linux-stable/fs/bcachefs/recovery.c
Kent Overstreet 41e3778636 bcachefs: Bring back metadata only gc
This is useful for the filesystem dump debugging tool - when we're
hitting bugs we want to skip as much of the recovery process as
possible, and the dump tool only needs to know where metadata lives.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:54 -04:00

1385 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_buf.h"
#include "alloc_background.h"
#include "btree_gc.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "buckets.h"
#include "dirent.h"
#include "ec.h"
#include "error.h"
#include "fs-common.h"
#include "fsck.h"
#include "journal_io.h"
#include "journal_reclaim.h"
#include "journal_seq_blacklist.h"
#include "move.h"
#include "quota.h"
#include "recovery.h"
#include "replicas.h"
#include "super-io.h"
#include <linux/sort.h>
#include <linux/stat.h>
#define QSTR(n) { { { .len = strlen(n) } }, .name = n }
/* for -o reconstruct_alloc: */
static void drop_alloc_keys(struct journal_keys *keys)
{
size_t src, dst;
for (src = 0, dst = 0; src < keys->nr; src++)
if (keys->d[src].btree_id != BTREE_ID_ALLOC)
keys->d[dst++] = keys->d[src];
keys->nr = dst;
}
/* iterate over keys read from the journal: */
static int __journal_key_cmp(enum btree_id l_btree_id,
unsigned l_level,
struct bpos l_pos,
struct journal_key *r)
{
return (cmp_int(l_btree_id, r->btree_id) ?:
cmp_int(l_level, r->level) ?:
bkey_cmp(l_pos, r->k->k.p));
}
static int journal_key_cmp(struct journal_key *l, struct journal_key *r)
{
return (cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->level, r->level) ?:
bkey_cmp(l->k->k.p, r->k->k.p));
}
static size_t journal_key_search(struct journal_keys *journal_keys,
enum btree_id id, unsigned level,
struct bpos pos)
{
size_t l = 0, r = journal_keys->nr, m;
while (l < r) {
m = l + ((r - l) >> 1);
if (__journal_key_cmp(id, level, pos, &journal_keys->d[m]) > 0)
l = m + 1;
else
r = m;
}
BUG_ON(l < journal_keys->nr &&
__journal_key_cmp(id, level, pos, &journal_keys->d[l]) > 0);
BUG_ON(l &&
__journal_key_cmp(id, level, pos, &journal_keys->d[l - 1]) <= 0);
return l;
}
static void journal_iter_fix(struct bch_fs *c, struct journal_iter *iter, unsigned idx)
{
struct bkey_i *n = iter->keys->d[idx].k;
struct btree_and_journal_iter *biter =
container_of(iter, struct btree_and_journal_iter, journal);
if (iter->idx > idx ||
(iter->idx == idx &&
biter->last &&
bkey_cmp(n->k.p, biter->unpacked.p) <= 0))
iter->idx++;
}
int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id,
unsigned level, struct bkey_i *k)
{
struct journal_key n = {
.btree_id = id,
.level = level,
.k = k,
.allocated = true
};
struct journal_keys *keys = &c->journal_keys;
struct journal_iter *iter;
unsigned idx = journal_key_search(keys, id, level, k->k.p);
if (idx < keys->nr &&
journal_key_cmp(&n, &keys->d[idx]) == 0) {
if (keys->d[idx].allocated)
kfree(keys->d[idx].k);
keys->d[idx] = n;
return 0;
}
if (keys->nr == keys->size) {
struct journal_keys new_keys = {
.nr = keys->nr,
.size = keys->size * 2,
.journal_seq_base = keys->journal_seq_base,
};
new_keys.d = kvmalloc(sizeof(new_keys.d[0]) * new_keys.size, GFP_KERNEL);
if (!new_keys.d) {
bch_err(c, "%s: error allocating new key array (size %zu)",
__func__, new_keys.size);
return -ENOMEM;
}
memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr);
kvfree(keys->d);
*keys = new_keys;
}
array_insert_item(keys->d, keys->nr, idx, n);
list_for_each_entry(iter, &c->journal_iters, list)
journal_iter_fix(c, iter, idx);
return 0;
}
int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id,
unsigned level, struct bpos pos)
{
struct bkey_i *whiteout =
kmalloc(sizeof(struct bkey), GFP_KERNEL);
int ret;
if (!whiteout) {
bch_err(c, "%s: error allocating new key", __func__);
return -ENOMEM;
}
bkey_init(&whiteout->k);
whiteout->k.p = pos;
ret = bch2_journal_key_insert(c, id, level, whiteout);
if (ret)
kfree(whiteout);
return ret;
}
static struct bkey_i *bch2_journal_iter_peek(struct journal_iter *iter)
{
struct journal_key *k = iter->idx - iter->keys->nr
? iter->keys->d + iter->idx : NULL;
if (k &&
k->btree_id == iter->btree_id &&
k->level == iter->level)
return k->k;
iter->idx = iter->keys->nr;
return NULL;
}
static void bch2_journal_iter_advance(struct journal_iter *iter)
{
if (iter->idx < iter->keys->nr)
iter->idx++;
}
static void bch2_journal_iter_exit(struct journal_iter *iter)
{
list_del(&iter->list);
}
static void bch2_journal_iter_init(struct bch_fs *c,
struct journal_iter *iter,
enum btree_id id, unsigned level,
struct bpos pos)
{
iter->btree_id = id;
iter->level = level;
iter->keys = &c->journal_keys;
iter->idx = journal_key_search(&c->journal_keys, id, level, pos);
list_add(&iter->list, &c->journal_iters);
}
static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter)
{
return bch2_btree_node_iter_peek_unpack(&iter->node_iter,
iter->b, &iter->unpacked);
}
static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter)
{
bch2_btree_node_iter_advance(&iter->node_iter, iter->b);
}
void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter)
{
switch (iter->last) {
case none:
break;
case btree:
bch2_journal_iter_advance_btree(iter);
break;
case journal:
bch2_journal_iter_advance(&iter->journal);
break;
}
iter->last = none;
}
struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter)
{
struct bkey_s_c ret;
while (1) {
struct bkey_s_c btree_k =
bch2_journal_iter_peek_btree(iter);
struct bkey_s_c journal_k =
bkey_i_to_s_c(bch2_journal_iter_peek(&iter->journal));
if (btree_k.k && journal_k.k) {
int cmp = bkey_cmp(btree_k.k->p, journal_k.k->p);
if (!cmp)
bch2_journal_iter_advance_btree(iter);
iter->last = cmp < 0 ? btree : journal;
} else if (btree_k.k) {
iter->last = btree;
} else if (journal_k.k) {
iter->last = journal;
} else {
iter->last = none;
return bkey_s_c_null;
}
ret = iter->last == journal ? journal_k : btree_k;
if (iter->b &&
bkey_cmp(ret.k->p, iter->b->data->max_key) > 0) {
iter->journal.idx = iter->journal.keys->nr;
iter->last = none;
return bkey_s_c_null;
}
if (!bkey_deleted(ret.k))
break;
bch2_btree_and_journal_iter_advance(iter);
}
return ret;
}
struct bkey_s_c bch2_btree_and_journal_iter_next(struct btree_and_journal_iter *iter)
{
bch2_btree_and_journal_iter_advance(iter);
return bch2_btree_and_journal_iter_peek(iter);
}
void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter)
{
bch2_journal_iter_exit(&iter->journal);
}
void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter,
struct bch_fs *c,
struct btree *b)
{
memset(iter, 0, sizeof(*iter));
iter->b = b;
bch2_btree_node_iter_init_from_start(&iter->node_iter, iter->b);
bch2_journal_iter_init(c, &iter->journal,
b->c.btree_id, b->c.level, b->data->min_key);
}
/* Walk btree, overlaying keys from the journal: */
static void btree_and_journal_iter_prefetch(struct bch_fs *c, struct btree *b,
struct btree_and_journal_iter iter)
{
unsigned i = 0, nr = b->c.level > 1 ? 2 : 16;
struct bkey_s_c k;
struct bkey_buf tmp;
BUG_ON(!b->c.level);
bch2_bkey_buf_init(&tmp);
while (i < nr &&
(k = bch2_btree_and_journal_iter_peek(&iter)).k) {
bch2_bkey_buf_reassemble(&tmp, c, k);
bch2_btree_node_prefetch(c, NULL, tmp.k,
b->c.btree_id, b->c.level - 1);
bch2_btree_and_journal_iter_advance(&iter);
i++;
}
bch2_bkey_buf_exit(&tmp, c);
}
static int bch2_btree_and_journal_walk_recurse(struct bch_fs *c, struct btree *b,
struct journal_keys *journal_keys,
enum btree_id btree_id,
btree_walk_node_fn node_fn,
btree_walk_key_fn key_fn)
{
struct btree_and_journal_iter iter;
struct bkey_s_c k;
struct bkey_buf tmp;
struct btree *child;
int ret = 0;
bch2_bkey_buf_init(&tmp);
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
ret = key_fn(c, btree_id, b->c.level, k);
if (ret)
break;
if (b->c.level) {
bch2_bkey_buf_reassemble(&tmp, c, k);
bch2_btree_and_journal_iter_advance(&iter);
child = bch2_btree_node_get_noiter(c, tmp.k,
b->c.btree_id, b->c.level - 1,
false);
ret = PTR_ERR_OR_ZERO(child);
if (ret)
break;
btree_and_journal_iter_prefetch(c, b, iter);
ret = (node_fn ? node_fn(c, b) : 0) ?:
bch2_btree_and_journal_walk_recurse(c, child,
journal_keys, btree_id, node_fn, key_fn);
six_unlock_read(&child->c.lock);
if (ret)
break;
} else {
bch2_btree_and_journal_iter_advance(&iter);
}
}
bch2_btree_and_journal_iter_exit(&iter);
bch2_bkey_buf_exit(&tmp, c);
return ret;
}
int bch2_btree_and_journal_walk(struct bch_fs *c, struct journal_keys *journal_keys,
enum btree_id btree_id,
btree_walk_node_fn node_fn,
btree_walk_key_fn key_fn)
{
struct btree *b = c->btree_roots[btree_id].b;
int ret = 0;
if (btree_node_fake(b))
return 0;
six_lock_read(&b->c.lock, NULL, NULL);
ret = (node_fn ? node_fn(c, b) : 0) ?:
bch2_btree_and_journal_walk_recurse(c, b, journal_keys, btree_id,
node_fn, key_fn) ?:
key_fn(c, btree_id, b->c.level + 1, bkey_i_to_s_c(&b->key));
six_unlock_read(&b->c.lock);
return ret;
}
/* sort and dedup all keys in the journal: */
void bch2_journal_entries_free(struct list_head *list)
{
while (!list_empty(list)) {
struct journal_replay *i =
list_first_entry(list, struct journal_replay, list);
list_del(&i->list);
kvpfree(i, offsetof(struct journal_replay, j) +
vstruct_bytes(&i->j));
}
}
/*
* When keys compare equal, oldest compares first:
*/
static int journal_sort_key_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return cmp_int(l->btree_id, r->btree_id) ?:
cmp_int(l->level, r->level) ?:
bkey_cmp(l->k->k.p, r->k->k.p) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
void bch2_journal_keys_free(struct journal_keys *keys)
{
struct journal_key *i;
for (i = keys->d; i < keys->d + keys->nr; i++)
if (i->allocated)
kfree(i->k);
kvfree(keys->d);
keys->d = NULL;
keys->nr = 0;
}
static struct journal_keys journal_keys_sort(struct list_head *journal_entries)
{
struct journal_replay *i;
struct jset_entry *entry;
struct bkey_i *k, *_n;
struct journal_keys keys = { NULL };
struct journal_key *src, *dst;
size_t nr_keys = 0;
if (list_empty(journal_entries))
return keys;
list_for_each_entry(i, journal_entries, list) {
if (i->ignore)
continue;
if (!keys.journal_seq_base)
keys.journal_seq_base = le64_to_cpu(i->j.seq);
for_each_jset_key(k, _n, entry, &i->j)
nr_keys++;
}
keys.size = roundup_pow_of_two(nr_keys);
keys.d = kvmalloc(sizeof(keys.d[0]) * keys.size, GFP_KERNEL);
if (!keys.d)
goto err;
list_for_each_entry(i, journal_entries, list) {
if (i->ignore)
continue;
BUG_ON(le64_to_cpu(i->j.seq) - keys.journal_seq_base > U32_MAX);
for_each_jset_key(k, _n, entry, &i->j)
keys.d[keys.nr++] = (struct journal_key) {
.btree_id = entry->btree_id,
.level = entry->level,
.k = k,
.journal_seq = le64_to_cpu(i->j.seq) -
keys.journal_seq_base,
.journal_offset = k->_data - i->j._data,
};
}
sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_key_cmp, NULL);
src = dst = keys.d;
while (src < keys.d + keys.nr) {
while (src + 1 < keys.d + keys.nr &&
src[0].btree_id == src[1].btree_id &&
src[0].level == src[1].level &&
!bkey_cmp(src[0].k->k.p, src[1].k->k.p))
src++;
*dst++ = *src++;
}
keys.nr = dst - keys.d;
err:
return keys;
}
/* journal replay: */
static void replay_now_at(struct journal *j, u64 seq)
{
BUG_ON(seq < j->replay_journal_seq);
BUG_ON(seq > j->replay_journal_seq_end);
while (j->replay_journal_seq < seq)
bch2_journal_pin_put(j, j->replay_journal_seq++);
}
static int __bch2_journal_replay_key(struct btree_trans *trans,
enum btree_id id, unsigned level,
struct bkey_i *k)
{
struct btree_iter *iter;
int ret;
iter = bch2_trans_get_node_iter(trans, id, k->k.p,
BTREE_MAX_DEPTH, level,
BTREE_ITER_INTENT);
/*
* iter->flags & BTREE_ITER_IS_EXTENTS triggers the update path to run
* extent_handle_overwrites() and extent_update_to_keys() - but we don't
* want that here, journal replay is supposed to treat extents like
* regular keys:
*/
__bch2_btree_iter_set_pos(iter, k->k.p, false);
ret = bch2_btree_iter_traverse(iter) ?:
bch2_trans_update(trans, iter, k, BTREE_TRIGGER_NORUN);
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_journal_replay_key(struct bch_fs *c, struct journal_key *k)
{
unsigned commit_flags = BTREE_INSERT_NOFAIL|
BTREE_INSERT_LAZY_RW;
if (!k->allocated)
commit_flags |= BTREE_INSERT_JOURNAL_REPLAY;
return bch2_trans_do(c, NULL, NULL, commit_flags,
__bch2_journal_replay_key(&trans, k->btree_id, k->level, k->k));
}
static int __bch2_alloc_replay_key(struct btree_trans *trans, struct bkey_i *k)
{
struct btree_iter *iter;
int ret;
iter = bch2_trans_get_iter(trans, BTREE_ID_ALLOC, k->k.p,
BTREE_ITER_CACHED|
BTREE_ITER_CACHED_NOFILL|
BTREE_ITER_INTENT);
ret = bch2_trans_update(trans, iter, k, BTREE_TRIGGER_NORUN);
bch2_trans_iter_put(trans, iter);
return ret;
}
static int bch2_alloc_replay_key(struct bch_fs *c, struct bkey_i *k)
{
return bch2_trans_do(c, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE|
BTREE_INSERT_LAZY_RW|
BTREE_INSERT_JOURNAL_REPLAY,
__bch2_alloc_replay_key(&trans, k));
}
static int journal_sort_seq_cmp(const void *_l, const void *_r)
{
const struct journal_key *l = _l;
const struct journal_key *r = _r;
return cmp_int(r->level, l->level) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->btree_id, r->btree_id) ?:
bkey_cmp(l->k->k.p, r->k->k.p);
}
static int bch2_journal_replay(struct bch_fs *c,
struct journal_keys keys)
{
struct journal *j = &c->journal;
struct journal_key *i;
u64 seq;
int ret;
sort(keys.d, keys.nr, sizeof(keys.d[0]), journal_sort_seq_cmp, NULL);
if (keys.nr)
replay_now_at(j, keys.journal_seq_base);
seq = j->replay_journal_seq;
/*
* First replay updates to the alloc btree - these will only update the
* btree key cache:
*/
for_each_journal_key(keys, i) {
cond_resched();
if (!i->level && i->btree_id == BTREE_ID_ALLOC) {
j->replay_journal_seq = keys.journal_seq_base + i->journal_seq;
ret = bch2_alloc_replay_key(c, i->k);
if (ret)
goto err;
}
}
/*
* Next replay updates to interior btree nodes:
*/
for_each_journal_key(keys, i) {
cond_resched();
if (i->level) {
j->replay_journal_seq = keys.journal_seq_base + i->journal_seq;
ret = bch2_journal_replay_key(c, i);
if (ret)
goto err;
}
}
/*
* Now that the btree is in a consistent state, we can start journal
* reclaim (which will be flushing entries from the btree key cache back
* to the btree:
*/
set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags);
set_bit(JOURNAL_RECLAIM_STARTED, &j->flags);
journal_reclaim_kick(j);
j->replay_journal_seq = seq;
/*
* Now replay leaf node updates:
*/
for_each_journal_key(keys, i) {
cond_resched();
if (i->level || i->btree_id == BTREE_ID_ALLOC)
continue;
replay_now_at(j, keys.journal_seq_base + i->journal_seq);
ret = bch2_journal_replay_key(c, i);
if (ret)
goto err;
}
replay_now_at(j, j->replay_journal_seq_end);
j->replay_journal_seq = 0;
bch2_journal_set_replay_done(j);
bch2_journal_flush_all_pins(j);
return bch2_journal_error(j);
err:
bch_err(c, "journal replay: error %d while replaying key at btree %s level %u",
ret, bch2_btree_ids[i->btree_id], i->level);
return ret;
}
/* journal replay early: */
static int journal_replay_entry_early(struct bch_fs *c,
struct jset_entry *entry)
{
int ret = 0;
switch (entry->type) {
case BCH_JSET_ENTRY_btree_root: {
struct btree_root *r;
if (entry->btree_id >= BTREE_ID_NR) {
bch_err(c, "filesystem has unknown btree type %u",
entry->btree_id);
return -EINVAL;
}
r = &c->btree_roots[entry->btree_id];
if (entry->u64s) {
r->level = entry->level;
bkey_copy(&r->key, &entry->start[0]);
r->error = 0;
} else {
r->error = -EIO;
}
r->alive = true;
break;
}
case BCH_JSET_ENTRY_usage: {
struct jset_entry_usage *u =
container_of(entry, struct jset_entry_usage, entry);
switch (entry->btree_id) {
case FS_USAGE_RESERVED:
if (entry->level < BCH_REPLICAS_MAX)
c->usage_base->persistent_reserved[entry->level] =
le64_to_cpu(u->v);
break;
case FS_USAGE_INODES:
c->usage_base->nr_inodes = le64_to_cpu(u->v);
break;
case FS_USAGE_KEY_VERSION:
atomic64_set(&c->key_version,
le64_to_cpu(u->v));
break;
}
break;
}
case BCH_JSET_ENTRY_data_usage: {
struct jset_entry_data_usage *u =
container_of(entry, struct jset_entry_data_usage, entry);
ret = bch2_replicas_set_usage(c, &u->r,
le64_to_cpu(u->v));
break;
}
case BCH_JSET_ENTRY_dev_usage: {
struct jset_entry_dev_usage *u =
container_of(entry, struct jset_entry_dev_usage, entry);
struct bch_dev *ca = bch_dev_bkey_exists(c, u->dev);
unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64);
unsigned nr_types = (bytes - sizeof(struct jset_entry_dev_usage)) /
sizeof(struct jset_entry_dev_usage_type);
unsigned i;
ca->usage_base->buckets_ec = le64_to_cpu(u->buckets_ec);
ca->usage_base->buckets_unavailable = le64_to_cpu(u->buckets_unavailable);
for (i = 0; i < nr_types; i++) {
ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets);
ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors);
ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented);
}
break;
}
case BCH_JSET_ENTRY_blacklist: {
struct jset_entry_blacklist *bl_entry =
container_of(entry, struct jset_entry_blacklist, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->seq),
le64_to_cpu(bl_entry->seq) + 1);
break;
}
case BCH_JSET_ENTRY_blacklist_v2: {
struct jset_entry_blacklist_v2 *bl_entry =
container_of(entry, struct jset_entry_blacklist_v2, entry);
ret = bch2_journal_seq_blacklist_add(c,
le64_to_cpu(bl_entry->start),
le64_to_cpu(bl_entry->end) + 1);
break;
}
case BCH_JSET_ENTRY_clock: {
struct jset_entry_clock *clock =
container_of(entry, struct jset_entry_clock, entry);
atomic64_set(&c->io_clock[clock->rw].now, clock->time);
}
}
return ret;
}
static int journal_replay_early(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct list_head *journal)
{
struct journal_replay *i;
struct jset_entry *entry;
int ret;
if (clean) {
for (entry = clean->start;
entry != vstruct_end(&clean->field);
entry = vstruct_next(entry)) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
} else {
list_for_each_entry(i, journal, list) {
if (i->ignore)
continue;
vstruct_for_each(&i->j, entry) {
ret = journal_replay_entry_early(c, entry);
if (ret)
return ret;
}
}
}
bch2_fs_usage_initialize(c);
return 0;
}
/* sb clean section: */
static struct bkey_i *btree_root_find(struct bch_fs *c,
struct bch_sb_field_clean *clean,
struct jset *j,
enum btree_id id, unsigned *level)
{
struct bkey_i *k;
struct jset_entry *entry, *start, *end;
if (clean) {
start = clean->start;
end = vstruct_end(&clean->field);
} else {
start = j->start;
end = vstruct_last(j);
}
for (entry = start; entry < end; entry = vstruct_next(entry))
if (entry->type == BCH_JSET_ENTRY_btree_root &&
entry->btree_id == id)
goto found;
return NULL;
found:
if (!entry->u64s)
return ERR_PTR(-EINVAL);
k = entry->start;
*level = entry->level;
return k;
}
static int verify_superblock_clean(struct bch_fs *c,
struct bch_sb_field_clean **cleanp,
struct jset *j)
{
unsigned i;
struct bch_sb_field_clean *clean = *cleanp;
int ret = 0;
if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c,
"superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown",
le64_to_cpu(clean->journal_seq),
le64_to_cpu(j->seq))) {
kfree(clean);
*cleanp = NULL;
return 0;
}
for (i = 0; i < BTREE_ID_NR; i++) {
char buf1[200], buf2[200];
struct bkey_i *k1, *k2;
unsigned l1 = 0, l2 = 0;
k1 = btree_root_find(c, clean, NULL, i, &l1);
k2 = btree_root_find(c, NULL, j, i, &l2);
if (!k1 && !k2)
continue;
mustfix_fsck_err_on(!k1 || !k2 ||
IS_ERR(k1) ||
IS_ERR(k2) ||
k1->k.u64s != k2->k.u64s ||
memcmp(k1, k2, bkey_bytes(k1)) ||
l1 != l2, c,
"superblock btree root %u doesn't match journal after clean shutdown\n"
"sb: l=%u %s\n"
"journal: l=%u %s\n", i,
l1, (bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(k1)), buf1),
l2, (bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(k2)), buf2));
}
fsck_err:
return ret;
}
static struct bch_sb_field_clean *read_superblock_clean(struct bch_fs *c)
{
struct bch_sb_field_clean *clean, *sb_clean;
int ret;
mutex_lock(&c->sb_lock);
sb_clean = bch2_sb_get_clean(c->disk_sb.sb);
if (fsck_err_on(!sb_clean, c,
"superblock marked clean but clean section not present")) {
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
mutex_unlock(&c->sb_lock);
return NULL;
}
clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field),
GFP_KERNEL);
if (!clean) {
mutex_unlock(&c->sb_lock);
return ERR_PTR(-ENOMEM);
}
if (le16_to_cpu(c->disk_sb.sb->version) <
bcachefs_metadata_version_bkey_renumber)
bch2_sb_clean_renumber(clean, READ);
mutex_unlock(&c->sb_lock);
return clean;
fsck_err:
mutex_unlock(&c->sb_lock);
return ERR_PTR(ret);
}
static int read_btree_roots(struct bch_fs *c)
{
unsigned i;
int ret = 0;
for (i = 0; i < BTREE_ID_NR; i++) {
struct btree_root *r = &c->btree_roots[i];
if (!r->alive)
continue;
if (i == BTREE_ID_ALLOC &&
c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
continue;
}
if (r->error) {
__fsck_err(c, i == BTREE_ID_ALLOC
? FSCK_CAN_IGNORE : 0,
"invalid btree root %s",
bch2_btree_ids[i]);
if (i == BTREE_ID_ALLOC)
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
}
ret = bch2_btree_root_read(c, i, &r->key, r->level);
if (ret) {
__fsck_err(c, i == BTREE_ID_ALLOC
? FSCK_CAN_IGNORE : 0,
"error reading btree root %s",
bch2_btree_ids[i]);
if (i == BTREE_ID_ALLOC)
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
}
}
for (i = 0; i < BTREE_ID_NR; i++)
if (!c->btree_roots[i].b)
bch2_btree_root_alloc(c, i);
fsck_err:
return ret;
}
int bch2_fs_recovery(struct bch_fs *c)
{
const char *err = "cannot allocate memory";
struct bch_sb_field_clean *clean = NULL;
struct jset *last_journal_entry = NULL;
u64 blacklist_seq, journal_seq;
bool write_sb = false;
int ret;
if (c->sb.clean)
clean = read_superblock_clean(c);
ret = PTR_ERR_OR_ZERO(clean);
if (ret)
goto err;
if (c->sb.clean)
bch_info(c, "recovering from clean shutdown, journal seq %llu",
le64_to_cpu(clean->journal_seq));
if (!(c->sb.features & (1ULL << BCH_FEATURE_alloc_v2))) {
bch_info(c, "alloc_v2 feature bit not set, fsck required");
c->opts.fsck = true;
c->opts.fix_errors = FSCK_OPT_YES;
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_alloc_v2;
}
if (!c->replicas.entries ||
c->opts.rebuild_replicas) {
bch_info(c, "building replicas info");
set_bit(BCH_FS_REBUILD_REPLICAS, &c->flags);
}
ret = bch2_blacklist_table_initialize(c);
if (ret) {
bch_err(c, "error initializing blacklist table");
goto err;
}
if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) {
struct journal_replay *i;
ret = bch2_journal_read(c, &c->journal_entries,
&blacklist_seq, &journal_seq);
if (ret)
goto err;
list_for_each_entry_reverse(i, &c->journal_entries, list)
if (!i->ignore) {
last_journal_entry = &i->j;
break;
}
if (mustfix_fsck_err_on(c->sb.clean &&
last_journal_entry &&
!journal_entry_empty(last_journal_entry), c,
"filesystem marked clean but journal not empty")) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
c->sb.clean = false;
}
if (!last_journal_entry) {
fsck_err_on(!c->sb.clean, c, "no journal entries found");
goto use_clean;
}
c->journal_keys = journal_keys_sort(&c->journal_entries);
if (!c->journal_keys.d) {
ret = -ENOMEM;
goto err;
}
if (c->sb.clean && last_journal_entry) {
ret = verify_superblock_clean(c, &clean,
last_journal_entry);
if (ret)
goto err;
}
} else {
use_clean:
if (!clean) {
bch_err(c, "no superblock clean section found");
ret = BCH_FSCK_REPAIR_IMPOSSIBLE;
goto err;
}
blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1;
}
if (!c->sb.clean &&
!(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) {
bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix");
ret = -EINVAL;
goto err;
}
if (c->opts.reconstruct_alloc) {
c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info);
drop_alloc_keys(&c->journal_keys);
}
ret = journal_replay_early(c, clean, &c->journal_entries);
if (ret)
goto err;
/*
* After an unclean shutdown, skip then next few journal sequence
* numbers as they may have been referenced by btree writes that
* happened before their corresponding journal writes - those btree
* writes need to be ignored, by skipping and blacklisting the next few
* journal sequence numbers:
*/
if (!c->sb.clean)
journal_seq += 8;
if (blacklist_seq != journal_seq) {
ret = bch2_journal_seq_blacklist_add(c,
blacklist_seq, journal_seq);
if (ret) {
bch_err(c, "error creating new journal seq blacklist entry");
goto err;
}
}
ret = bch2_fs_journal_start(&c->journal, journal_seq,
&c->journal_entries);
if (ret)
goto err;
ret = read_btree_roots(c);
if (ret)
goto err;
bch_verbose(c, "starting alloc read");
err = "error reading allocation information";
ret = bch2_alloc_read(c, &c->journal_keys);
if (ret)
goto err;
bch_verbose(c, "alloc read done");
bch_verbose(c, "starting stripes_read");
err = "error reading stripes";
ret = bch2_stripes_read(c, &c->journal_keys);
if (ret)
goto err;
bch_verbose(c, "stripes_read done");
set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags);
if (c->opts.fsck ||
!(c->sb.compat & (1ULL << BCH_COMPAT_alloc_info)) ||
!(c->sb.compat & (1ULL << BCH_COMPAT_alloc_metadata)) ||
test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags)) {
bool metadata_only = c->opts.norecovery;
bch_info(c, "starting mark and sweep");
err = "error in mark and sweep";
ret = bch2_gc(c, true, metadata_only);
if (ret)
goto err;
bch_verbose(c, "mark and sweep done");
}
bch2_stripes_heap_start(c);
clear_bit(BCH_FS_REBUILD_REPLICAS, &c->flags);
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
/*
* Skip past versions that might have possibly been used (as nonces),
* but hadn't had their pointers written:
*/
if (c->sb.encryption_type && !c->sb.clean)
atomic64_add(1 << 16, &c->key_version);
if (c->opts.norecovery)
goto out;
bch_verbose(c, "starting journal replay");
err = "journal replay failed";
ret = bch2_journal_replay(c, c->journal_keys);
if (ret)
goto err;
bch_verbose(c, "journal replay done");
if (test_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags) &&
!c->opts.nochanges) {
/*
* note that even when filesystem was clean there might be work
* to do here, if we ran gc (because of fsck) which recalculated
* oldest_gen:
*/
bch_verbose(c, "writing allocation info");
err = "error writing out alloc info";
ret = bch2_stripes_write(c, BTREE_INSERT_LAZY_RW) ?:
bch2_alloc_write(c, BTREE_INSERT_LAZY_RW);
if (ret) {
bch_err(c, "error writing alloc info");
goto err;
}
bch_verbose(c, "alloc write done");
}
if (!c->sb.clean) {
if (!(c->sb.features & (1 << BCH_FEATURE_atomic_nlink))) {
bch_info(c, "checking inode link counts");
err = "error in recovery";
ret = bch2_fsck_inode_nlink(c);
if (ret)
goto err;
bch_verbose(c, "check inodes done");
} else {
bch_verbose(c, "checking for deleted inodes");
err = "error in recovery";
ret = bch2_fsck_walk_inodes_only(c);
if (ret)
goto err;
bch_verbose(c, "check inodes done");
}
}
if (c->opts.fsck) {
bch_info(c, "starting fsck");
err = "error in fsck";
ret = bch2_fsck_full(c);
if (ret)
goto err;
bch_verbose(c, "fsck done");
}
if (enabled_qtypes(c)) {
bch_verbose(c, "reading quotas");
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
bch_verbose(c, "quotas done");
}
if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) ||
!(c->sb.compat & (1ULL << BCH_COMPAT_bformat_overflow_done))) {
struct bch_move_stats stats = { 0 };
bch_info(c, "scanning for old btree nodes");
ret = bch2_fs_read_write(c);
if (ret)
goto err;
ret = bch2_scan_old_btree_nodes(c, &stats);
if (ret)
goto err;
bch_info(c, "scanning for old btree nodes done");
}
mutex_lock(&c->sb_lock);
if (c->opts.version_upgrade) {
if (c->sb.version < bcachefs_metadata_version_new_versioning)
c->disk_sb.sb->version_min =
le16_to_cpu(bcachefs_metadata_version_min);
c->disk_sb.sb->version = le16_to_cpu(bcachefs_metadata_version_current);
c->disk_sb.sb->features[0] |= BCH_SB_FEATURES_ALL;
write_sb = true;
}
if (!test_bit(BCH_FS_ERROR, &c->flags)) {
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_alloc_info;
write_sb = true;
}
if (c->opts.fsck &&
!test_bit(BCH_FS_ERROR, &c->flags)) {
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_atomic_nlink;
SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0);
write_sb = true;
}
if (write_sb)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
if (c->journal_seq_blacklist_table &&
c->journal_seq_blacklist_table->nr > 128)
queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work);
out:
ret = 0;
err:
fsck_err:
set_bit(BCH_FS_FSCK_DONE, &c->flags);
bch2_flush_fsck_errs(c);
if (!c->opts.keep_journal) {
bch2_journal_keys_free(&c->journal_keys);
bch2_journal_entries_free(&c->journal_entries);
}
kfree(clean);
if (ret)
bch_err(c, "Error in recovery: %s (%i)", err, ret);
else
bch_verbose(c, "ret %i", ret);
return ret;
}
int bch2_fs_initialize(struct bch_fs *c)
{
struct bch_inode_unpacked root_inode, lostfound_inode;
struct bkey_inode_buf packed_inode;
struct qstr lostfound = QSTR("lost+found");
const char *err = "cannot allocate memory";
struct bch_dev *ca;
LIST_HEAD(journal);
unsigned i;
int ret;
bch_notice(c, "initializing new filesystem");
mutex_lock(&c->sb_lock);
for_each_online_member(ca, c, i)
bch2_mark_dev_superblock(c, ca, 0);
mutex_unlock(&c->sb_lock);
mutex_lock(&c->sb_lock);
c->disk_sb.sb->version = c->disk_sb.sb->version_min =
le16_to_cpu(bcachefs_metadata_version_current);
c->disk_sb.sb->features[0] |= 1ULL << BCH_FEATURE_atomic_nlink;
c->disk_sb.sb->features[0] |= BCH_SB_FEATURES_ALL;
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_extents_above_btree_updates_done;
c->disk_sb.sb->compat[0] |= 1ULL << BCH_COMPAT_bformat_overflow_done;
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
set_bit(BCH_FS_ALLOC_READ_DONE, &c->flags);
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
for (i = 0; i < BTREE_ID_NR; i++)
bch2_btree_root_alloc(c, i);
set_bit(BCH_FS_BTREE_INTERIOR_REPLAY_DONE, &c->flags);
set_bit(JOURNAL_RECLAIM_STARTED, &c->journal.flags);
err = "unable to allocate journal buckets";
for_each_online_member(ca, c, i) {
ret = bch2_dev_journal_alloc(ca);
if (ret) {
percpu_ref_put(&ca->io_ref);
goto err;
}
}
/*
* journal_res_get() will crash if called before this has
* set up the journal.pin FIFO and journal.cur pointer:
*/
bch2_fs_journal_start(&c->journal, 1, &journal);
bch2_journal_set_replay_done(&c->journal);
err = "error going read-write";
ret = bch2_fs_read_write_early(c);
if (ret)
goto err;
/*
* Write out the superblock and journal buckets, now that we can do
* btree updates
*/
err = "error writing alloc info";
ret = bch2_alloc_write(c, 0);
if (ret)
goto err;
bch2_inode_init(c, &root_inode, 0, 0,
S_IFDIR|S_IRWXU|S_IRUGO|S_IXUGO, 0, NULL);
root_inode.bi_inum = BCACHEFS_ROOT_INO;
bch2_inode_pack(c, &packed_inode, &root_inode);
err = "error creating root directory";
ret = bch2_btree_insert(c, BTREE_ID_INODES,
&packed_inode.inode.k_i,
NULL, NULL, 0);
if (ret)
goto err;
bch2_inode_init_early(c, &lostfound_inode);
err = "error creating lost+found";
ret = bch2_trans_do(c, NULL, NULL, 0,
bch2_create_trans(&trans, BCACHEFS_ROOT_INO,
&root_inode, &lostfound_inode,
&lostfound,
0, 0, S_IFDIR|0700, 0,
NULL, NULL));
if (ret) {
bch_err(c, "error creating lost+found");
goto err;
}
if (enabled_qtypes(c)) {
ret = bch2_fs_quota_read(c);
if (ret)
goto err;
}
err = "error writing first journal entry";
ret = bch2_journal_meta(&c->journal);
if (ret)
goto err;
mutex_lock(&c->sb_lock);
SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true);
SET_BCH_SB_CLEAN(c->disk_sb.sb, false);
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return 0;
err:
pr_err("Error initializing new filesystem: %s (%i)", err, ret);
return ret;
}