linux-stable/arch/x86/kernel/setup_percpu.c
Tejun Heo e59a1bb2fd x86: fix pageattr handling for lpage percpu allocator and re-enable it
lpage allocator aliases a PMD page for each cpu and returns whatever
is unused to the page allocator.  When the pageattr of the recycled
pages are changed, this makes the two aliases point to the overlapping
regions with different attributes which isn't allowed and known to
cause subtle data corruption in certain cases.

This can be handled in simliar manner to the x86_64 highmap alias.
pageattr code should detect if the target pages have PMD alias and
split the PMD alias and synchronize the attributes.

pcpur allocator is updated to keep the allocated PMD pages map sorted
in ascending address order and provide pcpu_lpage_remapped() function
which binary searches the array to determine whether the given address
is aliased and if so to which address.  pageattr is updated to use
pcpu_lpage_remapped() to detect the PMD alias and split it up as
necessary from cpa_process_alias().

Jan Beulich spotted the original problem and incorrect usage of vaddr
instead of laddr for lookup.

With this, lpage percpu allocator should work correctly.  Re-enable
it.

[ Impact: fix subtle lpage pageattr bug and re-enable lpage ]

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jan Beulich <JBeulich@novell.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
2009-06-22 11:56:24 +09:00

503 lines
14 KiB
C

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/percpu.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/pfn.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/mpspec.h>
#include <asm/apicdef.h>
#include <asm/highmem.h>
#include <asm/proto.h>
#include <asm/cpumask.h>
#include <asm/cpu.h>
#include <asm/stackprotector.h>
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
# define DBG(x...) printk(KERN_DEBUG x)
#else
# define DBG(x...)
#endif
DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
#ifdef CONFIG_X86_64
#define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
#else
#define BOOT_PERCPU_OFFSET 0
#endif
DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
EXPORT_PER_CPU_SYMBOL(this_cpu_off);
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
[0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
};
EXPORT_SYMBOL(__per_cpu_offset);
/*
* On x86_64 symbols referenced from code should be reachable using
* 32bit relocations. Reserve space for static percpu variables in
* modules so that they are always served from the first chunk which
* is located at the percpu segment base. On x86_32, anything can
* address anywhere. No need to reserve space in the first chunk.
*/
#ifdef CONFIG_X86_64
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
#else
#define PERCPU_FIRST_CHUNK_RESERVE 0
#endif
/**
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
*
* If NUMA is not configured or there is only one NUMA node available,
* there is no reason to consider NUMA. This function determines
* whether percpu allocation should consider NUMA or not.
*
* RETURNS:
* true if NUMA should be considered; otherwise, false.
*/
static bool __init pcpu_need_numa(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
pg_data_t *last = NULL;
unsigned int cpu;
for_each_possible_cpu(cpu) {
int node = early_cpu_to_node(cpu);
if (node_online(node) && NODE_DATA(node) &&
last && last != NODE_DATA(node))
return true;
last = NODE_DATA(node);
}
#endif
return false;
}
/**
* pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
* @cpu: cpu to allocate for
* @size: size allocation in bytes
* @align: alignment
*
* Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
* does the right thing for NUMA regardless of the current
* configuration.
*
* RETURNS:
* Pointer to the allocated area on success, NULL on failure.
*/
static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
unsigned long align)
{
const unsigned long goal = __pa(MAX_DMA_ADDRESS);
#ifdef CONFIG_NEED_MULTIPLE_NODES
int node = early_cpu_to_node(cpu);
void *ptr;
if (!node_online(node) || !NODE_DATA(node)) {
ptr = __alloc_bootmem_nopanic(size, align, goal);
pr_info("cpu %d has no node %d or node-local memory\n",
cpu, node);
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
cpu, size, __pa(ptr));
} else {
ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
size, align, goal);
pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
"%016lx\n", cpu, size, node, __pa(ptr));
}
return ptr;
#else
return __alloc_bootmem_nopanic(size, align, goal);
#endif
}
/*
* Large page remap allocator
*
* This allocator uses PMD page as unit. A PMD page is allocated for
* each cpu and each is remapped into vmalloc area using PMD mapping.
* As PMD page is quite large, only part of it is used for the first
* chunk. Unused part is returned to the bootmem allocator.
*
* So, the PMD pages are mapped twice - once to the physical mapping
* and to the vmalloc area for the first percpu chunk. The double
* mapping does add one more PMD TLB entry pressure but still is much
* better than only using 4k mappings while still being NUMA friendly.
*/
#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pcpul_ent {
unsigned int cpu;
void *ptr;
};
static size_t pcpul_size;
static struct pcpul_ent *pcpul_map;
static struct vm_struct pcpul_vm;
static struct page * __init pcpul_get_page(unsigned int cpu, int pageno)
{
size_t off = (size_t)pageno << PAGE_SHIFT;
if (off >= pcpul_size)
return NULL;
return virt_to_page(pcpul_map[cpu].ptr + off);
}
static ssize_t __init setup_pcpu_lpage(size_t static_size)
{
size_t map_size, dyn_size;
unsigned int cpu;
int i, j;
ssize_t ret;
/*
* If large page isn't supported, there's no benefit in doing
* this. Also, on non-NUMA, embedding is better.
*/
if (!cpu_has_pse || !pcpu_need_numa())
return -EINVAL;
/*
* Currently supports only single page. Supporting multiple
* pages won't be too difficult if it ever becomes necessary.
*/
pcpul_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
PERCPU_DYNAMIC_RESERVE);
if (pcpul_size > PMD_SIZE) {
pr_warning("PERCPU: static data is larger than large page, "
"can't use large page\n");
return -EINVAL;
}
dyn_size = pcpul_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
/* allocate pointer array and alloc large pages */
map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0]));
pcpul_map = alloc_bootmem(map_size);
for_each_possible_cpu(cpu) {
pcpul_map[cpu].cpu = cpu;
pcpul_map[cpu].ptr = pcpu_alloc_bootmem(cpu, PMD_SIZE,
PMD_SIZE);
if (!pcpul_map[cpu].ptr)
goto enomem;
/*
* Only use pcpul_size bytes and give back the rest.
*
* Ingo: The 2MB up-rounding bootmem is needed to make
* sure the partial 2MB page is still fully RAM - it's
* not well-specified to have a PAT-incompatible area
* (unmapped RAM, device memory, etc.) in that hole.
*/
free_bootmem(__pa(pcpul_map[cpu].ptr + pcpul_size),
PMD_SIZE - pcpul_size);
memcpy(pcpul_map[cpu].ptr, __per_cpu_load, static_size);
}
/* allocate address and map */
pcpul_vm.flags = VM_ALLOC;
pcpul_vm.size = num_possible_cpus() * PMD_SIZE;
vm_area_register_early(&pcpul_vm, PMD_SIZE);
for_each_possible_cpu(cpu) {
pmd_t *pmd, pmd_v;
pmd = populate_extra_pmd((unsigned long)pcpul_vm.addr +
cpu * PMD_SIZE);
pmd_v = pfn_pmd(page_to_pfn(virt_to_page(pcpul_map[cpu].ptr)),
PAGE_KERNEL_LARGE);
set_pmd(pmd, pmd_v);
}
/* we're ready, commit */
pr_info("PERCPU: Remapped at %p with large pages, static data "
"%zu bytes\n", pcpul_vm.addr, static_size);
ret = pcpu_setup_first_chunk(pcpul_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE, dyn_size,
PMD_SIZE, pcpul_vm.addr, NULL);
/* sort pcpul_map array for pcpu_lpage_remapped() */
for (i = 0; i < num_possible_cpus() - 1; i++)
for (j = i + 1; j < num_possible_cpus(); j++)
if (pcpul_map[i].ptr > pcpul_map[j].ptr) {
struct pcpul_ent tmp = pcpul_map[i];
pcpul_map[i] = pcpul_map[j];
pcpul_map[j] = tmp;
}
return ret;
enomem:
for_each_possible_cpu(cpu)
if (pcpul_map[cpu].ptr)
free_bootmem(__pa(pcpul_map[cpu].ptr), pcpul_size);
free_bootmem(__pa(pcpul_map), map_size);
return -ENOMEM;
}
/**
* pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
* @kaddr: the kernel address in question
*
* Determine whether @kaddr falls in the pcpul recycled area. This is
* used by pageattr to detect VM aliases and break up the pcpu PMD
* mapping such that the same physical page is not mapped under
* different attributes.
*
* The recycled area is always at the tail of a partially used PMD
* page.
*
* RETURNS:
* Address of corresponding remapped pcpu address if match is found;
* otherwise, NULL.
*/
void *pcpu_lpage_remapped(void *kaddr)
{
void *pmd_addr = (void *)((unsigned long)kaddr & PMD_MASK);
unsigned long offset = (unsigned long)kaddr & ~PMD_MASK;
int left = 0, right = num_possible_cpus() - 1;
int pos;
/* pcpul in use at all? */
if (!pcpul_map)
return NULL;
/* okay, perform binary search */
while (left <= right) {
pos = (left + right) / 2;
if (pcpul_map[pos].ptr < pmd_addr)
left = pos + 1;
else if (pcpul_map[pos].ptr > pmd_addr)
right = pos - 1;
else {
/* it shouldn't be in the area for the first chunk */
WARN_ON(offset < pcpul_size);
return pcpul_vm.addr +
pcpul_map[pos].cpu * PMD_SIZE + offset;
}
}
return NULL;
}
#else
static ssize_t __init setup_pcpu_lpage(size_t static_size)
{
return -EINVAL;
}
#endif
/*
* Embedding allocator
*
* The first chunk is sized to just contain the static area plus
* module and dynamic reserves and embedded into linear physical
* mapping so that it can use PMD mapping without additional TLB
* pressure.
*/
static ssize_t __init setup_pcpu_embed(size_t static_size)
{
size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
/*
* If large page isn't supported, there's no benefit in doing
* this. Also, embedding allocation doesn't play well with
* NUMA.
*/
if (!cpu_has_pse || pcpu_need_numa())
return -EINVAL;
return pcpu_embed_first_chunk(static_size, PERCPU_FIRST_CHUNK_RESERVE,
reserve - PERCPU_FIRST_CHUNK_RESERVE, -1);
}
/*
* 4k page allocator
*
* This is the basic allocator. Static percpu area is allocated
* page-by-page and most of initialization is done by the generic
* setup function.
*/
static struct page **pcpu4k_pages __initdata;
static int pcpu4k_nr_static_pages __initdata;
static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
{
if (pageno < pcpu4k_nr_static_pages)
return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
return NULL;
}
static void __init pcpu4k_populate_pte(unsigned long addr)
{
populate_extra_pte(addr);
}
static ssize_t __init setup_pcpu_4k(size_t static_size)
{
size_t pages_size;
unsigned int cpu;
int i, j;
ssize_t ret;
pcpu4k_nr_static_pages = PFN_UP(static_size);
/* unaligned allocations can't be freed, round up to page size */
pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
* sizeof(pcpu4k_pages[0]));
pcpu4k_pages = alloc_bootmem(pages_size);
/* allocate and copy */
j = 0;
for_each_possible_cpu(cpu)
for (i = 0; i < pcpu4k_nr_static_pages; i++) {
void *ptr;
ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
if (!ptr)
goto enomem;
memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
pcpu4k_pages[j++] = virt_to_page(ptr);
}
/* we're ready, commit */
pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
pcpu4k_nr_static_pages, static_size);
ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE, -1,
-1, NULL, pcpu4k_populate_pte);
goto out_free_ar;
enomem:
while (--j >= 0)
free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
ret = -ENOMEM;
out_free_ar:
free_bootmem(__pa(pcpu4k_pages), pages_size);
return ret;
}
static inline void setup_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
struct desc_struct gdt;
pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
0x2 | DESCTYPE_S, 0x8);
gdt.s = 1;
write_gdt_entry(get_cpu_gdt_table(cpu),
GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
#endif
}
/*
* Great future plan:
* Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
* Always point %gs to its beginning
*/
void __init setup_per_cpu_areas(void)
{
size_t static_size = __per_cpu_end - __per_cpu_start;
unsigned int cpu;
unsigned long delta;
size_t pcpu_unit_size;
ssize_t ret;
pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
/*
* Allocate percpu area. If PSE is supported, try to make use
* of large page mappings. Please read comments on top of
* each allocator for details.
*/
ret = setup_pcpu_lpage(static_size);
if (ret < 0)
ret = setup_pcpu_embed(static_size);
if (ret < 0)
ret = setup_pcpu_4k(static_size);
if (ret < 0)
panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
static_size, ret);
pcpu_unit_size = ret;
/* alrighty, percpu areas up and running */
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
per_cpu(cpu_number, cpu) = cpu;
setup_percpu_segment(cpu);
setup_stack_canary_segment(cpu);
/*
* Copy data used in early init routines from the
* initial arrays to the per cpu data areas. These
* arrays then become expendable and the *_early_ptr's
* are zeroed indicating that the static arrays are
* gone.
*/
#ifdef CONFIG_X86_LOCAL_APIC
per_cpu(x86_cpu_to_apicid, cpu) =
early_per_cpu_map(x86_cpu_to_apicid, cpu);
per_cpu(x86_bios_cpu_apicid, cpu) =
early_per_cpu_map(x86_bios_cpu_apicid, cpu);
#endif
#ifdef CONFIG_X86_64
per_cpu(irq_stack_ptr, cpu) =
per_cpu(irq_stack_union.irq_stack, cpu) +
IRQ_STACK_SIZE - 64;
#ifdef CONFIG_NUMA
per_cpu(x86_cpu_to_node_map, cpu) =
early_per_cpu_map(x86_cpu_to_node_map, cpu);
#endif
#endif
/*
* Up to this point, the boot CPU has been using .data.init
* area. Reload any changed state for the boot CPU.
*/
if (cpu == boot_cpu_id)
switch_to_new_gdt(cpu);
}
/* indicate the early static arrays will soon be gone */
#ifdef CONFIG_X86_LOCAL_APIC
early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
#endif
#if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
#endif
#if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
/*
* make sure boot cpu node_number is right, when boot cpu is on the
* node that doesn't have mem installed
*/
per_cpu(node_number, boot_cpu_id) = cpu_to_node(boot_cpu_id);
#endif
/* Setup node to cpumask map */
setup_node_to_cpumask_map();
/* Setup cpu initialized, callin, callout masks */
setup_cpu_local_masks();
}