linux-stable/drivers/acpi/acpica/evgpeblk.c
Rafael J. Wysocki 44758bafa5 ACPICA: Clear status of GPEs on first direct enable
ACPI GPEs (other than the EC one) can be enabled in two situations.
First, the GPEs with existing _Lxx and _Exx methods are enabled
implicitly by ACPICA during system initialization.  Second, the
GPEs without these methods (like GPEs listed by _PRW objects for
wakeup devices) need to be enabled directly by the code that is
going to use them (e.g. ACPI power management or device drivers).

In the former case, if the status of a given GPE is set to start
with, its handler method (either _Lxx or _Exx) needs to be invoked
to take care of the events (possibly) signaled before the GPE was
enabled.  In the latter case, however, the first caller of
acpi_enable_gpe() for a given GPE should not be expected to care
about any events that might be signaled through it earlier.  In
that case, it is better to clear the status of the GPE before
enabling it, to prevent stale events from triggering unwanted
actions (like spurious system resume, for example).

For this reason, modify acpi_ev_add_gpe_reference() to take an
additional boolean argument indicating whether or not the GPE
status needs to be cleared when its reference counter changes from
zero to one and make acpi_enable_gpe() pass TRUE to it through
that new argument.

Fixes: 18996f2db9 ("ACPICA: Events: Stop unconditionally clearing ACPI IRQs during suspend/resume")
Reported-by: Furquan Shaikh <furquan@google.com>
Tested-by: Furquan Shaikh <furquan@google.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2019-06-19 11:46:21 +02:00

487 lines
13 KiB
C

// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/******************************************************************************
*
* Module Name: evgpeblk - GPE block creation and initialization.
*
* Copyright (C) 2000 - 2019, Intel Corp.
*
*****************************************************************************/
#include <acpi/acpi.h>
#include "accommon.h"
#include "acevents.h"
#include "acnamesp.h"
#define _COMPONENT ACPI_EVENTS
ACPI_MODULE_NAME("evgpeblk")
#if (!ACPI_REDUCED_HARDWARE) /* Entire module */
/* Local prototypes */
static acpi_status
acpi_ev_install_gpe_block(struct acpi_gpe_block_info *gpe_block,
u32 interrupt_number);
static acpi_status
acpi_ev_create_gpe_info_blocks(struct acpi_gpe_block_info *gpe_block);
/*******************************************************************************
*
* FUNCTION: acpi_ev_install_gpe_block
*
* PARAMETERS: gpe_block - New GPE block
* interrupt_number - Xrupt to be associated with this
* GPE block
*
* RETURN: Status
*
* DESCRIPTION: Install new GPE block with mutex support
*
******************************************************************************/
static acpi_status
acpi_ev_install_gpe_block(struct acpi_gpe_block_info *gpe_block,
u32 interrupt_number)
{
struct acpi_gpe_block_info *next_gpe_block;
struct acpi_gpe_xrupt_info *gpe_xrupt_block;
acpi_status status;
acpi_cpu_flags flags;
ACPI_FUNCTION_TRACE(ev_install_gpe_block);
status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
status =
acpi_ev_get_gpe_xrupt_block(interrupt_number, &gpe_xrupt_block);
if (ACPI_FAILURE(status)) {
goto unlock_and_exit;
}
/* Install the new block at the end of the list with lock */
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
if (gpe_xrupt_block->gpe_block_list_head) {
next_gpe_block = gpe_xrupt_block->gpe_block_list_head;
while (next_gpe_block->next) {
next_gpe_block = next_gpe_block->next;
}
next_gpe_block->next = gpe_block;
gpe_block->previous = next_gpe_block;
} else {
gpe_xrupt_block->gpe_block_list_head = gpe_block;
}
gpe_block->xrupt_block = gpe_xrupt_block;
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
unlock_and_exit:
(void)acpi_ut_release_mutex(ACPI_MTX_EVENTS);
return_ACPI_STATUS(status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_delete_gpe_block
*
* PARAMETERS: gpe_block - Existing GPE block
*
* RETURN: Status
*
* DESCRIPTION: Remove a GPE block
*
******************************************************************************/
acpi_status acpi_ev_delete_gpe_block(struct acpi_gpe_block_info *gpe_block)
{
acpi_status status;
acpi_cpu_flags flags;
ACPI_FUNCTION_TRACE(ev_install_gpe_block);
status = acpi_ut_acquire_mutex(ACPI_MTX_EVENTS);
if (ACPI_FAILURE(status)) {
return_ACPI_STATUS(status);
}
/* Disable all GPEs in this block */
status =
acpi_hw_disable_gpe_block(gpe_block->xrupt_block, gpe_block, NULL);
if (!gpe_block->previous && !gpe_block->next) {
/* This is the last gpe_block on this interrupt */
status = acpi_ev_delete_gpe_xrupt(gpe_block->xrupt_block);
if (ACPI_FAILURE(status)) {
goto unlock_and_exit;
}
} else {
/* Remove the block on this interrupt with lock */
flags = acpi_os_acquire_lock(acpi_gbl_gpe_lock);
if (gpe_block->previous) {
gpe_block->previous->next = gpe_block->next;
} else {
gpe_block->xrupt_block->gpe_block_list_head =
gpe_block->next;
}
if (gpe_block->next) {
gpe_block->next->previous = gpe_block->previous;
}
acpi_os_release_lock(acpi_gbl_gpe_lock, flags);
}
acpi_current_gpe_count -= gpe_block->gpe_count;
/* Free the gpe_block */
ACPI_FREE(gpe_block->register_info);
ACPI_FREE(gpe_block->event_info);
ACPI_FREE(gpe_block);
unlock_and_exit:
status = acpi_ut_release_mutex(ACPI_MTX_EVENTS);
return_ACPI_STATUS(status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_create_gpe_info_blocks
*
* PARAMETERS: gpe_block - New GPE block
*
* RETURN: Status
*
* DESCRIPTION: Create the register_info and event_info blocks for this GPE block
*
******************************************************************************/
static acpi_status
acpi_ev_create_gpe_info_blocks(struct acpi_gpe_block_info *gpe_block)
{
struct acpi_gpe_register_info *gpe_register_info = NULL;
struct acpi_gpe_event_info *gpe_event_info = NULL;
struct acpi_gpe_event_info *this_event;
struct acpi_gpe_register_info *this_register;
u32 i;
u32 j;
acpi_status status;
ACPI_FUNCTION_TRACE(ev_create_gpe_info_blocks);
/* Allocate the GPE register information block */
gpe_register_info = ACPI_ALLOCATE_ZEROED((acpi_size)gpe_block->
register_count *
sizeof(struct
acpi_gpe_register_info));
if (!gpe_register_info) {
ACPI_ERROR((AE_INFO,
"Could not allocate the GpeRegisterInfo table"));
return_ACPI_STATUS(AE_NO_MEMORY);
}
/*
* Allocate the GPE event_info block. There are eight distinct GPEs
* per register. Initialization to zeros is sufficient.
*/
gpe_event_info = ACPI_ALLOCATE_ZEROED((acpi_size)gpe_block->gpe_count *
sizeof(struct
acpi_gpe_event_info));
if (!gpe_event_info) {
ACPI_ERROR((AE_INFO,
"Could not allocate the GpeEventInfo table"));
status = AE_NO_MEMORY;
goto error_exit;
}
/* Save the new Info arrays in the GPE block */
gpe_block->register_info = gpe_register_info;
gpe_block->event_info = gpe_event_info;
/*
* Initialize the GPE Register and Event structures. A goal of these
* tables is to hide the fact that there are two separate GPE register
* sets in a given GPE hardware block, the status registers occupy the
* first half, and the enable registers occupy the second half.
*/
this_register = gpe_register_info;
this_event = gpe_event_info;
for (i = 0; i < gpe_block->register_count; i++) {
/* Init the register_info for this GPE register (8 GPEs) */
this_register->base_gpe_number = (u16)
(gpe_block->block_base_number +
(i * ACPI_GPE_REGISTER_WIDTH));
this_register->status_address.address = gpe_block->address + i;
this_register->enable_address.address =
gpe_block->address + i + gpe_block->register_count;
this_register->status_address.space_id = gpe_block->space_id;
this_register->enable_address.space_id = gpe_block->space_id;
this_register->status_address.bit_width =
ACPI_GPE_REGISTER_WIDTH;
this_register->enable_address.bit_width =
ACPI_GPE_REGISTER_WIDTH;
this_register->status_address.bit_offset = 0;
this_register->enable_address.bit_offset = 0;
/* Init the event_info for each GPE within this register */
for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) {
this_event->gpe_number =
(u8) (this_register->base_gpe_number + j);
this_event->register_info = this_register;
this_event++;
}
/* Disable all GPEs within this register */
status = acpi_hw_write(0x00, &this_register->enable_address);
if (ACPI_FAILURE(status)) {
goto error_exit;
}
/* Clear any pending GPE events within this register */
status = acpi_hw_write(0xFF, &this_register->status_address);
if (ACPI_FAILURE(status)) {
goto error_exit;
}
this_register++;
}
return_ACPI_STATUS(AE_OK);
error_exit:
if (gpe_register_info) {
ACPI_FREE(gpe_register_info);
}
if (gpe_event_info) {
ACPI_FREE(gpe_event_info);
}
return_ACPI_STATUS(status);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_create_gpe_block
*
* PARAMETERS: gpe_device - Handle to the parent GPE block
* gpe_block_address - Address and space_ID
* register_count - Number of GPE register pairs in the block
* gpe_block_base_number - Starting GPE number for the block
* interrupt_number - H/W interrupt for the block
* return_gpe_block - Where the new block descriptor is returned
*
* RETURN: Status
*
* DESCRIPTION: Create and Install a block of GPE registers. All GPEs within
* the block are disabled at exit.
* Note: Assumes namespace is locked.
*
******************************************************************************/
acpi_status
acpi_ev_create_gpe_block(struct acpi_namespace_node *gpe_device,
u64 address,
u8 space_id,
u32 register_count,
u16 gpe_block_base_number,
u32 interrupt_number,
struct acpi_gpe_block_info **return_gpe_block)
{
acpi_status status;
struct acpi_gpe_block_info *gpe_block;
struct acpi_gpe_walk_info walk_info;
ACPI_FUNCTION_TRACE(ev_create_gpe_block);
if (!register_count) {
return_ACPI_STATUS(AE_OK);
}
/* Allocate a new GPE block */
gpe_block = ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_gpe_block_info));
if (!gpe_block) {
return_ACPI_STATUS(AE_NO_MEMORY);
}
/* Initialize the new GPE block */
gpe_block->address = address;
gpe_block->space_id = space_id;
gpe_block->node = gpe_device;
gpe_block->gpe_count = (u16)(register_count * ACPI_GPE_REGISTER_WIDTH);
gpe_block->initialized = FALSE;
gpe_block->register_count = register_count;
gpe_block->block_base_number = gpe_block_base_number;
/*
* Create the register_info and event_info sub-structures
* Note: disables and clears all GPEs in the block
*/
status = acpi_ev_create_gpe_info_blocks(gpe_block);
if (ACPI_FAILURE(status)) {
ACPI_FREE(gpe_block);
return_ACPI_STATUS(status);
}
/* Install the new block in the global lists */
status = acpi_ev_install_gpe_block(gpe_block, interrupt_number);
if (ACPI_FAILURE(status)) {
ACPI_FREE(gpe_block->register_info);
ACPI_FREE(gpe_block->event_info);
ACPI_FREE(gpe_block);
return_ACPI_STATUS(status);
}
acpi_gbl_all_gpes_initialized = FALSE;
/* Find all GPE methods (_Lxx or_Exx) for this block */
walk_info.gpe_block = gpe_block;
walk_info.gpe_device = gpe_device;
walk_info.execute_by_owner_id = FALSE;
status = acpi_ns_walk_namespace(ACPI_TYPE_METHOD, gpe_device,
ACPI_UINT32_MAX, ACPI_NS_WALK_NO_UNLOCK,
acpi_ev_match_gpe_method, NULL,
&walk_info, NULL);
/* Return the new block */
if (return_gpe_block) {
(*return_gpe_block) = gpe_block;
}
ACPI_DEBUG_PRINT_RAW((ACPI_DB_INIT,
" Initialized GPE %02X to %02X [%4.4s] %u regs on interrupt 0x%X%s\n",
(u32)gpe_block->block_base_number,
(u32)(gpe_block->block_base_number +
(gpe_block->gpe_count - 1)),
gpe_device->name.ascii, gpe_block->register_count,
interrupt_number,
interrupt_number ==
acpi_gbl_FADT.sci_interrupt ? " (SCI)" : ""));
/* Update global count of currently available GPEs */
acpi_current_gpe_count += gpe_block->gpe_count;
return_ACPI_STATUS(AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_ev_initialize_gpe_block
*
* PARAMETERS: acpi_gpe_callback
*
* RETURN: Status
*
* DESCRIPTION: Initialize and enable a GPE block. Enable GPEs that have
* associated methods.
* Note: Assumes namespace is locked.
*
******************************************************************************/
acpi_status
acpi_ev_initialize_gpe_block(struct acpi_gpe_xrupt_info *gpe_xrupt_info,
struct acpi_gpe_block_info *gpe_block,
void *context)
{
acpi_status status;
struct acpi_gpe_event_info *gpe_event_info;
u32 gpe_enabled_count;
u32 gpe_index;
u32 i;
u32 j;
u8 *is_polling_needed = context;
ACPI_ERROR_ONLY(u32 gpe_number);
ACPI_FUNCTION_TRACE(ev_initialize_gpe_block);
/*
* Ignore a null GPE block (e.g., if no GPE block 1 exists), and
* any GPE blocks that have been initialized already.
*/
if (!gpe_block || gpe_block->initialized) {
return_ACPI_STATUS(AE_OK);
}
/*
* Enable all GPEs that have a corresponding method and have the
* ACPI_GPE_CAN_WAKE flag unset. Any other GPEs within this block
* must be enabled via the acpi_enable_gpe() interface.
*/
gpe_enabled_count = 0;
for (i = 0; i < gpe_block->register_count; i++) {
for (j = 0; j < ACPI_GPE_REGISTER_WIDTH; j++) {
/* Get the info block for this particular GPE */
gpe_index = (i * ACPI_GPE_REGISTER_WIDTH) + j;
gpe_event_info = &gpe_block->event_info[gpe_index];
ACPI_ERROR_ONLY(gpe_number =
gpe_block->block_base_number +
gpe_index);
gpe_event_info->flags |= ACPI_GPE_INITIALIZED;
/*
* Ignore GPEs that have no corresponding _Lxx/_Exx method
* and GPEs that are used for wakeup
*/
if ((ACPI_GPE_DISPATCH_TYPE(gpe_event_info->flags) !=
ACPI_GPE_DISPATCH_METHOD)
|| (gpe_event_info->flags & ACPI_GPE_CAN_WAKE)) {
continue;
}
status = acpi_ev_add_gpe_reference(gpe_event_info, FALSE);
if (ACPI_FAILURE(status)) {
ACPI_EXCEPTION((AE_INFO, status,
"Could not enable GPE 0x%02X",
gpe_number));
continue;
}
gpe_event_info->flags |= ACPI_GPE_AUTO_ENABLED;
if (is_polling_needed &&
ACPI_GPE_IS_POLLING_NEEDED(gpe_event_info)) {
*is_polling_needed = TRUE;
}
gpe_enabled_count++;
}
}
if (gpe_enabled_count) {
ACPI_INFO(("Enabled %u GPEs in block %02X to %02X",
gpe_enabled_count, (u32)gpe_block->block_base_number,
(u32)(gpe_block->block_base_number +
(gpe_block->gpe_count - 1))));
}
gpe_block->initialized = TRUE;
return_ACPI_STATUS(AE_OK);
}
#endif /* !ACPI_REDUCED_HARDWARE */