exists.
*
* On mprotect change success, return 0. On failure, return -EACESS.
*/
int ima_file_mprotect(struct vm_area_struct *vma, unsigned long prot)
{
struct ima_template_desc *template = NULL;
struct file *file = vma->vm_file;
char filename[NAME_MAX];
char *pathbuf = NULL;
const char *pathname = NULL;
struct inode *inode;
int result = 0;
int action;
u32 secid;
int pcr;
/* Is mprotect making an mmap'ed file executable? */
if (!(ima_policy_flag & IMA_APPRAISE) || !vma->vm_file ||
!(prot & PROT_EXEC) || (vma->vm_flags & VM_EXEC))
return 0;
security_task_getsecid(current, &secid);
inode = file_inode(vma->vm_file);
action = ima_get_action(inode, current_cred(), secid, MAY_EXEC,
MMAP_CHECK, &pcr, &template, 0);
/* Is the mmap'ed file in policy? */
if (!(action & (IMA_MEASURE | IMA_APPRAISE_SUBMASK)))
return 0;
if (action & IMA_APPRAISE_SUBMASK)
result = -EPERM;
file = vma->vm_file;
pathname = ima_d_path(&file->f_path, &pathbuf, filename);
integrity_audit_msg(AUDIT_INTEGRITY_DATA, inode, pathname,
"collect_data", "failed-mprotect", result, 0);
if (pathbuf)
__putname(pathbuf);
return result;
}
/**
* ima_bprm_check - based on policy, collect/store measurement.
* @bprm: contains the linux_binprm structure
*
* The OS protects against an executable file, already open for write,
* from being executed in deny_write_access() and an executable file,
* already open for execute, from being modified in get_write_access().
* So we can be certain that what we verify and measure here is actually
* what is being executed.
*
* On success return 0. On integrity appraisal error, assuming the file
* is in policy and IMA-appraisal is in enforcing mode, return -EACCES.
*/
int ima_bprm_check(struct linux_binprm *bprm)
{
int ret;
u32 secid;
security_task_getsecid(current, &secid);
ret = process_measurement(bprm->file, current_cred(), secid, NULL, 0,
MAY_EXEC, BPRM_CHECK);
if (ret)
return ret;
security_cred_getsecid(bprm->cred, &secid);
return process_measurement(bprm->file, bprm->cred, secid, NULL, 0,
MAY_EXEC, CREDS_CHECK);
}
/**
* ima_path_check - based on policy, collect/store measurement.
* @file: pointer to the file to be measured
* @mask: contains MAY_READ, MAY_WRITE, MAY_EXEC or MAY_APPEND
*
* Measure files based on the ima_must_measure() policy decision.
*
* On success return 0. On integrity appraisal error, assuming the file
* is in policy and IMA-appraisal is in enforcing mode, return -EACCES.
*/
int ima_file_check(struct file *file, int mask)
{
u32 secid;
security_task_getsecid(current, &secid);
return process_measurement(file, current_cred(), secid, NULL, 0,
mask & (MAY_READ | MAY_WRITE | MAY_EXEC |
MAY_APPEND), FILE_CHECK);
}
EXPORT_SYMBOL_GPL(ima_file_check);
/**
* ima_file_hash - return the stored measurement if a file has been hashed and
* is in the iint cache.
* @file: pointer to the file
* @buf: buffer in which to store the hash
* @buf_size: length of the buffer
*
* On success, return the hash algorithm (as defined in the enum hash_algo).
* If buf is not NULL, this function also outputs the hash into buf.
* If the hash is larger than buf_size, then only buf_size bytes will be copied.
* It generally just makes sense to pass a buffer capable of holding the largest
* possible hash: IMA_MAX_DIGEST_SIZE.
* The file hash returned is based on the entire file, including the appended
* signature.
*
* If IMA is disabled or if no measurement is available, return -EOPNOTSUPP.
* If the parameters are incorrect, return -EINVAL.
*/
int ima_file_hash(struct file *file, char *buf, size_t buf_size)
{
struct inode *inode;
struct integrity_iint_cache *iint;
int hash_algo;
if (!file)
return -EINVAL;
if (!ima_policy_flag)
return -EOPNOTSUPP;
inode = file_inode(file);
iint = integrity_iint_find(inode);
if (!iint)
return -EOPNOTSUPP;
mutex_lock(&iint->mutex);
/*
* ima_file_hash can be called when ima_collect_measurement has still
* not been called, we might not always have a hash.
*/
if (!iint->ima_hash) {
mutex_unlock(&iint->mutex);
return -EOPNOTSUPP;
}
if (buf) {
size_t copied_size;
copied_size = min_t(size_t, iint->ima_hash->length, buf_size);
memcpy(buf, iint->ima_hash->digest, copied_size);
}
hash_algo = iint->ima_hash->algo;
mutex_unlock(&iint->mutex);
return hash_algo;
}
EXPORT_SYMBOL_GPL(ima_file_hash);
/**
* ima_post_create_tmpfile - mark newly created tmpfile as new
* @file : newly created tmpfile
*
* No measuring, appraising or auditing of newly created tmpfiles is needed.
* Skip calling process_measurement(), but indicate which newly, created
* tmpfiles are in policy.
*/
void ima_post_create_tmpfile(struct inode *inode)
{
struct integrity_iint_cache *iint;
int must_appraise;
must_appraise = ima_must_appraise(inode, MAY_ACCESS, FILE_CHECK);
if (!must_appraise)
return;
/* Nothing to do if we can't allocate memory */
iint = integrity_inode_get(inode);
if (!iint)
return;
/* needed for writing the security xattrs */
set_bit(IMA_UPDATE_XATTR, &iint->atomic_flags);
iint->ima_file_status = INTEGRITY_PASS;
}
/**
* ima_post_path_mknod - mark as a new inode
* @dentry: newly created dentry
*
* Mark files created via the mknodat syscall as new, so that the
* file data can be written later.
*/
void ima_post_path_mknod(struct dentry *dentry)
{
struct integrity_iint_cache *iint;
struct inode *inode = dentry->d_inode;
int must_appraise;
must_appraise = ima_must_appraise(inode, MAY_ACCESS, FILE_CHECK);
if (!must_appraise)
return;
/* Nothing to do if we can't allocate memory */
iint = integrity_inode_get(inode);
if (!iint)
return;
/* needed for re-opening empty files */
iint->flags |= IMA_NEW_FILE;
}
/**
* ima_read_file - pre-measure/appraise hook decision based on policy
* @file: pointer to the file to be measured/appraised/audit
* @read_id: caller identifier
* @contents: whether a subsequent call will be made to ima_post_read_file()
*
* Permit reading a file based on policy. The policy rules are written
* in terms of the policy identifier. Appraising the integrity of
* a file requires a file descriptor.
*
* For permission return 0, otherwise return -EACCES.
*/
int ima_read_file(struct file *file, enum kernel_read_file_id read_id,
bool contents)
{
enum ima_hooks func;
u32 secid;
/*
* Do devices using pre-allocated memory run the risk of the
* firmware being accessible to the device prior to the completion
* of IMA's signature verification any more than when using two
* buffers? It may be desirable to include the buffer address
* in this API and walk all the dma_map_single() mappings to check.
*/
/*
* There will be a call made to ima_post_read_file() with
* a filled buffer, so we don't need to perform an extra
* read early here.
*/
if (contents)
return 0;
/* Read entire file for all partial reads. */
func = read_idmap[read_id] ?: FILE_CHECK;
security_task_getsecid(current, &secid);
return process_measurement(file, current_cred(), secid, NULL,
0, MAY_READ, func);
}
const int read_idmap[READING_MAX_ID] = {
[READING_FIRMWARE] = FIRMWARE_CHECK,
[READING_MODULE] = MODULE_CHECK,
[READING_KEXEC_IMAGE] = KEXEC_KERNEL_CHECK,
[READING_KEXEC_INITRAMFS] = KEXEC_INITRAMFS_CHECK,
[READING_POLICY] = POLICY_CHECK
};
/**
* ima_post_read_file - in memory collect/appraise/audit measurement
* @file: pointer to the file to be measured/appraised/audit
* @buf: pointer to in memory file contents
* @size: size of in memory file contents
* @read_id: caller identifier
*
* Measure/appraise/audit in memory file based on policy. Policy rules
* are written in terms of a policy identifier.
*
* On success return 0. On integrity appraisal error, assuming the file
* is in policy and IMA-appraisal is in enforcing mode, return -EACCES.
*/
int ima_post_read_file(struct file *file, void *buf, loff_t size,
enum kernel_read_file_id read_id)
{
enum ima_hooks func;
u32 secid;
/* permit signed certs */
if (!file && read_id == READING_X509_CERTIFICATE)
return 0;
if (!file || !buf || size == 0) { /* should never happen */
if (ima_appraise & IMA_APPRAISE_ENFORCE)
return -EACCES;
return 0;
}
func = read_idmap[read_id] ?: FILE_CHECK;
security_task_getsecid(current, &secid);
return process_measurement(file, current_cred(), secid, buf, size,
MAY_READ, func);
}
/**
* ima_load_data - appraise decision based on policy
* @id: kernel load data caller identifier
* @contents: whether the full contents will be available in a later
* call to ima_post_load_data().
*
* Callers of this LSM hook can not measure, appraise, or audit the
* data provided by userspace. Enforce policy rules requring a file
* signature (eg. kexec'ed kernel image).
*
* For permission return 0, otherwise return -EACCES.
*/
int ima_load_data(enum kernel_load_data_id id, bool contents)
{
bool ima_enforce, sig_enforce;
ima_enforce =
(ima_appraise & IMA_APPRAISE_ENFORCE) == IMA_APPRAISE_ENFORCE;
switch (id) {
case LOADING_KEXEC_IMAGE:
if (IS_ENABLED(CONFIG_KEXEC_SIG)
&& arch_ima_get_secureboot()) {
pr_err("impossible to appraise a kernel image without a file descriptor; try using kexec_file_load syscall.\n");
return -EACCES;
}
if (ima_enforce && (ima_appraise & IMA_APPRAISE_KEXEC)) {
pr_err("impossible to appraise a kernel image without a file descriptor; try using kexec_file_load syscall.\n");
return -EACCES; /* INTEGRITY_UNKNOWN */
}
break;
case LOADING_FIRMWARE:
if (ima_enforce && (ima_appraise & IMA_APPRAISE_FIRMWARE) && !contents) {
pr_err("Prevent firmware sysfs fallback loading.\n");
return -EACCES; /* INTEGRITY_UNKNOWN */
}
break;
case LOADING_MODULE:
sig_enforce = is_module_sig_enforced();
if (ima_enforce && (!sig_enforce
&& (ima_appraise & IMA_APPRAISE_MODULES))) {
pr_err("impossible to appraise a module without a file descriptor. sig_enforce kernel parameter might help\n");
return -EACCES; /* INTEGRITY_UNKNOWN */
}
default:
break;
}
return 0;
}
/**
* ima_post_load_data - appraise decision based on policy
* @buf: pointer to in memory file contents
* @size: size of in memory file contents
* @id: kernel load data caller identifier
* @description: @id-specific description of contents
*
* Measure/appraise/audit in memory buffer based on policy. Policy rules
* are written in terms of a policy identifier.
*
* On success return 0. On integrity appraisal error, assuming the file
* is in policy and IMA-appraisal is in enforcing mode, return -EACCES.
*/
int ima_post_load_data(char *buf, loff_t size,
enum kernel_load_data_id load_id,
char *description)
{
if (load_id == LOADING_FIRMWARE) {
if ((ima_appraise & IMA_APPRAISE_FIRMWARE) &&
(ima_appraise & IMA_APPRAISE_ENFORCE)) {
pr_err("Prevent firmware loading_store.\n");
return -EACCES; /* INTEGRITY_UNKNOWN */
}
return 0;
}
return 0;
}
/*
* process_buffer_measurement - Measure the buffer to ima log.
* @inode: inode associated with the object being measured (NULL for KEY_CHECK)
* @buf: pointer to the buffer that needs to be added to the log.
* @size: size of buffer(in bytes).
* @eventname: event name to be used for the buffer entry.
* @func: IMA hook
* @pcr: pcr to extend the measurement
* @keyring: keyring name to determine the action to be performed
*
* Based on policy, the buffer is measured into the ima log.
*/
void process_buffer_measurement(struct inode *inode, const void *buf, int size,
const char *eventname, enum ima_hooks func,
int pcr, const char *keyring)
{
int ret = 0;
const char *audit_cause = "ENOMEM";
struct ima_template_entry *entry = NULL;
struct integrity_iint_cache iint = {};
struct ima_event_data event_data = {.iint = &iint,
.filename = eventname,
.buf = buf,
.buf_len = size};
struct ima_template_desc *template;
struct {
struct ima_digest_data hdr;
char digest[IMA_MAX_DIGEST_SIZE];
} hash = {};
int violation = 0;
int action = 0;
u32 secid;
if (!ima_policy_flag)
return;
template = ima_template_desc_buf();
if (!template) {
ret = -EINVAL;
audit_cause = "ima_template_desc_buf";
goto out;
}
/*
* Both LSM hooks and auxilary based buffer measurements are
* based on policy. To avoid code duplication, differentiate
* between the LSM hooks and auxilary buffer measurements,
* retrieving the policy rule information only for the LSM hook
* buffer measurements.
*/
if (func) {
security_task_getsecid(current, &secid);
action = ima_get_action(inode, current_cred(), secid, 0, func,
&pcr, &template, keyring);
if (!(action & IMA_MEASURE))
return;
}
if (!pcr)
pcr = CONFIG_IMA_MEASURE_PCR_IDX;
iint.ima_hash = &hash.hdr;
iint.ima_hash->algo = ima_hash_algo;
iint.ima_hash->length = hash_digest_size[ima_hash_algo];
ret = ima_calc_buffer_hash(buf, size, iint.ima_hash);
if (ret < 0) {
audit_cause = "hashing_error";
goto out;
}
ret = ima_alloc_init_template(&event_data, &entry, template);
if (ret < 0) {
audit_cause = "alloc_entry";
goto out;
}
ret = ima_store_template(entry, violation, NULL, buf, pcr);
if (ret < 0) {
audit_cause = "store_entry";
ima_free_template_entry(entry);
}
out:
if (ret < 0)
integrity_audit_message(AUDIT_INTEGRITY_PCR, NULL, eventname,
func_measure_str(func),
audit_cause, ret, 0, ret);
return;
}
/**
* ima_kexec_cmdline - measure kexec cmdline boot args
* @kernel_fd: file descriptor of the kexec kernel being loaded
* @buf: pointer to buffer
* @size: size of buffer
*
* Buffers can only be measured, not appraised.
*/
void ima_kexec_cmdline(int kernel_fd, const void *buf, int size)
{
struct fd f;
if (!buf || !size)
return;
f = fdget(kernel_fd);
if (!f.file)
return;
process_buffer_measurement(file_inode(f.file), buf, size,
"kexec-cmdline", KEXEC_CMDLINE, 0, NULL);
fdput(f);
}
static int __init init_ima(void)
{
int error;
ima_appraise_parse_cmdline();
ima_init_template_list();
hash_setup(CONFIG_IMA_DEFAULT_HASH);
error = ima_init();
if (error && strcmp(hash_algo_name[ima_hash_algo],
CONFIG_IMA_DEFAULT_HASH) != 0) {
pr_info("Allocating %s failed, going to use default hash algorithm %s\n",
hash_algo_name[ima_hash_algo], CONFIG_IMA_DEFAULT_HASH);
hash_setup_done = 0;
hash_setup(CONFIG_IMA_DEFAULT_HASH);
error = ima_init();
}
if (error)
return error;
error = register_blocking_lsm_notifier(&ima_lsm_policy_notifier);
if (error)
pr_warn("Couldn't register LSM notifier, error %d\n", error);
if (!error)
ima_update_policy_flag();
return error;
}
late_initcall(init_ima); /* Start IMA after the TPM is available */