linux-stable/drivers/media/dvb-frontends/stb6100.c
Thomas Gleixner 74ba9207e1 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 61
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  675 mass ave cambridge ma 02139 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 441 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520071858.739733335@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:36:45 +02:00

565 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
STB6100 Silicon Tuner
Copyright (C) Manu Abraham (abraham.manu@gmail.com)
Copyright (C) ST Microelectronics
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <media/dvb_frontend.h>
#include "stb6100.h"
static unsigned int verbose;
module_param(verbose, int, 0644);
/* Max transfer size done by I2C transfer functions */
#define MAX_XFER_SIZE 64
#define FE_ERROR 0
#define FE_NOTICE 1
#define FE_INFO 2
#define FE_DEBUG 3
#define dprintk(x, y, z, format, arg...) do { \
if (z) { \
if ((x > FE_ERROR) && (x > y)) \
printk(KERN_ERR "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_NOTICE) && (x > y)) \
printk(KERN_NOTICE "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_INFO) && (x > y)) \
printk(KERN_INFO "%s: " format "\n", __func__ , ##arg); \
else if ((x > FE_DEBUG) && (x > y)) \
printk(KERN_DEBUG "%s: " format "\n", __func__ , ##arg); \
} else { \
if (x > y) \
printk(format, ##arg); \
} \
} while (0)
struct stb6100_lkup {
u32 val_low;
u32 val_high;
u8 reg;
};
static void stb6100_release(struct dvb_frontend *fe);
static const struct stb6100_lkup lkup[] = {
{ 0, 950000, 0x0a },
{ 950000, 1000000, 0x0a },
{ 1000000, 1075000, 0x0c },
{ 1075000, 1200000, 0x00 },
{ 1200000, 1300000, 0x01 },
{ 1300000, 1370000, 0x02 },
{ 1370000, 1470000, 0x04 },
{ 1470000, 1530000, 0x05 },
{ 1530000, 1650000, 0x06 },
{ 1650000, 1800000, 0x08 },
{ 1800000, 1950000, 0x0a },
{ 1950000, 2150000, 0x0c },
{ 2150000, 9999999, 0x0c },
{ 0, 0, 0x00 }
};
/* Register names for easy debugging. */
static const char *stb6100_regnames[] = {
[STB6100_LD] = "LD",
[STB6100_VCO] = "VCO",
[STB6100_NI] = "NI",
[STB6100_NF_LSB] = "NF",
[STB6100_K] = "K",
[STB6100_G] = "G",
[STB6100_F] = "F",
[STB6100_DLB] = "DLB",
[STB6100_TEST1] = "TEST1",
[STB6100_FCCK] = "FCCK",
[STB6100_LPEN] = "LPEN",
[STB6100_TEST3] = "TEST3",
};
/* Template for normalisation, i.e. setting unused or undocumented
* bits as required according to the documentation.
*/
struct stb6100_regmask {
u8 mask;
u8 set;
};
static const struct stb6100_regmask stb6100_template[] = {
[STB6100_LD] = { 0xff, 0x00 },
[STB6100_VCO] = { 0xff, 0x00 },
[STB6100_NI] = { 0xff, 0x00 },
[STB6100_NF_LSB] = { 0xff, 0x00 },
[STB6100_K] = { 0xc7, 0x38 },
[STB6100_G] = { 0xef, 0x10 },
[STB6100_F] = { 0x1f, 0xc0 },
[STB6100_DLB] = { 0x38, 0xc4 },
[STB6100_TEST1] = { 0x00, 0x8f },
[STB6100_FCCK] = { 0x40, 0x0d },
[STB6100_LPEN] = { 0xf0, 0x0b },
[STB6100_TEST3] = { 0x00, 0xde },
};
/*
* Currently unused. Some boards might need it in the future
*/
static inline void stb6100_normalise_regs(u8 regs[])
{
int i;
for (i = 0; i < STB6100_NUMREGS; i++)
regs[i] = (regs[i] & stb6100_template[i].mask) | stb6100_template[i].set;
}
static int stb6100_read_regs(struct stb6100_state *state, u8 regs[])
{
int rc;
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = I2C_M_RD,
.buf = regs,
.len = STB6100_NUMREGS
};
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "Read (0x%x) err, rc=[%d]",
state->config->tuner_address, rc);
return -EREMOTEIO;
}
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
for (i = 0; i < STB6100_NUMREGS; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[i], regs[i]);
}
return 0;
}
static int stb6100_read_reg(struct stb6100_state *state, u8 reg)
{
u8 regs[STB6100_NUMREGS];
struct i2c_msg msg = {
.addr = state->config->tuner_address + reg,
.flags = I2C_M_RD,
.buf = regs,
.len = 1
};
i2c_transfer(state->i2c, &msg, 1);
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EINVAL;
}
if (unlikely(verbose > FE_DEBUG)) {
dprintk(verbose, FE_DEBUG, 1, " Read from 0x%02x", state->config->tuner_address);
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[reg], regs[0]);
}
return (unsigned int)regs[0];
}
static int stb6100_write_reg_range(struct stb6100_state *state, u8 buf[], int start, int len)
{
int rc;
u8 cmdbuf[MAX_XFER_SIZE];
struct i2c_msg msg = {
.addr = state->config->tuner_address,
.flags = 0,
.buf = cmdbuf,
.len = len + 1
};
if (1 + len > sizeof(cmdbuf)) {
printk(KERN_WARNING
"%s: i2c wr: len=%d is too big!\n",
KBUILD_MODNAME, len);
return -EINVAL;
}
if (unlikely(start < 1 || start + len > STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register range %d:%d",
start, len);
return -EINVAL;
}
memcpy(&cmdbuf[1], buf, len);
cmdbuf[0] = start;
if (unlikely(verbose > FE_DEBUG)) {
int i;
dprintk(verbose, FE_DEBUG, 1, " Write @ 0x%02x: [%d:%d]", state->config->tuner_address, start, len);
for (i = 0; i < len; i++)
dprintk(verbose, FE_DEBUG, 1, " %s: 0x%02x", stb6100_regnames[start + i], buf[i]);
}
rc = i2c_transfer(state->i2c, &msg, 1);
if (unlikely(rc != 1)) {
dprintk(verbose, FE_ERROR, 1, "(0x%x) write err [%d:%d], rc=[%d]",
(unsigned int)state->config->tuner_address, start, len, rc);
return -EREMOTEIO;
}
return 0;
}
static int stb6100_write_reg(struct stb6100_state *state, u8 reg, u8 data)
{
u8 tmp = data; /* see gcc.gnu.org/bugzilla/show_bug.cgi?id=81715 */
if (unlikely(reg >= STB6100_NUMREGS)) {
dprintk(verbose, FE_ERROR, 1, "Invalid register offset 0x%x", reg);
return -EREMOTEIO;
}
tmp = (tmp & stb6100_template[reg].mask) | stb6100_template[reg].set;
return stb6100_write_reg_range(state, &tmp, reg, 1);
}
static int stb6100_get_status(struct dvb_frontend *fe, u32 *status)
{
int rc;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_LD);
if (rc < 0) {
dprintk(verbose, FE_ERROR, 1, "%s failed", __func__);
return rc;
}
return (rc & STB6100_LD_LOCK) ? TUNER_STATUS_LOCKED : 0;
}
static int stb6100_get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
int rc;
u8 f;
u32 bw;
struct stb6100_state *state = fe->tuner_priv;
rc = stb6100_read_reg(state, STB6100_F);
if (rc < 0)
return rc;
f = rc & STB6100_F_F;
bw = (f + 5) * 2000; /* x2 for ZIF */
*bandwidth = state->bandwidth = bw * 1000;
dprintk(verbose, FE_DEBUG, 1, "bandwidth = %u Hz", state->bandwidth);
return 0;
}
static int stb6100_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth)
{
u32 tmp;
int rc;
struct stb6100_state *state = fe->tuner_priv;
dprintk(verbose, FE_DEBUG, 1, "set bandwidth to %u Hz", bandwidth);
bandwidth /= 2; /* ZIF */
if (bandwidth >= 36000000) /* F[4:0] BW/2 max =31+5=36 mhz for F=31 */
tmp = 31;
else if (bandwidth <= 5000000) /* bw/2 min = 5Mhz for F=0 */
tmp = 0;
else /* if 5 < bw/2 < 36 */
tmp = (bandwidth + 500000) / 1000000 - 5;
/* Turn on LPF bandwidth setting clock control,
* set bandwidth, wait 10ms, turn off.
*/
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_F, 0xc0 | tmp);
if (rc < 0)
return rc;
msleep(5); /* This is dangerous as another (related) thread may start */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */
return 0;
}
static int stb6100_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
int rc;
u32 nint, nfrac, fvco;
int psd2, odiv;
struct stb6100_state *state = fe->tuner_priv;
u8 regs[STB6100_NUMREGS];
rc = stb6100_read_regs(state, regs);
if (rc < 0)
return rc;
odiv = (regs[STB6100_VCO] & STB6100_VCO_ODIV) >> STB6100_VCO_ODIV_SHIFT;
psd2 = (regs[STB6100_K] & STB6100_K_PSD2) >> STB6100_K_PSD2_SHIFT;
nint = regs[STB6100_NI];
nfrac = ((regs[STB6100_K] & STB6100_K_NF_MSB) << 8) | regs[STB6100_NF_LSB];
fvco = (nfrac * state->reference >> (9 - psd2)) + (nint * state->reference << psd2);
*frequency = state->frequency = fvco >> (odiv + 1);
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u kHz, odiv = %u, psd2 = %u, fxtal = %u kHz, fvco = %u kHz, N(I) = %u, N(F) = %u",
state->frequency, odiv, psd2, state->reference, fvco, nint, nfrac);
return 0;
}
static int stb6100_set_frequency(struct dvb_frontend *fe, u32 frequency)
{
int rc;
const struct stb6100_lkup *ptr;
struct stb6100_state *state = fe->tuner_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 srate = 0, fvco, nint, nfrac;
u8 regs[STB6100_NUMREGS];
u8 g, psd2, odiv;
dprintk(verbose, FE_DEBUG, 1, "Version 2010-8-14 13:51");
if (fe->ops.get_frontend) {
dprintk(verbose, FE_DEBUG, 1, "Get frontend parameters");
fe->ops.get_frontend(fe, p);
}
srate = p->symbol_rate;
/* Set up tuner cleanly, LPF calibration on */
rc = stb6100_write_reg(state, STB6100_FCCK, 0x4d | STB6100_FCCK_FCCK);
if (rc < 0)
return rc; /* allow LPF calibration */
/* PLL Loop disabled, bias on, VCO on, synth on */
regs[STB6100_LPEN] = 0xeb;
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
/* Program the registers with their data values */
/* VCO divide ratio (LO divide ratio, VCO prescaler enable). */
if (frequency <= 1075000)
odiv = 1;
else
odiv = 0;
/* VCO enabled, search clock off as per LL3.7, 3.4.1 */
regs[STB6100_VCO] = 0xe0 | (odiv << STB6100_VCO_ODIV_SHIFT);
/* OSM */
for (ptr = lkup;
(ptr->val_high != 0) && !CHKRANGE(frequency, ptr->val_low, ptr->val_high);
ptr++);
if (ptr->val_high == 0) {
printk(KERN_ERR "%s: frequency out of range: %u kHz\n", __func__, frequency);
return -EINVAL;
}
regs[STB6100_VCO] = (regs[STB6100_VCO] & ~STB6100_VCO_OSM) | ptr->reg;
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
if ((frequency > 1075000) && (frequency <= 1325000))
psd2 = 0;
else
psd2 = 1;
/* F(VCO) = F(LO) * (ODIV == 0 ? 2 : 4) */
fvco = frequency << (1 + odiv);
/* N(I) = floor(f(VCO) / (f(XTAL) * (PSD2 ? 2 : 1))) */
nint = fvco / (state->reference << psd2);
/* N(F) = round(f(VCO) / f(XTAL) * (PSD2 ? 2 : 1) - N(I)) * 2 ^ 9 */
nfrac = DIV_ROUND_CLOSEST((fvco - (nint * state->reference << psd2))
<< (9 - psd2), state->reference);
/* NI */
regs[STB6100_NI] = nint;
rc = stb6100_write_reg(state, STB6100_NI, regs[STB6100_NI]);
if (rc < 0)
return rc;
/* NF */
regs[STB6100_NF_LSB] = nfrac;
rc = stb6100_write_reg(state, STB6100_NF_LSB, regs[STB6100_NF_LSB]);
if (rc < 0)
return rc;
/* K */
regs[STB6100_K] = (0x38 & ~STB6100_K_PSD2) | (psd2 << STB6100_K_PSD2_SHIFT);
regs[STB6100_K] = (regs[STB6100_K] & ~STB6100_K_NF_MSB) | ((nfrac >> 8) & STB6100_K_NF_MSB);
rc = stb6100_write_reg(state, STB6100_K, regs[STB6100_K]);
if (rc < 0)
return rc;
/* G Baseband gain. */
if (srate >= 15000000)
g = 9; /* +4 dB */
else if (srate >= 5000000)
g = 11; /* +8 dB */
else
g = 14; /* +14 dB */
regs[STB6100_G] = (0x10 & ~STB6100_G_G) | g;
regs[STB6100_G] &= ~STB6100_G_GCT; /* mask GCT */
regs[STB6100_G] |= (1 << 5); /* 2Vp-p Mode */
rc = stb6100_write_reg(state, STB6100_G, regs[STB6100_G]);
if (rc < 0)
return rc;
/* F we don't write as it is set up in BW set */
/* DLB set DC servo loop BW to 160Hz (LLA 3.8 / 2.1) */
regs[STB6100_DLB] = 0xcc;
rc = stb6100_write_reg(state, STB6100_DLB, regs[STB6100_DLB]);
if (rc < 0)
return rc;
dprintk(verbose, FE_DEBUG, 1,
"frequency = %u, srate = %u, g = %u, odiv = %u, psd2 = %u, fxtal = %u, osm = %u, fvco = %u, N(I) = %u, N(F) = %u",
frequency, srate, (unsigned int)g, (unsigned int)odiv,
(unsigned int)psd2, state->reference,
ptr->reg, fvco, nint, nfrac);
/* Set up the test registers */
regs[STB6100_TEST1] = 0x8f;
rc = stb6100_write_reg(state, STB6100_TEST1, regs[STB6100_TEST1]);
if (rc < 0)
return rc;
regs[STB6100_TEST3] = 0xde;
rc = stb6100_write_reg(state, STB6100_TEST3, regs[STB6100_TEST3]);
if (rc < 0)
return rc;
/* Bring up tuner according to LLA 3.7 3.4.1, step 2 */
regs[STB6100_LPEN] = 0xfb; /* PLL Loop enabled, bias on, VCO on, synth on */
rc = stb6100_write_reg(state, STB6100_LPEN, regs[STB6100_LPEN]);
if (rc < 0)
return rc;
msleep(2);
/* Bring up tuner according to LLA 3.7 3.4.1, step 3 */
regs[STB6100_VCO] &= ~STB6100_VCO_OCK; /* VCO fast search */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
msleep(10); /* This is dangerous as another (related) thread may start */ /* wait for LO to lock */
regs[STB6100_VCO] &= ~STB6100_VCO_OSCH; /* vco search disabled */
regs[STB6100_VCO] |= STB6100_VCO_OCK; /* search clock off */
rc = stb6100_write_reg(state, STB6100_VCO, regs[STB6100_VCO]);
if (rc < 0)
return rc;
rc = stb6100_write_reg(state, STB6100_FCCK, 0x0d);
if (rc < 0)
return rc; /* Stop LPF calibration */
msleep(10); /* This is dangerous as another (related) thread may start */
/* wait for stabilisation, (should not be necessary) */
return 0;
}
static int stb6100_sleep(struct dvb_frontend *fe)
{
/* TODO: power down */
return 0;
}
static int stb6100_init(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
int refclk = 27000000; /* Hz */
/*
* iqsense = 1
* tunerstep = 125000
*/
state->bandwidth = 36000000; /* Hz */
state->reference = refclk / 1000; /* kHz */
/* Set default bandwidth. Modified, PN 13-May-10 */
return 0;
}
static int stb6100_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
if (c->frequency > 0)
stb6100_set_frequency(fe, c->frequency);
if (c->bandwidth_hz > 0)
stb6100_set_bandwidth(fe, c->bandwidth_hz);
return 0;
}
static const struct dvb_tuner_ops stb6100_ops = {
.info = {
.name = "STB6100 Silicon Tuner",
.frequency_min_hz = 950 * MHz,
.frequency_max_hz = 2150 * MHz,
},
.init = stb6100_init,
.sleep = stb6100_sleep,
.get_status = stb6100_get_status,
.set_params = stb6100_set_params,
.get_frequency = stb6100_get_frequency,
.get_bandwidth = stb6100_get_bandwidth,
.release = stb6100_release
};
struct dvb_frontend *stb6100_attach(struct dvb_frontend *fe,
const struct stb6100_config *config,
struct i2c_adapter *i2c)
{
struct stb6100_state *state = NULL;
state = kzalloc(sizeof (struct stb6100_state), GFP_KERNEL);
if (!state)
return NULL;
state->config = config;
state->i2c = i2c;
state->frontend = fe;
state->reference = config->refclock / 1000; /* kHz */
fe->tuner_priv = state;
fe->ops.tuner_ops = stb6100_ops;
printk("%s: Attaching STB6100 \n", __func__);
return fe;
}
static void stb6100_release(struct dvb_frontend *fe)
{
struct stb6100_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
}
EXPORT_SYMBOL(stb6100_attach);
MODULE_PARM_DESC(verbose, "Set Verbosity level");
MODULE_AUTHOR("Manu Abraham");
MODULE_DESCRIPTION("STB6100 Silicon tuner");
MODULE_LICENSE("GPL");