linux-stable/sound/soc/omap/omap-mcbsp.c
Matt Ranostay 9834ffd1ec ASoC: omap-mcbsp: Add PM QoS support for McBSP to prevent glitches
We can get audio errors if hitting deeper idle states on omaps:

[alsa.c:230] error: Fatal problem with alsa output, error -5.
[audio.c:614] error: Error in writing audio (Input/output error?)!

This seems to happen with off mode idle enabled as power for the
whole SoC may get cut off between filling the McBSP fifo using DMA.
While active DMA blocks deeper idle states in hardware, McBSP
activity does not seem to do so.

Basing the QoS latency calculation on the FIFO size, threshold,
sample rate, and channels.

Based on the original patch by Tony Lindgren
Link: https://patchwork.kernel.org/patch/9305867/

Signed-off-by: Matt Ranostay <matt@ranostay.consulting>
Signed-off-by: Liam Breck <kernel@networkimprov.net>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2017-02-01 17:19:53 +00:00

906 lines
24 KiB
C

/*
* omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port
*
* Copyright (C) 2008 Nokia Corporation
*
* Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
* Peter Ujfalusi <peter.ujfalusi@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include <sound/omap-pcm.h>
#include <linux/platform_data/asoc-ti-mcbsp.h>
#include "mcbsp.h"
#include "omap-mcbsp.h"
#define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000)
#define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \
xhandler_get, xhandler_put) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = omap_mcbsp_st_info_volsw, \
.get = xhandler_get, .put = xhandler_put, \
.private_value = (unsigned long) &(struct soc_mixer_control) \
{.min = xmin, .max = xmax} }
enum {
OMAP_MCBSP_WORD_8 = 0,
OMAP_MCBSP_WORD_12,
OMAP_MCBSP_WORD_16,
OMAP_MCBSP_WORD_20,
OMAP_MCBSP_WORD_24,
OMAP_MCBSP_WORD_32,
};
/*
* Stream DMA parameters. DMA request line and port address are set runtime
* since they are different between OMAP1 and later OMAPs
*/
static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
unsigned int packet_size)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int words;
/*
* Configure McBSP threshold based on either:
* packet_size, when the sDMA is in packet mode, or based on the
* period size in THRESHOLD mode, otherwise use McBSP threshold = 1
* for mono streams.
*/
if (packet_size)
words = packet_size;
else
words = 1;
/* Configure McBSP internal buffer usage */
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
omap_mcbsp_set_tx_threshold(mcbsp, words);
else
omap_mcbsp_set_rx_threshold(mcbsp, words);
}
static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct snd_interval *buffer_size = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
struct snd_interval *channels = hw_param_interval(params,
SNDRV_PCM_HW_PARAM_CHANNELS);
struct omap_mcbsp *mcbsp = rule->private;
struct snd_interval frames;
int size;
snd_interval_any(&frames);
size = mcbsp->pdata->buffer_size;
frames.min = size / channels->min;
frames.integer = 1;
return snd_interval_refine(buffer_size, &frames);
}
static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0;
if (!cpu_dai->active)
err = omap_mcbsp_request(mcbsp);
/*
* OMAP3 McBSP FIFO is word structured.
* McBSP2 has 1024 + 256 = 1280 word long buffer,
* McBSP1,3,4,5 has 128 word long buffer
* This means that the size of the FIFO depends on the sample format.
* For example on McBSP3:
* 16bit samples: size is 128 * 2 = 256 bytes
* 32bit samples: size is 128 * 4 = 512 bytes
* It is simpler to place constraint for buffer and period based on
* channels.
* McBSP3 as example again (16 or 32 bit samples):
* 1 channel (mono): size is 128 frames (128 words)
* 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
* 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
*/
if (mcbsp->pdata->buffer_size) {
/*
* Rule for the buffer size. We should not allow
* smaller buffer than the FIFO size to avoid underruns.
* This applies only for the playback stream.
*/
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
omap_mcbsp_hwrule_min_buffersize,
mcbsp,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
/* Make sure, that the period size is always even */
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
}
return err;
}
static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
if (mcbsp->latency[stream2])
pm_qos_update_request(&mcbsp->pm_qos_req,
mcbsp->latency[stream2]);
else if (mcbsp->latency[stream1])
pm_qos_remove_request(&mcbsp->pm_qos_req);
mcbsp->latency[stream1] = 0;
if (!cpu_dai->active) {
omap_mcbsp_free(mcbsp);
mcbsp->configured = 0;
}
}
static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
int latency = mcbsp->latency[stream2];
/* Prevent omap hardware from hitting off between FIFO fills */
if (!latency || mcbsp->latency[stream1] < latency)
latency = mcbsp->latency[stream1];
if (pm_qos_request_active(pm_qos_req))
pm_qos_update_request(pm_qos_req, latency);
else if (latency)
pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
return 0;
}
static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mcbsp->active++;
omap_mcbsp_start(mcbsp, play, !play);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
omap_mcbsp_stop(mcbsp, play, !play);
mcbsp->active--;
break;
default:
err = -EINVAL;
}
return err;
}
static snd_pcm_sframes_t omap_mcbsp_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u16 fifo_use;
snd_pcm_sframes_t delay;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
else
fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
/*
* Divide the used locations with the channel count to get the
* FIFO usage in samples (don't care about partial samples in the
* buffer).
*/
delay = fifo_use / substream->runtime->channels;
return delay;
}
static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *cpu_dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
struct snd_dmaengine_dai_dma_data *dma_data;
int wlen, channels, wpf;
int pkt_size = 0;
unsigned int format, div, framesize, master;
unsigned int buffer_size = mcbsp->pdata->buffer_size;
dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
channels = params_channels(params);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
wlen = 16;
break;
case SNDRV_PCM_FORMAT_S32_LE:
wlen = 32;
break;
default:
return -EINVAL;
}
if (buffer_size) {
int latency;
if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
int period_words, max_thrsh;
int divider = 0;
period_words = params_period_bytes(params) / (wlen / 8);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
max_thrsh = mcbsp->max_tx_thres;
else
max_thrsh = mcbsp->max_rx_thres;
/*
* Use sDMA packet mode if McBSP is in threshold mode:
* If period words less than the FIFO size the packet
* size is set to the number of period words, otherwise
* Look for the biggest threshold value which divides
* the period size evenly.
*/
divider = period_words / max_thrsh;
if (period_words % max_thrsh)
divider++;
while (period_words % divider &&
divider < period_words)
divider++;
if (divider == period_words)
return -EINVAL;
pkt_size = period_words / divider;
} else if (channels > 1) {
/* Use packet mode for non mono streams */
pkt_size = channels;
}
latency = ((((buffer_size - pkt_size) / channels) * 1000)
/ (params->rate_num / params->rate_den));
mcbsp->latency[substream->stream] = latency;
omap_mcbsp_set_threshold(substream, pkt_size);
}
dma_data->maxburst = pkt_size;
if (mcbsp->configured) {
/* McBSP already configured by another stream */
return 0;
}
regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7));
regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7));
format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
wpf = channels;
if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
format == SND_SOC_DAIFMT_LEFT_J)) {
/* Use dual-phase frames */
regs->rcr2 |= RPHASE;
regs->xcr2 |= XPHASE;
/* Set 1 word per (McBSP) frame for phase1 and phase2 */
wpf--;
regs->rcr2 |= RFRLEN2(wpf - 1);
regs->xcr2 |= XFRLEN2(wpf - 1);
}
regs->rcr1 |= RFRLEN1(wpf - 1);
regs->xcr1 |= XFRLEN1(wpf - 1);
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16);
break;
case SNDRV_PCM_FORMAT_S32_LE:
/* Set word lengths */
regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32);
regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32);
regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32);
regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32);
break;
default:
/* Unsupported PCM format */
return -EINVAL;
}
/* In McBSP master modes, FRAME (i.e. sample rate) is generated
* by _counting_ BCLKs. Calculate frame size in BCLKs */
master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
if (master == SND_SOC_DAIFMT_CBS_CFS) {
div = mcbsp->clk_div ? mcbsp->clk_div : 1;
framesize = (mcbsp->in_freq / div) / params_rate(params);
if (framesize < wlen * channels) {
printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
"channels\n", __func__);
return -EINVAL;
}
} else
framesize = wlen * channels;
/* Set FS period and length in terms of bit clock periods */
regs->srgr2 &= ~FPER(0xfff);
regs->srgr1 &= ~FWID(0xff);
switch (format) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_LEFT_J:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID((framesize >> 1) - 1);
break;
case SND_SOC_DAIFMT_DSP_A:
case SND_SOC_DAIFMT_DSP_B:
regs->srgr2 |= FPER(framesize - 1);
regs->srgr1 |= FWID(0);
break;
}
omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
mcbsp->wlen = wlen;
mcbsp->configured = 1;
return 0;
}
/*
* This must be called before _set_clkdiv and _set_sysclk since McBSP register
* cache is initialized here
*/
static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
unsigned int fmt)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
bool inv_fs = false;
if (mcbsp->configured)
return 0;
mcbsp->fmt = fmt;
memset(regs, 0, sizeof(*regs));
/* Generic McBSP register settings */
regs->spcr2 |= XINTM(3) | FREE;
regs->spcr1 |= RINTM(3);
/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
if (!mcbsp->pdata->has_ccr) {
regs->rcr2 |= RFIG;
regs->xcr2 |= XFIG;
}
/* Configure XCCR/RCCR only for revisions which have ccr registers */
if (mcbsp->pdata->has_ccr) {
regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
break;
case SND_SOC_DAIFMT_LEFT_J:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
regs->spcr1 |= RJUST(2);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_A:
/* 1-bit data delay */
regs->rcr2 |= RDATDLY(1);
regs->xcr2 |= XDATDLY(1);
/* Invert FS polarity configuration */
inv_fs = true;
break;
case SND_SOC_DAIFMT_DSP_B:
/* 0-bit data delay */
regs->rcr2 |= RDATDLY(0);
regs->xcr2 |= XDATDLY(0);
/* Invert FS polarity configuration */
inv_fs = true;
break;
default:
/* Unsupported data format */
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* McBSP master. Set FS and bit clocks as outputs */
regs->pcr0 |= FSXM | FSRM |
CLKXM | CLKRM;
/* Sample rate generator drives the FS */
regs->srgr2 |= FSGM;
break;
case SND_SOC_DAIFMT_CBM_CFS:
/* McBSP slave. FS clock as output */
regs->srgr2 |= FSGM;
regs->pcr0 |= FSXM | FSRM;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* McBSP slave */
break;
default:
/* Unsupported master/slave configuration */
return -EINVAL;
}
/* Set bit clock (CLKX/CLKR) and FS polarities */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/*
* Normal BCLK + FS.
* FS active low. TX data driven on falling edge of bit clock
* and RX data sampled on rising edge of bit clock.
*/
regs->pcr0 |= FSXP | FSRP |
CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_NB_IF:
regs->pcr0 |= CLKXP | CLKRP;
break;
case SND_SOC_DAIFMT_IB_NF:
regs->pcr0 |= FSXP | FSRP;
break;
case SND_SOC_DAIFMT_IB_IF:
break;
default:
return -EINVAL;
}
if (inv_fs == true)
regs->pcr0 ^= FSXP | FSRP;
return 0;
}
static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
int div_id, int div)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
if (div_id != OMAP_MCBSP_CLKGDV)
return -ENODEV;
mcbsp->clk_div = div;
regs->srgr1 &= ~CLKGDV(0xff);
regs->srgr1 |= CLKGDV(div - 1);
return 0;
}
static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
int clk_id, unsigned int freq,
int dir)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
int err = 0;
if (mcbsp->active) {
if (freq == mcbsp->in_freq)
return 0;
else
return -EBUSY;
}
mcbsp->in_freq = freq;
regs->srgr2 &= ~CLKSM;
regs->pcr0 &= ~SCLKME;
switch (clk_id) {
case OMAP_MCBSP_SYSCLK_CLK:
regs->srgr2 |= CLKSM;
break;
case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
if (mcbsp_omap1()) {
err = -EINVAL;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PRCM_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKS_EXT:
if (mcbsp_omap1()) {
err = 0;
break;
}
err = omap2_mcbsp_set_clks_src(mcbsp,
MCBSP_CLKS_PAD_SRC);
break;
case OMAP_MCBSP_SYSCLK_CLKX_EXT:
regs->srgr2 |= CLKSM;
regs->pcr0 |= SCLKME;
/*
* If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
* disable output on those pins. This enables to inject the
* reference clock through CLKX/CLKR. For this to work
* set_dai_sysclk() _needs_ to be called after set_dai_fmt().
*/
regs->pcr0 &= ~CLKXM;
break;
case OMAP_MCBSP_SYSCLK_CLKR_EXT:
regs->pcr0 |= SCLKME;
/* Disable ouput on CLKR pin in master mode */
regs->pcr0 &= ~CLKRM;
break;
default:
err = -ENODEV;
}
return err;
}
static const struct snd_soc_dai_ops mcbsp_dai_ops = {
.startup = omap_mcbsp_dai_startup,
.shutdown = omap_mcbsp_dai_shutdown,
.prepare = omap_mcbsp_dai_prepare,
.trigger = omap_mcbsp_dai_trigger,
.delay = omap_mcbsp_dai_delay,
.hw_params = omap_mcbsp_dai_hw_params,
.set_fmt = omap_mcbsp_dai_set_dai_fmt,
.set_clkdiv = omap_mcbsp_dai_set_clkdiv,
.set_sysclk = omap_mcbsp_dai_set_dai_sysclk,
};
static int omap_mcbsp_probe(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_enable(mcbsp->dev);
snd_soc_dai_init_dma_data(dai,
&mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
&mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
return 0;
}
static int omap_mcbsp_remove(struct snd_soc_dai *dai)
{
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
pm_runtime_disable(mcbsp->dev);
return 0;
}
static struct snd_soc_dai_driver omap_mcbsp_dai = {
.probe = omap_mcbsp_probe,
.remove = omap_mcbsp_remove,
.playback = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.capture = {
.channels_min = 1,
.channels_max = 16,
.rates = OMAP_MCBSP_RATES,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
},
.ops = &mcbsp_dai_ops,
};
static const struct snd_soc_component_driver omap_mcbsp_component = {
.name = "omap-mcbsp",
};
static int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
int max = mc->max;
int min = mc->min;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = min;
uinfo->value.integer.max = max;
return 0;
}
#define OMAP_MCBSP_ST_CHANNEL_VOLUME(channel) \
static int \
omap_mcbsp_set_st_ch##channel##_volume(struct snd_kcontrol *kc, \
struct snd_ctl_elem_value *uc) \
{ \
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
struct soc_mixer_control *mc = \
(struct soc_mixer_control *)kc->private_value; \
int max = mc->max; \
int min = mc->min; \
int val = uc->value.integer.value[0]; \
\
if (val < min || val > max) \
return -EINVAL; \
\
/* OMAP McBSP implementation uses index values 0..4 */ \
return omap_st_set_chgain(mcbsp, channel, val); \
} \
\
static int \
omap_mcbsp_get_st_ch##channel##_volume(struct snd_kcontrol *kc, \
struct snd_ctl_elem_value *uc) \
{ \
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc); \
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); \
s16 chgain; \
\
if (omap_st_get_chgain(mcbsp, channel, &chgain)) \
return -EAGAIN; \
\
uc->value.integer.value[0] = chgain; \
return 0; \
}
OMAP_MCBSP_ST_CHANNEL_VOLUME(0)
OMAP_MCBSP_ST_CHANNEL_VOLUME(1)
static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
u8 value = ucontrol->value.integer.value[0];
if (value == omap_st_is_enabled(mcbsp))
return 0;
if (value)
omap_st_enable(mcbsp);
else
omap_st_disable(mcbsp);
return 1;
}
static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
ucontrol->value.integer.value[0] = omap_st_is_enabled(mcbsp);
return 0;
}
#define OMAP_MCBSP_ST_CONTROLS(port) \
static const struct snd_kcontrol_new omap_mcbsp##port##_st_controls[] = { \
SOC_SINGLE_EXT("McBSP" #port " Sidetone Switch", 1, 0, 1, 0, \
omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode), \
OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 0 Volume", \
-32768, 32767, \
omap_mcbsp_get_st_ch0_volume, \
omap_mcbsp_set_st_ch0_volume), \
OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 1 Volume", \
-32768, 32767, \
omap_mcbsp_get_st_ch1_volume, \
omap_mcbsp_set_st_ch1_volume), \
}
OMAP_MCBSP_ST_CONTROLS(2);
OMAP_MCBSP_ST_CONTROLS(3);
int omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime *rtd, int port_id)
{
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
if (!mcbsp->st_data) {
dev_warn(mcbsp->dev, "No sidetone data for port\n");
return 0;
}
switch (port_id) {
case 2: /* McBSP 2 */
return snd_soc_add_dai_controls(cpu_dai,
omap_mcbsp2_st_controls,
ARRAY_SIZE(omap_mcbsp2_st_controls));
case 3: /* McBSP 3 */
return snd_soc_add_dai_controls(cpu_dai,
omap_mcbsp3_st_controls,
ARRAY_SIZE(omap_mcbsp3_st_controls));
default:
dev_err(mcbsp->dev, "Port %d not supported\n", port_id);
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls);
static struct omap_mcbsp_platform_data omap2420_pdata = {
.reg_step = 4,
.reg_size = 2,
};
static struct omap_mcbsp_platform_data omap2430_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
};
static struct omap_mcbsp_platform_data omap3_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static struct omap_mcbsp_platform_data omap4_pdata = {
.reg_step = 4,
.reg_size = 4,
.has_ccr = true,
.has_wakeup = true,
};
static const struct of_device_id omap_mcbsp_of_match[] = {
{
.compatible = "ti,omap2420-mcbsp",
.data = &omap2420_pdata,
},
{
.compatible = "ti,omap2430-mcbsp",
.data = &omap2430_pdata,
},
{
.compatible = "ti,omap3-mcbsp",
.data = &omap3_pdata,
},
{
.compatible = "ti,omap4-mcbsp",
.data = &omap4_pdata,
},
{ },
};
MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
static int asoc_mcbsp_probe(struct platform_device *pdev)
{
struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
struct omap_mcbsp *mcbsp;
const struct of_device_id *match;
int ret;
match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
if (match) {
struct device_node *node = pdev->dev.of_node;
struct omap_mcbsp_platform_data *pdata_quirk = pdata;
int buffer_size;
pdata = devm_kzalloc(&pdev->dev,
sizeof(struct omap_mcbsp_platform_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
memcpy(pdata, match->data, sizeof(*pdata));
if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
pdata->buffer_size = buffer_size;
if (pdata_quirk)
pdata->force_ick_on = pdata_quirk->force_ick_on;
} else if (!pdata) {
dev_err(&pdev->dev, "missing platform data.\n");
return -EINVAL;
}
mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
if (!mcbsp)
return -ENOMEM;
mcbsp->id = pdev->id;
mcbsp->pdata = pdata;
mcbsp->dev = &pdev->dev;
platform_set_drvdata(pdev, mcbsp);
ret = omap_mcbsp_init(pdev);
if (ret)
return ret;
ret = devm_snd_soc_register_component(&pdev->dev,
&omap_mcbsp_component,
&omap_mcbsp_dai, 1);
if (ret)
return ret;
return omap_pcm_platform_register(&pdev->dev);
}
static int asoc_mcbsp_remove(struct platform_device *pdev)
{
struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
mcbsp->pdata->ops->free(mcbsp->id);
if (pm_qos_request_active(&mcbsp->pm_qos_req))
pm_qos_remove_request(&mcbsp->pm_qos_req);
omap_mcbsp_cleanup(mcbsp);
clk_put(mcbsp->fclk);
return 0;
}
static struct platform_driver asoc_mcbsp_driver = {
.driver = {
.name = "omap-mcbsp",
.of_match_table = omap_mcbsp_of_match,
},
.probe = asoc_mcbsp_probe,
.remove = asoc_mcbsp_remove,
};
module_platform_driver(asoc_mcbsp_driver);
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
MODULE_DESCRIPTION("OMAP I2S SoC Interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:omap-mcbsp");