linux-stable/drivers/pci/controller/pcie-microchip-host.c
Daire McNamara 7013654af6 PCI: microchip: Fix potential race in interrupt handling
Clear the MSI bit in ISTATUS_LOCAL register after reading it, but
before reading and handling individual MSI bits from the ISTATUS_MSI
register. This avoids a potential race where new MSI bits may be set
on the ISTATUS_MSI register after it was read and be missed when the
MSI bit in the ISTATUS_LOCAL register is cleared.

ISTATUS_LOCAL is a read/write/clear register; the register's bits
are set when the corresponding interrupt source is activated. Each
source is independent and thus multiple sources may be active
simultaneously. The processor can monitor and clear status
bits. If one or more ISTATUS_LOCAL interrupt sources are active,
the RootPort issues an interrupt towards the processor (on
the AXI domain). Bit 28 of this register reports an MSI has been
received by the RootPort.

ISTATUS_MSI is a read/write/clear register. Bits 31-0 are asserted
when an MSI with message number 31-0 is received by the RootPort.
The processor must monitor and clear these bits.

Effectively, Bit 28 of ISTATUS_LOCAL informs the processor that
an MSI has arrived at the RootPort and ISTATUS_MSI informs the
processor which MSI (in the range 0 - 31) needs handling.

Reported by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/linux-pci/20220127202000.GA126335@bhelgaas/

Link: https://lore.kernel.org/r/20220517141622.145581-1-daire.mcnamara@microchip.com
Fixes: 6f15a9c9f9 ("PCI: microchip: Add Microchip PolarFire PCIe controller driver")
Signed-off-by: Daire McNamara <daire.mcnamara@microchip.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2022-05-18 17:14:21 +01:00

1138 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Microchip AXI PCIe Bridge host controller driver
*
* Copyright (c) 2018 - 2020 Microchip Corporation. All rights reserved.
*
* Author: Daire McNamara <daire.mcnamara@microchip.com>
*/
#include <linux/clk.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/pci-ecam.h>
#include <linux/platform_device.h>
#include "../pci.h"
/* Number of MSI IRQs */
#define MC_NUM_MSI_IRQS 32
#define MC_NUM_MSI_IRQS_CODED 5
/* PCIe Bridge Phy and Controller Phy offsets */
#define MC_PCIE1_BRIDGE_ADDR 0x00008000u
#define MC_PCIE1_CTRL_ADDR 0x0000a000u
#define MC_PCIE_BRIDGE_ADDR (MC_PCIE1_BRIDGE_ADDR)
#define MC_PCIE_CTRL_ADDR (MC_PCIE1_CTRL_ADDR)
/* PCIe Controller Phy Regs */
#define SEC_ERROR_CNT 0x20
#define DED_ERROR_CNT 0x24
#define SEC_ERROR_INT 0x28
#define SEC_ERROR_INT_TX_RAM_SEC_ERR_INT GENMASK(3, 0)
#define SEC_ERROR_INT_RX_RAM_SEC_ERR_INT GENMASK(7, 4)
#define SEC_ERROR_INT_PCIE2AXI_RAM_SEC_ERR_INT GENMASK(11, 8)
#define SEC_ERROR_INT_AXI2PCIE_RAM_SEC_ERR_INT GENMASK(15, 12)
#define NUM_SEC_ERROR_INTS (4)
#define SEC_ERROR_INT_MASK 0x2c
#define DED_ERROR_INT 0x30
#define DED_ERROR_INT_TX_RAM_DED_ERR_INT GENMASK(3, 0)
#define DED_ERROR_INT_RX_RAM_DED_ERR_INT GENMASK(7, 4)
#define DED_ERROR_INT_PCIE2AXI_RAM_DED_ERR_INT GENMASK(11, 8)
#define DED_ERROR_INT_AXI2PCIE_RAM_DED_ERR_INT GENMASK(15, 12)
#define NUM_DED_ERROR_INTS (4)
#define DED_ERROR_INT_MASK 0x34
#define ECC_CONTROL 0x38
#define ECC_CONTROL_TX_RAM_INJ_ERROR_0 BIT(0)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_1 BIT(1)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_2 BIT(2)
#define ECC_CONTROL_TX_RAM_INJ_ERROR_3 BIT(3)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_0 BIT(4)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_1 BIT(5)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_2 BIT(6)
#define ECC_CONTROL_RX_RAM_INJ_ERROR_3 BIT(7)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_0 BIT(8)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_1 BIT(9)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_2 BIT(10)
#define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_3 BIT(11)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_0 BIT(12)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_1 BIT(13)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_2 BIT(14)
#define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_3 BIT(15)
#define ECC_CONTROL_TX_RAM_ECC_BYPASS BIT(24)
#define ECC_CONTROL_RX_RAM_ECC_BYPASS BIT(25)
#define ECC_CONTROL_PCIE2AXI_RAM_ECC_BYPASS BIT(26)
#define ECC_CONTROL_AXI2PCIE_RAM_ECC_BYPASS BIT(27)
#define LTSSM_STATE 0x5c
#define LTSSM_L0_STATE 0x10
#define PCIE_EVENT_INT 0x14c
#define PCIE_EVENT_INT_L2_EXIT_INT BIT(0)
#define PCIE_EVENT_INT_HOTRST_EXIT_INT BIT(1)
#define PCIE_EVENT_INT_DLUP_EXIT_INT BIT(2)
#define PCIE_EVENT_INT_MASK GENMASK(2, 0)
#define PCIE_EVENT_INT_L2_EXIT_INT_MASK BIT(16)
#define PCIE_EVENT_INT_HOTRST_EXIT_INT_MASK BIT(17)
#define PCIE_EVENT_INT_DLUP_EXIT_INT_MASK BIT(18)
#define PCIE_EVENT_INT_ENB_MASK GENMASK(18, 16)
#define PCIE_EVENT_INT_ENB_SHIFT 16
#define NUM_PCIE_EVENTS (3)
/* PCIe Bridge Phy Regs */
#define PCIE_PCI_IDS_DW1 0x9c
/* PCIe Config space MSI capability structure */
#define MC_MSI_CAP_CTRL_OFFSET 0xe0u
#define MC_MSI_MAX_Q_AVAIL (MC_NUM_MSI_IRQS_CODED << 1)
#define MC_MSI_Q_SIZE (MC_NUM_MSI_IRQS_CODED << 4)
#define IMASK_LOCAL 0x180
#define DMA_END_ENGINE_0_MASK 0x00000000u
#define DMA_END_ENGINE_0_SHIFT 0
#define DMA_END_ENGINE_1_MASK 0x00000000u
#define DMA_END_ENGINE_1_SHIFT 1
#define DMA_ERROR_ENGINE_0_MASK 0x00000100u
#define DMA_ERROR_ENGINE_0_SHIFT 8
#define DMA_ERROR_ENGINE_1_MASK 0x00000200u
#define DMA_ERROR_ENGINE_1_SHIFT 9
#define A_ATR_EVT_POST_ERR_MASK 0x00010000u
#define A_ATR_EVT_POST_ERR_SHIFT 16
#define A_ATR_EVT_FETCH_ERR_MASK 0x00020000u
#define A_ATR_EVT_FETCH_ERR_SHIFT 17
#define A_ATR_EVT_DISCARD_ERR_MASK 0x00040000u
#define A_ATR_EVT_DISCARD_ERR_SHIFT 18
#define A_ATR_EVT_DOORBELL_MASK 0x00000000u
#define A_ATR_EVT_DOORBELL_SHIFT 19
#define P_ATR_EVT_POST_ERR_MASK 0x00100000u
#define P_ATR_EVT_POST_ERR_SHIFT 20
#define P_ATR_EVT_FETCH_ERR_MASK 0x00200000u
#define P_ATR_EVT_FETCH_ERR_SHIFT 21
#define P_ATR_EVT_DISCARD_ERR_MASK 0x00400000u
#define P_ATR_EVT_DISCARD_ERR_SHIFT 22
#define P_ATR_EVT_DOORBELL_MASK 0x00000000u
#define P_ATR_EVT_DOORBELL_SHIFT 23
#define PM_MSI_INT_INTA_MASK 0x01000000u
#define PM_MSI_INT_INTA_SHIFT 24
#define PM_MSI_INT_INTB_MASK 0x02000000u
#define PM_MSI_INT_INTB_SHIFT 25
#define PM_MSI_INT_INTC_MASK 0x04000000u
#define PM_MSI_INT_INTC_SHIFT 26
#define PM_MSI_INT_INTD_MASK 0x08000000u
#define PM_MSI_INT_INTD_SHIFT 27
#define PM_MSI_INT_INTX_MASK 0x0f000000u
#define PM_MSI_INT_INTX_SHIFT 24
#define PM_MSI_INT_MSI_MASK 0x10000000u
#define PM_MSI_INT_MSI_SHIFT 28
#define PM_MSI_INT_AER_EVT_MASK 0x20000000u
#define PM_MSI_INT_AER_EVT_SHIFT 29
#define PM_MSI_INT_EVENTS_MASK 0x40000000u
#define PM_MSI_INT_EVENTS_SHIFT 30
#define PM_MSI_INT_SYS_ERR_MASK 0x80000000u
#define PM_MSI_INT_SYS_ERR_SHIFT 31
#define NUM_LOCAL_EVENTS 15
#define ISTATUS_LOCAL 0x184
#define IMASK_HOST 0x188
#define ISTATUS_HOST 0x18c
#define MSI_ADDR 0x190
#define ISTATUS_MSI 0x194
/* PCIe Master table init defines */
#define ATR0_PCIE_WIN0_SRCADDR_PARAM 0x600u
#define ATR0_PCIE_ATR_SIZE 0x25
#define ATR0_PCIE_ATR_SIZE_SHIFT 1
#define ATR0_PCIE_WIN0_SRC_ADDR 0x604u
#define ATR0_PCIE_WIN0_TRSL_ADDR_LSB 0x608u
#define ATR0_PCIE_WIN0_TRSL_ADDR_UDW 0x60cu
#define ATR0_PCIE_WIN0_TRSL_PARAM 0x610u
/* PCIe AXI slave table init defines */
#define ATR0_AXI4_SLV0_SRCADDR_PARAM 0x800u
#define ATR_SIZE_SHIFT 1
#define ATR_IMPL_ENABLE 1
#define ATR0_AXI4_SLV0_SRC_ADDR 0x804u
#define ATR0_AXI4_SLV0_TRSL_ADDR_LSB 0x808u
#define ATR0_AXI4_SLV0_TRSL_ADDR_UDW 0x80cu
#define ATR0_AXI4_SLV0_TRSL_PARAM 0x810u
#define PCIE_TX_RX_INTERFACE 0x00000000u
#define PCIE_CONFIG_INTERFACE 0x00000001u
#define ATR_ENTRY_SIZE 32
#define EVENT_PCIE_L2_EXIT 0
#define EVENT_PCIE_HOTRST_EXIT 1
#define EVENT_PCIE_DLUP_EXIT 2
#define EVENT_SEC_TX_RAM_SEC_ERR 3
#define EVENT_SEC_RX_RAM_SEC_ERR 4
#define EVENT_SEC_AXI2PCIE_RAM_SEC_ERR 5
#define EVENT_SEC_PCIE2AXI_RAM_SEC_ERR 6
#define EVENT_DED_TX_RAM_DED_ERR 7
#define EVENT_DED_RX_RAM_DED_ERR 8
#define EVENT_DED_AXI2PCIE_RAM_DED_ERR 9
#define EVENT_DED_PCIE2AXI_RAM_DED_ERR 10
#define EVENT_LOCAL_DMA_END_ENGINE_0 11
#define EVENT_LOCAL_DMA_END_ENGINE_1 12
#define EVENT_LOCAL_DMA_ERROR_ENGINE_0 13
#define EVENT_LOCAL_DMA_ERROR_ENGINE_1 14
#define EVENT_LOCAL_A_ATR_EVT_POST_ERR 15
#define EVENT_LOCAL_A_ATR_EVT_FETCH_ERR 16
#define EVENT_LOCAL_A_ATR_EVT_DISCARD_ERR 17
#define EVENT_LOCAL_A_ATR_EVT_DOORBELL 18
#define EVENT_LOCAL_P_ATR_EVT_POST_ERR 19
#define EVENT_LOCAL_P_ATR_EVT_FETCH_ERR 20
#define EVENT_LOCAL_P_ATR_EVT_DISCARD_ERR 21
#define EVENT_LOCAL_P_ATR_EVT_DOORBELL 22
#define EVENT_LOCAL_PM_MSI_INT_INTX 23
#define EVENT_LOCAL_PM_MSI_INT_MSI 24
#define EVENT_LOCAL_PM_MSI_INT_AER_EVT 25
#define EVENT_LOCAL_PM_MSI_INT_EVENTS 26
#define EVENT_LOCAL_PM_MSI_INT_SYS_ERR 27
#define NUM_EVENTS 28
#define PCIE_EVENT_CAUSE(x, s) \
[EVENT_PCIE_ ## x] = { __stringify(x), s }
#define SEC_ERROR_CAUSE(x, s) \
[EVENT_SEC_ ## x] = { __stringify(x), s }
#define DED_ERROR_CAUSE(x, s) \
[EVENT_DED_ ## x] = { __stringify(x), s }
#define LOCAL_EVENT_CAUSE(x, s) \
[EVENT_LOCAL_ ## x] = { __stringify(x), s }
#define PCIE_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = PCIE_EVENT_INT, \
.mask_offset = PCIE_EVENT_INT, \
.mask_high = 1, \
.mask = PCIE_EVENT_INT_ ## x ## _INT, \
.enb_mask = PCIE_EVENT_INT_ENB_MASK
#define SEC_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = SEC_ERROR_INT, \
.mask_offset = SEC_ERROR_INT_MASK, \
.mask = SEC_ERROR_INT_ ## x ## _INT, \
.mask_high = 1, \
.enb_mask = 0
#define DED_EVENT(x) \
.base = MC_PCIE_CTRL_ADDR, \
.offset = DED_ERROR_INT, \
.mask_offset = DED_ERROR_INT_MASK, \
.mask_high = 1, \
.mask = DED_ERROR_INT_ ## x ## _INT, \
.enb_mask = 0
#define LOCAL_EVENT(x) \
.base = MC_PCIE_BRIDGE_ADDR, \
.offset = ISTATUS_LOCAL, \
.mask_offset = IMASK_LOCAL, \
.mask_high = 0, \
.mask = x ## _MASK, \
.enb_mask = 0
#define PCIE_EVENT_TO_EVENT_MAP(x) \
{ PCIE_EVENT_INT_ ## x ## _INT, EVENT_PCIE_ ## x }
#define SEC_ERROR_TO_EVENT_MAP(x) \
{ SEC_ERROR_INT_ ## x ## _INT, EVENT_SEC_ ## x }
#define DED_ERROR_TO_EVENT_MAP(x) \
{ DED_ERROR_INT_ ## x ## _INT, EVENT_DED_ ## x }
#define LOCAL_STATUS_TO_EVENT_MAP(x) \
{ x ## _MASK, EVENT_LOCAL_ ## x }
struct event_map {
u32 reg_mask;
u32 event_bit;
};
struct mc_msi {
struct mutex lock; /* Protect used bitmap */
struct irq_domain *msi_domain;
struct irq_domain *dev_domain;
u32 num_vectors;
u64 vector_phy;
DECLARE_BITMAP(used, MC_NUM_MSI_IRQS);
};
struct mc_pcie {
void __iomem *axi_base_addr;
struct device *dev;
struct irq_domain *intx_domain;
struct irq_domain *event_domain;
raw_spinlock_t lock;
struct mc_msi msi;
};
struct cause {
const char *sym;
const char *str;
};
static const struct cause event_cause[NUM_EVENTS] = {
PCIE_EVENT_CAUSE(L2_EXIT, "L2 exit event"),
PCIE_EVENT_CAUSE(HOTRST_EXIT, "Hot reset exit event"),
PCIE_EVENT_CAUSE(DLUP_EXIT, "DLUP exit event"),
SEC_ERROR_CAUSE(TX_RAM_SEC_ERR, "sec error in tx buffer"),
SEC_ERROR_CAUSE(RX_RAM_SEC_ERR, "sec error in rx buffer"),
SEC_ERROR_CAUSE(PCIE2AXI_RAM_SEC_ERR, "sec error in pcie2axi buffer"),
SEC_ERROR_CAUSE(AXI2PCIE_RAM_SEC_ERR, "sec error in axi2pcie buffer"),
DED_ERROR_CAUSE(TX_RAM_DED_ERR, "ded error in tx buffer"),
DED_ERROR_CAUSE(RX_RAM_DED_ERR, "ded error in rx buffer"),
DED_ERROR_CAUSE(PCIE2AXI_RAM_DED_ERR, "ded error in pcie2axi buffer"),
DED_ERROR_CAUSE(AXI2PCIE_RAM_DED_ERR, "ded error in axi2pcie buffer"),
LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_0, "dma engine 0 error"),
LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_1, "dma engine 1 error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_POST_ERR, "axi write request error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_FETCH_ERR, "axi read request error"),
LOCAL_EVENT_CAUSE(A_ATR_EVT_DISCARD_ERR, "axi read timeout"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_POST_ERR, "pcie write request error"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_FETCH_ERR, "pcie read request error"),
LOCAL_EVENT_CAUSE(P_ATR_EVT_DISCARD_ERR, "pcie read timeout"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_AER_EVT, "aer event"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_EVENTS, "pm/ltr/hotplug event"),
LOCAL_EVENT_CAUSE(PM_MSI_INT_SYS_ERR, "system error"),
};
static struct event_map pcie_event_to_event[] = {
PCIE_EVENT_TO_EVENT_MAP(L2_EXIT),
PCIE_EVENT_TO_EVENT_MAP(HOTRST_EXIT),
PCIE_EVENT_TO_EVENT_MAP(DLUP_EXIT),
};
static struct event_map sec_error_to_event[] = {
SEC_ERROR_TO_EVENT_MAP(TX_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(RX_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_SEC_ERR),
SEC_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_SEC_ERR),
};
static struct event_map ded_error_to_event[] = {
DED_ERROR_TO_EVENT_MAP(TX_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(RX_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_DED_ERR),
DED_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_DED_ERR),
};
static struct event_map local_status_to_event[] = {
LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_0),
LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_1),
LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_0),
LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_1),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_POST_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_FETCH_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DISCARD_ERR),
LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DOORBELL),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_POST_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_FETCH_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DISCARD_ERR),
LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DOORBELL),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_INTX),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_MSI),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_AER_EVT),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_EVENTS),
LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_SYS_ERR),
};
static struct {
u32 base;
u32 offset;
u32 mask;
u32 shift;
u32 enb_mask;
u32 mask_high;
u32 mask_offset;
} event_descs[] = {
{ PCIE_EVENT(L2_EXIT) },
{ PCIE_EVENT(HOTRST_EXIT) },
{ PCIE_EVENT(DLUP_EXIT) },
{ SEC_EVENT(TX_RAM_SEC_ERR) },
{ SEC_EVENT(RX_RAM_SEC_ERR) },
{ SEC_EVENT(PCIE2AXI_RAM_SEC_ERR) },
{ SEC_EVENT(AXI2PCIE_RAM_SEC_ERR) },
{ DED_EVENT(TX_RAM_DED_ERR) },
{ DED_EVENT(RX_RAM_DED_ERR) },
{ DED_EVENT(PCIE2AXI_RAM_DED_ERR) },
{ DED_EVENT(AXI2PCIE_RAM_DED_ERR) },
{ LOCAL_EVENT(DMA_END_ENGINE_0) },
{ LOCAL_EVENT(DMA_END_ENGINE_1) },
{ LOCAL_EVENT(DMA_ERROR_ENGINE_0) },
{ LOCAL_EVENT(DMA_ERROR_ENGINE_1) },
{ LOCAL_EVENT(A_ATR_EVT_POST_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_FETCH_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_DISCARD_ERR) },
{ LOCAL_EVENT(A_ATR_EVT_DOORBELL) },
{ LOCAL_EVENT(P_ATR_EVT_POST_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_FETCH_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_DISCARD_ERR) },
{ LOCAL_EVENT(P_ATR_EVT_DOORBELL) },
{ LOCAL_EVENT(PM_MSI_INT_INTX) },
{ LOCAL_EVENT(PM_MSI_INT_MSI) },
{ LOCAL_EVENT(PM_MSI_INT_AER_EVT) },
{ LOCAL_EVENT(PM_MSI_INT_EVENTS) },
{ LOCAL_EVENT(PM_MSI_INT_SYS_ERR) },
};
static char poss_clks[][5] = { "fic0", "fic1", "fic2", "fic3" };
static void mc_pcie_enable_msi(struct mc_pcie *port, void __iomem *base)
{
struct mc_msi *msi = &port->msi;
u32 cap_offset = MC_MSI_CAP_CTRL_OFFSET;
u16 msg_ctrl = readw_relaxed(base + cap_offset + PCI_MSI_FLAGS);
msg_ctrl |= PCI_MSI_FLAGS_ENABLE;
msg_ctrl &= ~PCI_MSI_FLAGS_QMASK;
msg_ctrl |= MC_MSI_MAX_Q_AVAIL;
msg_ctrl &= ~PCI_MSI_FLAGS_QSIZE;
msg_ctrl |= MC_MSI_Q_SIZE;
msg_ctrl |= PCI_MSI_FLAGS_64BIT;
writew_relaxed(msg_ctrl, base + cap_offset + PCI_MSI_FLAGS);
writel_relaxed(lower_32_bits(msi->vector_phy),
base + cap_offset + PCI_MSI_ADDRESS_LO);
writel_relaxed(upper_32_bits(msi->vector_phy),
base + cap_offset + PCI_MSI_ADDRESS_HI);
}
static void mc_handle_msi(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
struct device *dev = port->dev;
struct mc_msi *msi = &port->msi;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long status;
u32 bit;
int ret;
chained_irq_enter(chip, desc);
status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL);
if (status & PM_MSI_INT_MSI_MASK) {
writel_relaxed(status & PM_MSI_INT_MSI_MASK, bridge_base_addr + ISTATUS_LOCAL);
status = readl_relaxed(bridge_base_addr + ISTATUS_MSI);
for_each_set_bit(bit, &status, msi->num_vectors) {
ret = generic_handle_domain_irq(msi->dev_domain, bit);
if (ret)
dev_err_ratelimited(dev, "bad MSI IRQ %d\n",
bit);
}
}
chained_irq_exit(chip, desc);
}
static void mc_msi_bottom_irq_ack(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
u32 bitpos = data->hwirq;
writel_relaxed(BIT(bitpos), bridge_base_addr + ISTATUS_MSI);
}
static void mc_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
phys_addr_t addr = port->msi.vector_phy;
msg->address_lo = lower_32_bits(addr);
msg->address_hi = upper_32_bits(addr);
msg->data = data->hwirq;
dev_dbg(port->dev, "msi#%x address_hi %#x address_lo %#x\n",
(int)data->hwirq, msg->address_hi, msg->address_lo);
}
static int mc_msi_set_affinity(struct irq_data *irq_data,
const struct cpumask *mask, bool force)
{
return -EINVAL;
}
static struct irq_chip mc_msi_bottom_irq_chip = {
.name = "Microchip MSI",
.irq_ack = mc_msi_bottom_irq_ack,
.irq_compose_msi_msg = mc_compose_msi_msg,
.irq_set_affinity = mc_msi_set_affinity,
};
static int mc_irq_msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct mc_pcie *port = domain->host_data;
struct mc_msi *msi = &port->msi;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long bit;
u32 val;
mutex_lock(&msi->lock);
bit = find_first_zero_bit(msi->used, msi->num_vectors);
if (bit >= msi->num_vectors) {
mutex_unlock(&msi->lock);
return -ENOSPC;
}
set_bit(bit, msi->used);
irq_domain_set_info(domain, virq, bit, &mc_msi_bottom_irq_chip,
domain->host_data, handle_edge_irq, NULL, NULL);
/* Enable MSI interrupts */
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= PM_MSI_INT_MSI_MASK;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
mutex_unlock(&msi->lock);
return 0;
}
static void mc_irq_msi_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct mc_pcie *port = irq_data_get_irq_chip_data(d);
struct mc_msi *msi = &port->msi;
mutex_lock(&msi->lock);
if (test_bit(d->hwirq, msi->used))
__clear_bit(d->hwirq, msi->used);
else
dev_err(port->dev, "trying to free unused MSI%lu\n", d->hwirq);
mutex_unlock(&msi->lock);
}
static const struct irq_domain_ops msi_domain_ops = {
.alloc = mc_irq_msi_domain_alloc,
.free = mc_irq_msi_domain_free,
};
static struct irq_chip mc_msi_irq_chip = {
.name = "Microchip PCIe MSI",
.irq_ack = irq_chip_ack_parent,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static struct msi_domain_info mc_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX),
.chip = &mc_msi_irq_chip,
};
static int mc_allocate_msi_domains(struct mc_pcie *port)
{
struct device *dev = port->dev;
struct fwnode_handle *fwnode = of_node_to_fwnode(dev->of_node);
struct mc_msi *msi = &port->msi;
mutex_init(&port->msi.lock);
msi->dev_domain = irq_domain_add_linear(NULL, msi->num_vectors,
&msi_domain_ops, port);
if (!msi->dev_domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
msi->msi_domain = pci_msi_create_irq_domain(fwnode, &mc_msi_domain_info,
msi->dev_domain);
if (!msi->msi_domain) {
dev_err(dev, "failed to create MSI domain\n");
irq_domain_remove(msi->dev_domain);
return -ENOMEM;
}
return 0;
}
static void mc_handle_intx(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
struct device *dev = port->dev;
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long status;
u32 bit;
int ret;
chained_irq_enter(chip, desc);
status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL);
if (status & PM_MSI_INT_INTX_MASK) {
status &= PM_MSI_INT_INTX_MASK;
status >>= PM_MSI_INT_INTX_SHIFT;
for_each_set_bit(bit, &status, PCI_NUM_INTX) {
ret = generic_handle_domain_irq(port->intx_domain, bit);
if (ret)
dev_err_ratelimited(dev, "bad INTx IRQ %d\n",
bit);
}
}
chained_irq_exit(chip, desc);
}
static void mc_ack_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
writel_relaxed(mask, bridge_base_addr + ISTATUS_LOCAL);
}
static void mc_mask_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long flags;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
u32 val;
raw_spin_lock_irqsave(&port->lock, flags);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val &= ~mask;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
raw_spin_unlock_irqrestore(&port->lock, flags);
}
static void mc_unmask_intx_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
unsigned long flags;
u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT);
u32 val;
raw_spin_lock_irqsave(&port->lock, flags);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= mask;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
raw_spin_unlock_irqrestore(&port->lock, flags);
}
static struct irq_chip mc_intx_irq_chip = {
.name = "Microchip PCIe INTx",
.irq_ack = mc_ack_intx_irq,
.irq_mask = mc_mask_intx_irq,
.irq_unmask = mc_unmask_intx_irq,
};
static int mc_pcie_intx_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &mc_intx_irq_chip, handle_level_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops intx_domain_ops = {
.map = mc_pcie_intx_map,
};
static inline u32 reg_to_event(u32 reg, struct event_map field)
{
return (reg & field.reg_mask) ? BIT(field.event_bit) : 0;
}
static u32 pcie_events(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(pcie_event_to_event); i++)
val |= reg_to_event(reg, pcie_event_to_event[i]);
return val;
}
static u32 sec_errors(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(sec_error_to_event); i++)
val |= reg_to_event(reg, sec_error_to_event[i]);
return val;
}
static u32 ded_errors(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(ded_error_to_event); i++)
val |= reg_to_event(reg, ded_error_to_event[i]);
return val;
}
static u32 local_events(void __iomem *addr)
{
u32 reg = readl_relaxed(addr);
u32 val = 0;
int i;
for (i = 0; i < ARRAY_SIZE(local_status_to_event); i++)
val |= reg_to_event(reg, local_status_to_event[i]);
return val;
}
static u32 get_events(struct mc_pcie *port)
{
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR;
u32 events = 0;
events |= pcie_events(ctrl_base_addr + PCIE_EVENT_INT);
events |= sec_errors(ctrl_base_addr + SEC_ERROR_INT);
events |= ded_errors(ctrl_base_addr + DED_ERROR_INT);
events |= local_events(bridge_base_addr + ISTATUS_LOCAL);
return events;
}
static irqreturn_t mc_event_handler(int irq, void *dev_id)
{
struct mc_pcie *port = dev_id;
struct device *dev = port->dev;
struct irq_data *data;
data = irq_domain_get_irq_data(port->event_domain, irq);
if (event_cause[data->hwirq].str)
dev_err_ratelimited(dev, "%s\n", event_cause[data->hwirq].str);
else
dev_err_ratelimited(dev, "bad event IRQ %ld\n", data->hwirq);
return IRQ_HANDLED;
}
static void mc_handle_event(struct irq_desc *desc)
{
struct mc_pcie *port = irq_desc_get_handler_data(desc);
unsigned long events;
u32 bit;
struct irq_chip *chip = irq_desc_get_chip(desc);
chained_irq_enter(chip, desc);
events = get_events(port);
for_each_set_bit(bit, &events, NUM_EVENTS)
generic_handle_domain_irq(port->event_domain, bit);
chained_irq_exit(chip, desc);
}
static void mc_ack_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].offset;
mask = event_descs[event].mask;
mask |= event_descs[event].enb_mask;
writel_relaxed(mask, addr);
}
static void mc_mask_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
u32 val;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].mask_offset;
mask = event_descs[event].mask;
if (event_descs[event].enb_mask) {
mask <<= PCIE_EVENT_INT_ENB_SHIFT;
mask &= PCIE_EVENT_INT_ENB_MASK;
}
if (!event_descs[event].mask_high)
mask = ~mask;
raw_spin_lock(&port->lock);
val = readl_relaxed(addr);
if (event_descs[event].mask_high)
val |= mask;
else
val &= mask;
writel_relaxed(val, addr);
raw_spin_unlock(&port->lock);
}
static void mc_unmask_event_irq(struct irq_data *data)
{
struct mc_pcie *port = irq_data_get_irq_chip_data(data);
u32 event = data->hwirq;
void __iomem *addr;
u32 mask;
u32 val;
addr = port->axi_base_addr + event_descs[event].base +
event_descs[event].mask_offset;
mask = event_descs[event].mask;
if (event_descs[event].enb_mask)
mask <<= PCIE_EVENT_INT_ENB_SHIFT;
if (event_descs[event].mask_high)
mask = ~mask;
if (event_descs[event].enb_mask)
mask &= PCIE_EVENT_INT_ENB_MASK;
raw_spin_lock(&port->lock);
val = readl_relaxed(addr);
if (event_descs[event].mask_high)
val &= mask;
else
val |= mask;
writel_relaxed(val, addr);
raw_spin_unlock(&port->lock);
}
static struct irq_chip mc_event_irq_chip = {
.name = "Microchip PCIe EVENT",
.irq_ack = mc_ack_event_irq,
.irq_mask = mc_mask_event_irq,
.irq_unmask = mc_unmask_event_irq,
};
static int mc_pcie_event_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &mc_event_irq_chip, handle_level_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops event_domain_ops = {
.map = mc_pcie_event_map,
};
static inline struct clk *mc_pcie_init_clk(struct device *dev, const char *id)
{
struct clk *clk;
int ret;
clk = devm_clk_get_optional(dev, id);
if (IS_ERR(clk))
return clk;
if (!clk)
return clk;
ret = clk_prepare_enable(clk);
if (ret)
return ERR_PTR(ret);
devm_add_action_or_reset(dev, (void (*) (void *))clk_disable_unprepare,
clk);
return clk;
}
static int mc_pcie_init_clks(struct device *dev)
{
int i;
struct clk *fic;
/*
* PCIe may be clocked via Fabric Interface using between 1 and 4
* clocks. Scan DT for clocks and enable them if present
*/
for (i = 0; i < ARRAY_SIZE(poss_clks); i++) {
fic = mc_pcie_init_clk(dev, poss_clks[i]);
if (IS_ERR(fic))
return PTR_ERR(fic);
}
return 0;
}
static int mc_pcie_init_irq_domains(struct mc_pcie *port)
{
struct device *dev = port->dev;
struct device_node *node = dev->of_node;
struct device_node *pcie_intc_node;
/* Setup INTx */
pcie_intc_node = of_get_next_child(node, NULL);
if (!pcie_intc_node) {
dev_err(dev, "failed to find PCIe Intc node\n");
return -EINVAL;
}
port->event_domain = irq_domain_add_linear(pcie_intc_node, NUM_EVENTS,
&event_domain_ops, port);
if (!port->event_domain) {
dev_err(dev, "failed to get event domain\n");
return -ENOMEM;
}
irq_domain_update_bus_token(port->event_domain, DOMAIN_BUS_NEXUS);
port->intx_domain = irq_domain_add_linear(pcie_intc_node, PCI_NUM_INTX,
&intx_domain_ops, port);
if (!port->intx_domain) {
dev_err(dev, "failed to get an INTx IRQ domain\n");
return -ENOMEM;
}
irq_domain_update_bus_token(port->intx_domain, DOMAIN_BUS_WIRED);
of_node_put(pcie_intc_node);
raw_spin_lock_init(&port->lock);
return mc_allocate_msi_domains(port);
}
static void mc_pcie_setup_window(void __iomem *bridge_base_addr, u32 index,
phys_addr_t axi_addr, phys_addr_t pci_addr,
size_t size)
{
u32 atr_sz = ilog2(size) - 1;
u32 val;
if (index == 0)
val = PCIE_CONFIG_INTERFACE;
else
val = PCIE_TX_RX_INTERFACE;
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_PARAM);
val = lower_32_bits(axi_addr) | (atr_sz << ATR_SIZE_SHIFT) |
ATR_IMPL_ENABLE;
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_SRCADDR_PARAM);
val = upper_32_bits(axi_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_SRC_ADDR);
val = lower_32_bits(pci_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_ADDR_LSB);
val = upper_32_bits(pci_addr);
writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) +
ATR0_AXI4_SLV0_TRSL_ADDR_UDW);
val = readl(bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM);
val |= (ATR0_PCIE_ATR_SIZE << ATR0_PCIE_ATR_SIZE_SHIFT);
writel(val, bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM);
writel(0, bridge_base_addr + ATR0_PCIE_WIN0_SRC_ADDR);
}
static int mc_pcie_setup_windows(struct platform_device *pdev,
struct mc_pcie *port)
{
void __iomem *bridge_base_addr =
port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
struct pci_host_bridge *bridge = platform_get_drvdata(pdev);
struct resource_entry *entry;
u64 pci_addr;
u32 index = 1;
resource_list_for_each_entry(entry, &bridge->windows) {
if (resource_type(entry->res) == IORESOURCE_MEM) {
pci_addr = entry->res->start - entry->offset;
mc_pcie_setup_window(bridge_base_addr, index,
entry->res->start, pci_addr,
resource_size(entry->res));
index++;
}
}
return 0;
}
static int mc_platform_init(struct pci_config_window *cfg)
{
struct device *dev = cfg->parent;
struct platform_device *pdev = to_platform_device(dev);
struct mc_pcie *port;
void __iomem *bridge_base_addr;
void __iomem *ctrl_base_addr;
int ret;
int irq;
int i, intx_irq, msi_irq, event_irq;
u32 val;
int err;
port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL);
if (!port)
return -ENOMEM;
port->dev = dev;
ret = mc_pcie_init_clks(dev);
if (ret) {
dev_err(dev, "failed to get clock resources, error %d\n", ret);
return -ENODEV;
}
port->axi_base_addr = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(port->axi_base_addr))
return PTR_ERR(port->axi_base_addr);
bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR;
ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR;
port->msi.vector_phy = MSI_ADDR;
port->msi.num_vectors = MC_NUM_MSI_IRQS;
ret = mc_pcie_init_irq_domains(port);
if (ret) {
dev_err(dev, "failed creating IRQ domains\n");
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
for (i = 0; i < NUM_EVENTS; i++) {
event_irq = irq_create_mapping(port->event_domain, i);
if (!event_irq) {
dev_err(dev, "failed to map hwirq %d\n", i);
return -ENXIO;
}
err = devm_request_irq(dev, event_irq, mc_event_handler,
0, event_cause[i].sym, port);
if (err) {
dev_err(dev, "failed to request IRQ %d\n", event_irq);
return err;
}
}
intx_irq = irq_create_mapping(port->event_domain,
EVENT_LOCAL_PM_MSI_INT_INTX);
if (!intx_irq) {
dev_err(dev, "failed to map INTx interrupt\n");
return -ENXIO;
}
/* Plug the INTx chained handler */
irq_set_chained_handler_and_data(intx_irq, mc_handle_intx, port);
msi_irq = irq_create_mapping(port->event_domain,
EVENT_LOCAL_PM_MSI_INT_MSI);
if (!msi_irq)
return -ENXIO;
/* Plug the MSI chained handler */
irq_set_chained_handler_and_data(msi_irq, mc_handle_msi, port);
/* Plug the main event chained handler */
irq_set_chained_handler_and_data(irq, mc_handle_event, port);
/* Hardware doesn't setup MSI by default */
mc_pcie_enable_msi(port, cfg->win);
val = readl_relaxed(bridge_base_addr + IMASK_LOCAL);
val |= PM_MSI_INT_INTX_MASK;
writel_relaxed(val, bridge_base_addr + IMASK_LOCAL);
writel_relaxed(val, ctrl_base_addr + ECC_CONTROL);
val = PCIE_EVENT_INT_L2_EXIT_INT |
PCIE_EVENT_INT_HOTRST_EXIT_INT |
PCIE_EVENT_INT_DLUP_EXIT_INT;
writel_relaxed(val, ctrl_base_addr + PCIE_EVENT_INT);
val = SEC_ERROR_INT_TX_RAM_SEC_ERR_INT |
SEC_ERROR_INT_RX_RAM_SEC_ERR_INT |
SEC_ERROR_INT_PCIE2AXI_RAM_SEC_ERR_INT |
SEC_ERROR_INT_AXI2PCIE_RAM_SEC_ERR_INT;
writel_relaxed(val, ctrl_base_addr + SEC_ERROR_INT);
writel_relaxed(0, ctrl_base_addr + SEC_ERROR_INT_MASK);
writel_relaxed(0, ctrl_base_addr + SEC_ERROR_CNT);
val = DED_ERROR_INT_TX_RAM_DED_ERR_INT |
DED_ERROR_INT_RX_RAM_DED_ERR_INT |
DED_ERROR_INT_PCIE2AXI_RAM_DED_ERR_INT |
DED_ERROR_INT_AXI2PCIE_RAM_DED_ERR_INT;
writel_relaxed(val, ctrl_base_addr + DED_ERROR_INT);
writel_relaxed(0, ctrl_base_addr + DED_ERROR_INT_MASK);
writel_relaxed(0, ctrl_base_addr + DED_ERROR_CNT);
writel_relaxed(0, bridge_base_addr + IMASK_HOST);
writel_relaxed(GENMASK(31, 0), bridge_base_addr + ISTATUS_HOST);
/* Configure Address Translation Table 0 for PCIe config space */
mc_pcie_setup_window(bridge_base_addr, 0, cfg->res.start & 0xffffffff,
cfg->res.start, resource_size(&cfg->res));
return mc_pcie_setup_windows(pdev, port);
}
static const struct pci_ecam_ops mc_ecam_ops = {
.init = mc_platform_init,
.pci_ops = {
.map_bus = pci_ecam_map_bus,
.read = pci_generic_config_read,
.write = pci_generic_config_write,
}
};
static const struct of_device_id mc_pcie_of_match[] = {
{
.compatible = "microchip,pcie-host-1.0",
.data = &mc_ecam_ops,
},
{},
};
MODULE_DEVICE_TABLE(of, mc_pcie_of_match);
static struct platform_driver mc_pcie_driver = {
.probe = pci_host_common_probe,
.driver = {
.name = "microchip-pcie",
.of_match_table = mc_pcie_of_match,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(mc_pcie_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Microchip PCIe host controller driver");
MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>");